Software Reliability Measurements in
N-Version Software Execution Environment

Michael R. Lyu
Belicore
Information Sciences and Technologies Research Lab.
Morristown, NJ 07962
<lyu@bellcore.com>

Abstract

In this paper we quantitatively examine the effectiveness
of the N-Version Programming approach. We look into
the details of an academialindustry joint project employ-
ing six programming languages, and study the proper-
ties of the resulting program versions. We explain how
exhaustive testing was applied to the project, and meas-
ure the error probability in different N-Version Software
execution configurations. We also apply mutation test-
ing techniques to measure the safety coverage factor for
the N-Version Software system. Results from this inves-
tigation reveals the potential of N-Version Software in
improving software reliability. Another observation of
this research is that the per fault error rate does not
remain constant in this computation-intensive project.
The error rates associated with each program fault
differ from each other dramatically, and they tend to
decrease as testing progresses.

1. Introduction

The N -Version Programming (NVP) approach to
fault-tolerant software systems involves the generation
of functionally equivalent, yet independently developed
software components, called N -version software (NVS).
These components are executed concurrently under a
supervisory system that uses a decision algorithm based
on consensus to determine final output values. When-
ever probability of similar errors is minimized, distinct,
erroneous results tend to be masked by a majority vote
during NVS execution[1].

NVS systems are gaining acceptance in critical
application areas such as the aerospace industry, nuclear
power industry, and ground transportation industry.
However, the evaluations of such systems, especially in
the context of reliability-related measures, are still left

0-8186-2975-4/92 $03.00 © 1992 IEEE

254

as a controversial issue. There are many conflicting
observations about the effectiveness of this fault-
tolerance technique in increasing software reliability[2)
{3] [4] [5]. In this paper, we will revisit the program
versions obtained in a six-language project, using Ada,
C, Modula-2, Pascal, Prolog, and T (a lisp dialect)[6],
and evaluate the reliability aspects of the resulting NVS
executions from various angles.

2. The Application and Its Instrumentation

An industrial investigation conceming the effec-
tiveness of the NVP process was conducted in an
industry/academia joint project[6]. The application was
an automatic flight control function ("auwtopilot") that
had been implemented by the Honeywell Incorporated
for the landing of commercial airliners. All algorithms
and control commands in the application were specified
by diagrams which had been certified by the Federal
Aviation Administration (FAA). Details of this project
could be found in the technical report[7].

For the purpose of providing reliable operation
during software execution, it was critical that the appli-
cation be instrumented by error detection and recovery
mechanisms. This is shown in Figure 1.

In Figure 1, execution scenario of the application
was designed to iterate through the following computa-
tions: 1) airplane sensor input generation; 2) lane com-
mand computation; 3) command monitors and display
computation; and 4) recovery mechanism when neces-
sary. The airplane simulator was separately designed by
a coordinating team. Lane command, command moni-
tors and display module were implemented by the pro-
gramming teams. The recovery mechanism was pro-
vided in a supervisory environment.[8].

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 12,2021 at 03:27:36 UTC from IEEE Xplore. Restrictions apply.

Airplane Sensor

Input Generation Complementary Filters Processing

ccp filter1, ccp filter2

Mode Logic Processing
sensor.input ccp.modelogic
¥ Outer Loop Computation
Lane Command ccp.outerloop
Computation Inner Loop Computation
ccp.innerloop
(lane.input) *

Command Monitors Computation
ccp.monitors

Display Computation
ccp.display

Command Monitors,
Display Computation

state.recovery

Recovery
Mechanism

L]

Figure 1: Usage of Cc-points and Recovery-point

Under this scenario, the application software was
instrumented by some fault tolerance mechanisms. Two
input points (sensor.input, lane.input) were specified to
receive external sensor input from an airplane, and to
receive flight commends from the other channels (lanes).
Moreover, seven cross-check points (ccp.filterl,
cepfilter2, ccp.modelogic, ccp.outerloop, ccp.innerloop,
ccp.monitors, ccp.display) were used to cross-check the
results of the major system functions (Complementary
Filters, Mode Logic, Outer Loop, Inner Loop, Command
Monitors, Display) with the results of the other versions
before they were used in any further computation.
Finally, One recovery point (state.recovery) was used to
recover a failed version by supplying it with a set of new
internal state variables that were obtained from the other
versions by the Community Error Recovery tech-
nique[9].

