
Online App Review Analysis for Identifying Emerging Issues

Cuiyun Gao, Jichuan Zeng, Michael R. Lyu, and Irwin King
Shenzhen Research Institute of The Chinese University of Hong Kong, China

The Chinese University of Hong Kong, China
{cygao,jczeng,lyu,king}@cse.cuhk.edu.hk

ABSTRACT

Detecting emerging issues (e.g., new bugs) timely and precisely is

crucial for developers to update their apps. App reviews provide an

opportunity to proactively collect user complaints and promptly

improve apps’ user experience, in terms of bug fixing and feature

refinement. However, the tremendous quantities of reviews and

noise words (e.g., misspelled words) increase the difficulties in ac-

curately identifying newly-appearing app issues. In this paper, we

propose a novel and automated framework IDEA, which aims to

IDentify Emerging App issues effectively based on online review

analysis. We evaluate IDEA on six popular apps from Google Play

and Apple’s App Store, employing the official app changelogs as

our ground truth. Experiment results demonstrate the effective-

ness of IDEA in identifying emerging app issues. Feedback from

engineers and product managers shows that 88.9% of them think

that the identified issues can facilitate app development in practice.

Moreover, we have successfully applied IDEA to several products
of Tencent, which serve hundreds of millions of users.

CCS CONCEPTS

• Software and its engineering→ Dynamic analysis; • Informa-

tion systems→Web and social media search;

KEYWORDS

App reviews, online analysis, emerging issues

ACM Reference format:

Cuiyun Gao, Jichuan Zeng, Michael R. Lyu, and Irwin King. 2018. Online

App Review Analysis for Identifying Emerging Issues. In Proceedings of

ICSE ’18: 40th International Conference on Software Engineering , Gothenburg,

Sweden, May 27-June 3, 2018 (ICSE ’18), 11 pages.

https://doi.org/10.1145/3180155.3180218

1 INTRODUCTION

App developers are eager to know what is going on with their apps

after published [38]. Timely and precisely identifying the emerging

issues of apps is of great help for app developers to update their

apps, such as fixing bugs, refining existing features, and adding

new functions.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5638-1/18/05. . . $15.00
https://doi.org/10.1145/3180155.3180218

User reviews are direct feedback from the users who have expe-

rienced the apps, and reflect the instant user experience [33]. The

emerging issues detected from user reviews, such as the existing

bugs (e.g., crashes) and unfavorable app features (e.g., too many

ads) [13], can provide informative evidence for app developers in

maintaining their apps and scheduling the app updates. For exam-

ple, Facebook Messenger received massive one-star ratings (the

lowest rating) in August, 2014, accounting for nearly 94% of all its

reviews on Apple’s App Store1, and suffered a large loss of users [8],

since the version contained severe privacy issues (e.g., accessing

the photos and contact numbers in users’ phones). However, such

issues had already been flushed out with complaints from over

12,600 user reviews on App Store one month ago. The situation

could be effectively alleviated if the emerging issues were timely

detected from user reviews. Therefore, user reviews provide an

effective and efficient way to identify the emerging issues of apps,

which would be a significant help to the developers.

The characteristics of user reviews make accurate issue detection

very challenging. First, app reviews are generated everyday in large

volume. Manual analysis is prohibitively time-consuming for apps

with large numbers of reviews (e.g., Facebook receives more than

10,000 reviews in Google Play every day [2]). Second, app reviews

contain numerous noise words, such as misspelled words, repetitive

words, and non-Englishwords. Also, they are often shorter in length,

since most of them are written by users via mobile terminals. Third,

only 30% of the reviews provide informative user opinions for app

updates [6]. Furthermore, detailed and newly-appearing app issues

are hard to be predefined, because they are diverse for different apps

and versions. Previous research mainly focuses on reducing the

manual power in extracting software aspects or user preferences,

such as establishing dictionaries for preprocessing reviews [42],

filtering out non-informative reviews [6], or classifying reviews

to predefined topics [40]. However, effectively detecting emerging

issues from user reviews has rarely been studied.

We propose a novel and automated framework IDEA for detecting
emerging issues/topics2 based on online review analysis. IDEA takes
reviews of different versions as input. To track the topic variations

over versions, a novel method AOLDA (Adaptively Online Latent

Dirichlet Allocation) is employed for generating version-sensitive

topic distributions. The emerging topics are then identified based on

the typical anomaly detection method. To make the topics compre-

hensible, IDEA labels each topic with the most relevant phrases and

sentences based on an effective ranking scheme considering both

semantic relevance and user sentiment. The prioritized topic labels

are the app issues identified. Finally, IDEA visualizes the variations

of app issues along with versions, and highlights the emerging ones

for better understanding.

1The App Store in this paper refers to Apple’s App Store.
2The topics and issues are semantically equal in this paper.

48

2018 ACM/IEEE 40th International Conference on Software Engineering

To verify the effectiveness of IDEA, we consider the official app

changelogs as ground truth, since they encompass the primary

changes of the releases and represent the issues concerned by de-

velopers. Our experiments are conducted on six popular apps, with

two of them from App Store and the others from Google Play. We

compare IDEA with the method based on OLDA (Online Latent

Dirichlet Allocation) [1], one classical method for emerging issue

detection. Results indicate that the average precision, recall, and

F-score of IDEA on the subject apps are 60.4%, 60.3%, and 58.5% re-

spectively, which increases the F-score of the OLDA-based method

by 72.0%. We also conduct a user survey in Tencent, indicating that

88.9% of respondents think that the identified issues of IDEA can
facilitate app development in practice. Moreover, we apply IDEA to

four Tencent3 products which serve hundreds of millions of users

worldwide, and confirm the effectiveness and efficiency of IDEA in

industrial practice.

The contributions of our paper are elaborated as below.

• We propose a framework called IDEA to automatically iden-

tify emerging issues from app reviews effectively. Also, IDEA
is an online analysis tool and can process new app reviews

in a timely fashion.

• We propose a novel method called AOLDA for online review

analysis, which adaptively combines the topics of previous

versions to generate topic distributions of current versions.

• We visualize the variations of the captured (emerging) app

issues along with versions, with the emerging ones high-

lighted. We publish the code and review data on website4.

• We verify the effectiveness of IDEA based on the app reviews

of six popular apps which are from different categories and

platforms. The survey and application in Tencent also vali-

date the performance of our framework in practice.

The remainder of the paper is organized as follows. Section 2

describes the motivation and the background of our work. Sec-

tion 3 outlines the overall picture and details each step involved in

the framework. Section 4 illustrates experiment results. Section 5

presents the practical usage of our framework. Section 6 discusses

possible limitations, with related work introduced in Section 7.

Section 8 concludes the paper.

2 BACKGROUND AND MOTIVATION

2.1 Emerging App Issues

For an app issue to be considered an emerging issue, it must be

(heavily) discussed in this time slice but not previously [16]. Figure 1

(a) presents the issue distributions of Facebook Messenger in three

periods (March-April, May-June, and July-August), based on the

manually labelled 100 review samples from each period. Generally,

the issue distributions are nearly consistent along with periods, e.g.,

from March-April