In summary, these fault tolerance mechanisms
introduce 14 external variables (for input functions), 68
intermediate and final variables (for cross-check func-
tions), and 42 state variables (for recovery function) in
the application. State variables were identified as those
variables whose values in the current iteration would
affect their new values in the next iteration.

3. Software Testing Conducted

To emphasize the importance of testing, three
phases of testing: unit tests, integration tests, and accep-
tance tests, were conducted. Different strategies for pro-
gram testing were provided in order to clean up pro-
grams. Table 1 lists the differences among these phases.

| category unit test integration acceptance
test structure- requirements- | requirements-
criteria based based based
test case open loop, closed loop, closed loop,
generator || PC Basic PC Basic multiple

languages

test data individual interfacing interfacing
access file i/o C routines C routines
testers programmers | programmers coordinators
tolerance || 0.01 0.01 0.005
level
test cases || 133 4 9
total 1330 960 18,440
runs

Table 1: Different Schemes in Testing Phases

The unit test was considered as structure-based
test since its test data was provided in such a way to
facilitate programmers in hand-tracing the execution of
their program units. The integration test and acceptance
test, on the other hand, utilized purely requirements-
based test data. A reference model of the autopilot was
implemented and provided by Honeywell Inc. This ver-
sion was implemented in Basic on an IBM PC 1o serve
as the test case generator for unit tests and integration
tests. Criteria of "open loop testing" and "closed loop
testing” were used, respectively. Due to the wide
numerical discrepancies between this version and the
other six program versions under development, a larger
tolerance level was chosen.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 12,2021 at 03:27:36 UTC from IEEE Xplore. Restrictions apply.

Test Phase ADA C MOD-2 | PASCAL | PROLOG T Total
Coding/Unit Testing 2 4 4 10 15 7 42
Integration Testing 2 5 0 2 7 4 20
Acceptance Testing 2 4 0 0 4 10 20
Operational Testing 0 5 1 0 3 2 11
Total 6 18 5 12 29 23 93
Inherent Fault Density 58 | 242 9.2 244 23.1 21.1 18.0
Test Efficiency 100% | 72% 80% 100% 90% 91% || 88%
Operational Fault Density 0.0 6.7 1.8 0.0 2.4 1.8 2.1

Table 2: Fault Classification by Phases and Other Attributes

Later in the acceptance test, this reference model
proved to be less reliable (several faults were found) and
less efficient. Thus, it was necessary to replace it with a
more reliable and efficient testing procedure for a large
volume of test data. For this procedure, the outputs of
the six versions were voted and the majority results were
used as the reference points to generate test data during
the acceptance tests. This was also the test phase during
which programmers were required to submit their pro-
grams to the coordinating team and wait for the test
results. A finer tolerance level was used based on the
observation that less discrepancies were expected if pro-
grams computed the right results. An exception had to
be made for the Prolog program due to the lack of accu-
racy in its internal representation of real numbers.

In the unit test phase, each module of the program
received a variant number of test cases. A total of 133
test cases were executed, and since each test case con-
tained 10 program executions, there were 1330 execu-
tions in this phase. In the integration test, four testing
profiles were provided. Each test profile contained 12
seconds of flight simulation, a total of 960 executions.
The acceptance test was a stringent testing phase. Nine
testing profiles, representing flight situation with dif-
ferent modes and different magnitude of wind tur-
bulences, were designed for this test phase. The total
executions required in this phase were 18440 program
iterations.

4. Fault Distributions among the Programs

A total of 93 faults was found and reported during
the whole life cycle of the project. Table 2 shows the
test phases during which the faults were detected, and
the fault densities (as per thousands of executable state-
ments) of the original version and the accepted version.
It also shows test efficiency for fault removal during
software development, defined as the number of faults

256

found prior to operational testing divided by the number
of total faults.

It is noted that there was only one incidence of an
identical fault, committed by two teams, Ada and
Modula-2, during program development phase. This
fault was due to a comma being misread as a period,
which was classified as a specification misinterpretation.
During operational testing, two disagreements were
traced to an identical fault occurred in the Prolog and T
versions, which was due to the programmers’ ignorance
to properly incorporate a late specification update. Both
pairs of identical faults were related to specification.
However, identical faults involving more than two ver-
sions have never been observed.

The diversity effect of programming language
could also be seen from Table 2. The programming
languages of "object-oriented" flavor (Ada, Modula-2)
seem to inherit less faults than other programming
languages. However, it is unclear whether this new pro-
gramming style encourages or discourages error detec-
tion. It is noted that, since there is only one version per
programming language, these observations are not
meant to be conclusive.

5. N-Version Software System Executions and
Results

The operational testing of this project was a
dynamic, requirements-based testing stressing how the
airplane/autopilot interacted and operated in an actual
environment. Three or five channels of diverse software
each computed a surface command to guide a simulated
aircraft along its flight path. To ensure that significant
command errors could be detected, random wind tur-
bulences of different levels were superimposed in order
to represent difficult flight conditions. The individual
commands were recorded and compared for discrepan-
cies that could indicate the presence of faults.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 12,2021 at 03:27:36 UTC from IEEE Xplore. Restrictions apply.

LANEA

COMPUTATION

COMMAND

MONITOR A

LANEB

COMPUTATION

COMMAND

MONITOR B

LANEC

COMPUTATION

COMMAND
MONITOR C

SERVO-
AIRPLANE / SENSORS
CONTROL / -
LANDING GEOMETRY
SERVOS
[TURBULENCE|
GENERATOR

Figure 2: 3-Channel Flight Simulation Configuration

The configuration of the flight simulation system,
shown in Figure 2, was consist of three lanes of control
law computation, three command monitors, a servo con-
trol, an Airplane model, and a turbulence generator.

The lane computations and the command monitors
were the software versions generated by the six pro-
gramming teams. Each lane of independent computa-
tion monitored the other two lanes. However, no single
lane could make the decision as to whether another lane
was faulty. A separate servo control logic function was
required to make that decision, based on the monitor
states provided by all the lanes. This control logic
applied a strategy that ignored the command from a lane
when that lane was judged failed by both of the other
two lanes, given that these two lanes were judged valid.

The aircraft mathematical model provided the
dynamic response of current medium size, commercial
transports in the approach/landing flight phase. The
three control signals from the autopilot computation
lanes were inputs to three servos. The servos were
force-summed at their outputs, so that the mid-value of
the three inputs became the final command.

Landing Geometry and Turbulence Generator
were models associated with the Airplane simulator.

257

The Landing Geometry mathematical model described
the deviation from glideslope beam center as a function
of aircraft position relative to the end of the runway.
The Turbulence Generator model was used to introduce
vertical wind gusts.

In summary, one run of flight simulation was
characterized by the following five initial values: (1) ini-
tial altitude (about 1500 feet); (2) initial distance (about
52800 feet); (3) initial nose up relative to velocity (range
from 0 to 10 degrees); (4) initial pitch attitude (range
from -15 to 15 degrees); and (5) vertical velocity for the
wind turbulence (0 to 10 ft/sec). One simulation con-
sisted of about 5000 iterations of lane command compu-
tations (50 milliseconds each) for a total landing time of
approximately 250 seconds. In this manner, over 1000
flight simulations (over 5,000,000 program executions)
were exercised on the six software versions generated
from this project.

Table 3 shows the errors encountered in each sin-
gle version, while Table 4 shows different error
categories under all combinations of 3-version and 5-
version configurations{10]. Note that the discrepancies
encountered in the operational testing were called
“errors” rather than "failures” due to their non-criticality

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 12,2021 at 03:27:36 UTC from IEEE Xplore. Restrictions apply.

in the landing procedure, i.e., a proper touchdown was
still achieved.

total # of error
version | executions | errors prob.
Ada 5127400 0 0000000
C 5127400 568 .0001108
Mod-2 5127400 0 0000000
Pascal 5127400 0 0000000
Prolog 5127400 680 0001326
T 5127400 630 0001326
avg. 5127400 321 00006267

Table 3: Errors in Individual Versions

cate- 3-version configuration S-version configuration
gory # of cases probability # of cases probability
1. 102531685 .9998409 30757655 9997807

2. 13385 .0001305 5890 0001915

3. 210 .000002048 70 000002275
4. 2720 .00002652 680 00002210
S. - - 105 .000003413
Total | 102548000 | 1.0000000 30764400 | 1.0000000

classifications of the category:

1 - no errors

2 - single errors in one version

3 - two distince errors in multiple versions

4 - two coincident errors in multiple versions
5 - three errors in multiple versions

Table 4: Errors in 3-Version and 5-Version Execution Configurations

From Table 3 we can see that the average error
probability for single version is .00006267. Table 4
shows that for all the 3-version combinations, the error
probability concerning reliability is .00002857
(categories 3 and 4), and that for safety is .00002652
(category 4). This is a reduction of roughly 2.3. In all
the combinations of 5-version configuration, the error
probability for reliability is .000003413 (category 5; two
of the three errors are coincident, resulting in no-
decision), a reduction by a factor of 18. This probability
becomes zero in the safety measurement,

From these numbers it might be interpreted that
the expected dependability improvement of NVS over
single-version software is quite moderate. However, it
is noted that the coincident errors produced by the Pro-
log and T programs were all caused by one identical
fault in both versions, which was due to the ignorance of

258

a slight specification update that was made very late in
the programming process. This fault manifested itself
right after these program versions were put together for
the flight simulation. Had this fault been eliminated in
the operational testing, categories 3, 4 and 5 for both 3-
version and 5-version configurations in Table 4 would
have been all zero, resulting in perfect dependability
figures.

6. Fault Diagnosis and Error Analysis by
Mutation Testing

To uncover the impact of faults that would have
remained in the software version, and to evaluate the
effectiveness of NVS mechanisms, a special type of
regression testing, similar to mutation testing which is
well known in the software testing literature(11] [12],
was investigated in the six versions. The original pur-
pose of the mutation testing is to ensure the quality of
the test data used to verify a program, while our concern
here was to examine the relationship of faults and error
frequencies in each program and to evaluate the similar-
ity of program errors among different versions. The
testing procedure is described in the following steps: 1)
The fault removal history of each program was exam-
ined and each program fault was analyzed and recreated.
2) Mutants were generated by injecting faults one by
one into the final version from where they were removed
(i.e., a fault from the C program will be injected to the C
program only). Each mutant contains exactly one
known software fault. 3) Each mutant was executed by
the same set of input data in the Airplane simulation
environment to observe errors. 4) Analyze the error
characteristics to collect error statistics and correlations.

Using the fault removal history of each version,
we created 6 mutants for Ada (al - a6), 18 mutants for C
(cl - c18), 5 mutants for Modula-2 (ml - mS5), 12
mutants for Pascal (pl - p12), 29 mutants for Prolog
(pgl - pg29), and 23 mutants for T (tl - t23). A higher
index number in each mutant represents the injection of
a later fault to that version. In order to present the exe-
cution results of the above procedure, let us define the
following two functions for each mutant:

. Error Frequency Function (for a given set of test
data) — the frequency of the error being triggered
by the specified test data set in this mutant.

. Error Severity Function (for a given set of test
data) ~ the severity of the error when manifested
in the system by the specified test data set.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 12,2021 at 03:27:36 UTC from IEEE Xplore. Restrictions apply.

An Error Frequency Function of version x mutant i for
test set T, denoted as A(x; ,t), is computed by

total number of errors when
executing test set T on mutant x;

Aty = = number of executions

Since each mutant contains only one known fault, it is
hypothesized that errors produced by that fault are
always the same for the same test inputs[13]. This
hypothesis is considered valid for all the mutants dis-
cussed here. Therefore, we can define an Error Severity
Function of version x mutant i for test set T, wx;,1), to
be
(

reference — error of x;

0,if0< reference value

<E¢

reference — error of x;
reference value

,if

<

H(xi) =
reference — error of x;
reference value

€< <1

1, otherwise

\

where € is a specified allowed deviation. If x; produces
run-time exceptions or no results, then pL(x;,T) is defined
to be 1.

The Error Frequency Function and Error Severity
Function applied to each mutant (for a test set of about
15000 executions) are shown in Table 5 and Table 6,
respectively.

From Table 5 we can observe that the error fre-
quency associated with each fault is nor a constant. The
existence of a constant error rate per fault has been a
major assumption of many software reliability
models[14] [15] {16]. Table S, on the other hand, sug-
gests that the per fault error rate is not constant. In fact,
this rate tends to decrease as the testing proceeds, sug-
gesting that frequently manifested errors will be
detected earlier. This phenomenon suits the assump-
tions in some other reliability models(17] [18]. How-
ever, the exact relationship of the fault sequence and the
associated error rates, which has been specified by these
models, cannot be confirmed in Table 5.

259

id Ada C Mod-2 | Pascal | Prolog T
1 .0002 1 0 1 0 1
2 .001 .0037 .001 0 .0006 1
3 1 5 005 0 1 1
4 1 0001 0 0001 1 1
5 0001 | .0037 0 1 .0005 1
6 0 0 - .002 1 0
7 - .001 . 001 1 1
8 - 0 - .001 .1 1
9 — 0 - .0001 .0005 1
10 - 0 - 0 1 5
11 - .0005 - .001 1 1
12 - 0 - .0002 1 0
13 - 0 - - 1 0
14 - 0 - - .0001 0
15 - .03 - - 1 .002
16 - 0 - - 1 0
17 - 0 - - 1 .0028
18 - 0 - - 0 0
19 - - - - 1 0
20 - - - - 1 0
21 - - - - 1 0
22 - - - ~ 1 001
23 - - - - .0001 0
24 - - - - 0 -
25 - - - - .0001 -
26 — - - - 0 -
27 - - - - 001 —
28 - - - - 0 =
29 ~ - - ~ 0 -

"—" means the mutant for that version does not exist.

Table 5: Error Frequency Function of Each Mutant

Table 6 shows an even more random behavior of
the error severity versus testing time, suggesting hard-
to-detect errors might, or might not, imply high severity.

As to the nature of errors in two or more versions,
three types of relationships are identified: distinct errors,
similar errors, and identical errors[19]. Distinct errors
are produced by faults whose erroneous results could be
distinguished from one another. Similar errors are
defined to be two or more results that are within a small
range of variation, and the results are erroneous. If the
results of the similar errors are identical, they are called
identical errors.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 12,2021 at 03:27:36 UTC from IEEE Xplore. Restrictions apply.

id || Ada C Mod-2 | Pascal | Prolog T
1 1 025 0 1 0 1
2 S1 1 St 0 1 1
3 1 1 1 0 1 1
4 1 1 0 .03 1 .017
5 1 .05 0 1 1 1
6 0 0 - 017 1 0
7 - 1 - 1 1 1
8 - 0 - .004 1 1
9 - 0 - 1 .038 1
10 - 0 - 0 1 1
11 - .001 - 23 1 1
12 - 0 - 1 1 0
13 - 0 - - 1 0
14 - 0 - - .022 0
15 - .6 - - 1 1
16 - 0 - - 1 0
17 - 0 - - 1 1
18 - 0 - - 0 0
19 - - - - 1 0
20 - - - - 1 0
21 - - - - 1 0
22 - - - - 1 .02
23 — - - - 1 0
22 || - - — - 0 -
25 - - - - 1 -
26 - - ~ - 0 -
27 - - - - 02 -
28 - - - - 0 -
29 - - - - 0 -

"—" means the mutant for that version does not exist.

Table 6: Error Severity Function of Each Mutant

Thus we can define a Error Similarity Function,
O(x1,..,x,), for a set of mutants {x1,...x,, } and a test set
T,to be

0 if (x1,...x,) produce distinct
errors in test set 1

G(X LreesXn ;T) =9

1 i (x1,..x,) produce identical
or similar errors in 1

Based on these definitions, we have obtained the
Error Similarity Functions for populations of two ver-
sions. Table 7 shows the Error Similarity Function
matrix for two-mutant sets. The complete layout of this
matrix is 93 by 93, but since it is a sparse matrix (most
entries are zero), we can reduce it by removing many of
the zero entries. In fact, the two incidences of indistin-
guishable errors shown in this table result from the two
pairs of identical faults discussed before.

c a2 | m2 | pg27 | 122
a2 - 1 0
m2 1 - 0 0
pg27 || O 0 - 1
22 0 0 1 -

Table 7: Reduced Error Similarity Function Matrix
in Two-Mutant Sets

Analysis of three-mutant sets becomes much more
tedious since a three-dimensional matrix will be needed.
However, it should be similar to the analysis of two-
mutant sets, whose error similarity is shown to be weak.
Moreover, since we have not seen any common errors
affecting more than two mutants, the results that would
be obtained from the analysis of higher-order mutant
sets should also be favorable to the NVS schemes.

Based on the above measures, we can obtain
another reliability-related quantity, safery coverage,
which is important for assessing the effectiveness of
fauli-tolerant systems. Safety coverage factor is defined
as the conditional probability of successful error detec-
tion or recovery, given that a fault has manifested itself
in the system[20]. In NVS systems, the safety coverage
factor depends on the similarity of errors, the severity of
errors, and the efficiency of the recovery mechanisms to
cope with such errors. Thus, we need to derive a quanti-
tative definition of it for measurement.

Since our main interest here is the analysis of the
program versions themselves, without loosing general-
ity, let us assume the NVS supervisory system does not
introduce extra errors which corrupt program execu-
tions. As a result, the main contribution of the "leak” of
the NVS schemes would be the error similarity defined
previously. Now we may use the mutants we generated
early as the sampling space to represent the condition
that a fault has been created. Since this fault is assumed

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 12,2021 at 03:27:36 UTC from IEEE Xplore. Restrictions apply.

to be manifested into errors during program executions,
the probability that it would be covered (or tolerated) is
related to its error severity and its similarity to errors of
other program versions. Consequently, the safety cover-
age factor of an n-mutant system (out of a total popula-
tion m) with respect to the test set T, denoted C, (1),
could be defined as:

—_ 1 _ 1 .
Ca(m) =1 Ty ISX’AI.SMO(XI,--,M T)

* Wimedian_of (X1,..Xp) » T)

For example, C 1(T) represents the safety coverage fac-
tor of single-version software:

1 x=93

1- TO3D x,z=l o(x;T) * Wx1,T)
1 x,=93
1-95 x,§1 H(x1,7)

Ci(v)

0.504

Moreover, the safety coverage factor C,(T) of a two-
version system from our sample mutants is:

1

1 1293 x,=92
Ca(7) T TO32) E O(x1,x2,T)

x=x+1 x=1

* “'(-x 1 71:)

1-0.000234 (1*0.51 + 1*0.02)

0.99988

This indicates an enormous improvement of 2-
version software over single-version software. Other
higher-order C,’s could be computed similarly, and
their effectiveness could also be expected. Such cover-
age factors can refer to a representative measure of the
situations to which the system is submitted during its
validation with respect to the actual situations it will be
confronted with during its operational life. It is impor-
tant to note that the coverage defined and measured here
is limited to the particular mutant population and the
specific test data set. We might argue that most of these

mutants would have been killed by a normal testing pro-
cedure. However, there is always a non-zero probability
for each of these mutants to slip through all practically
applied testing schemes in another environment. As a
result, sampling from this population is still valid, and
they are useful to provide an evidence for the effective-
ness of NVS methodology to the assigned application.

7. Conclusions

We have measured several software reliability
quantities in an N -Version Software environment. The
selected application was a real-world avionics control
system which performs tedious computation-intensive
tasks under severe timing constraints. We described the
testing configurations, program properties, and opera-
tional testing results in detail. We also applied the idea
of mutation testing to measure several other reliability
quantities.

The difference between the mutation technique
applied here and its original usage is two-fold: First, we
used real mutants, that is, mutants injected with actual
faults committed by programmers, instead of mutants
with hypothesized faults. Secondly, our purpose was to
measure the coverage of N -Version Software in mask-
ing mutants during operation, not merely the coverage
of the test data in detecting mutants during testing. In
fact, when there are multiple realizations of the same
application, test data is no longer the only means for
fault reatment and coverage analysis. Study of the error
correlations among multiple program versions offers
another dimension of investigation in mutation testing.
In this mutation investigation, several reliability-related
quantities were defined and measured. From thesc
measurements we demonstrated the potential capability
of N-Version Software system in improving software
reliability.

The effectiveness of NVS as observed by our
mutation testing is quite different from previously pub-
lished results (e.g.,[4].) The major reasons lie on the
investigated NVP design paradigm and design diversity,
and the effectiveness of error detection and recovery
mechanisms. In this project, the critical, final output of
the application does not rely on a single Boolean vari-
able; moreover, there are many variables installed for
the purpose of cross-checking intermediate values and
recovering internal states. Incorporation of this
comprehensive fault-tolerant procedure has made a
significant contribution in assessing the effectiveness of
NVS systems.

Finally, the observation that the per fault error rate
does not remain constant in this project might be due to

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 12,2021 at 03:27:36 UTC from IEEE Xplore. Restrictions apply.

the nature of the project: a computation-oriented appli-
cation, a large volume of critical values involved in the
system, and the imposed intensive-testing process.
Obtaining this kind of information, nevertheless, is use-
ful for software reliability practitioners to determine, in
advance, which models are mostly applicable to their
projects.

Acknowledgement

The author wishes to thank Prof. Algirdas
AviZienis for providing the program versions and the
DeDiX tool to do the analysis and evaluation required in
this research.

References

L. A. AviZienis, ““The N-Version Approach to
Fault-Tolerant Software,’” IEEE Transactions on
Software Engineering, vol. SE-11, no. 12, pp.
1491-1501, December 1985.

2. DE. Eckhardt, A. Caglavan, J.C. Knight, L.D.
Lee, D.F. McAllister, M.A. Vouk, and J.P.J.
Kelly, *““An Experimental Evaluation of Software
Redundancy as a Strategy For Improving Reliabil-
ity,”” IEEE Transactions on Software Engineer-
ing, vol. 17, no. 7, pp. 692-702, July 1991,

3. RK. Scott, J.W. Gault, and D.F. McAllister,
“‘Fault Tolerant Software Reliability Modeling,”’
IEEE Transactions on Software Engineering, vol.
SE-13, pp. 582-592, May 1987.

4. J.C.Knight and N.G. Leveson, ‘‘An Experimental
Evaluation of the Assumption of Independence in
Multiversion Programming,”* IEEE Transactions
on Software Engineering, vol. SE-12, no. 1, PP
96-109, January 1986.

5. M.A. Vouk etal., ‘“Identification of Correlated
Failures of Fault-tolerant Software Systems,”” in
Proceedings COMPSAC-85 the IEEE Computer
Software and Applications Conference, 1985.

6. A. AviZienis, M.R. Lyu, and W. Schiitz, “‘In
Search of Effective Diversity: A Six-Language
Study of Fault-Tolerant Flight Control Sofiware,”’
Proceedings 18th Annual International Sympo-
sium on Fault Tolerant Computing, Tokyo, Japan,
June 27-30 1988.

7. A. AviZienis, M.R. Lyu, and W. Schiitz, ‘‘Multi-
Version Software Development: A
UCLA/Honeywell Joint Project for Fault-Tolerant
Flight Control Software,” CSD-880034, Los
Angeles, California, May 1988.

262

10.

11.

12.

13.

14.

15.

16.

17.

18.

A. AviZienis, M.R. Lyu, W. Schiitz, K. S. Tso,
and U. Voges, ‘‘DEDIX 87 - A Supervisory Sys-
tem for Design Diversity Experiments at UCLA,”’
in Software Diversity in Computerized Control
Systems, ed. U. Voges, pp. 129-168, Springer-
Verlag/Wien, Austria, 1988.

K.S. Tso and A. AviZienis, **Community Error
Recovery in N-Version Software: A Design Study
with Experimentation,”” Digest of 17th Annual
International Symposium on Fault-Tolerant Com-
puting, pp. 127-133, Piusburgh, Pennsylvania,
July 1987.

MR. Lyu and A. AviZienis, ‘‘Assuring Design
Diversity in N-Version Software: A Design Para-
digm for N-Version Programming,”’ in Proceed-
ings 2nd International Working Conference on
Dependable Computing for Critical Applications,
pp. 89-98, Tucson, Arizona, February 1991,

T.A. Budd, RJ. Lipton, F.G. Sayward, and R.A.
DeMillo, *‘The Design of a Prototype Mutation
System for Program Testing,”” in Proceedings
NCC, pp. 623-627, 1978.

W.E. Howden, ‘‘Weak Mutation Testing and
Completeness of Test Sets,”’ IEEE Transactions
on Software Engineering, vol. SE8, no. 4, pp.
371-379, July 1982.

J. D. Musa, A. Iannino, and K. Okumoto,
Software Reliability — Measurement, Prediction,
Application, McGraw-Hill Book Company, New
York, New York, 1987.

Z. Jelinski and P.B. Moranda, ‘‘Software Reliabil-
ity Research,”” in Stwatistical Computer Perfor-
mance Evaluation, ed. W. Freiberber, pp. 465-
484, Academic, New York, 1972.

NF. Schneidewind, ‘‘Analysis of Ermor Pro-
cessesin Computer Software,” in Proceedings
International Conference on Reliable Software,
pp. 337-346, Los Angeles, 1975.

AL. Goel and K. Okumoto, ‘‘Time-Dependent
Error-Detection Rate Model for Software Relia-
bility and Other Performance Measures,”’ [EEE
Transactions on Reliability, vol. R-28, pp. 206-
211, 1979.

J.D. Musa and K. Okumoto, ‘‘A Logarithmic
Poisson Execution Time Model for Software Reli-
ability Measurement,”’ in Proceedings Seventh

International Conference on Software Engineer-
ing, pp. 230-238, Orlando, Florida, 1984,

B. Littlewood and J.L. Verrall, ‘A Bayesian Reli-
ability Growth Model for Computer Software,”

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 12,2021 at 03:27:36 UTC from IEEE Xplore. Restrictions apply.

Journal Royal Statistics Society C, vol. 22, pp.
332-346, 1973.

19. A. AviZienis and J.-C. Laprie, ‘‘Dependable Com-
puting: From Concepts to Design Diversity,”
Proceedings of the IEEE, vol. 74, no. 5, pp. 629-
638, May 1986.

20. W.G. Bouricius, W.C. Carter, and P.R. Schneider,
‘‘Reliability Modeling Techniques for Self-
Repairing Computer Systems,’” in Proceedings
24th National Conference of the ACM, pp. 295-
383, 1969.

263

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 12,2021 at 03:27:36 UTC from IEEE Xplore. Restrictions apply.

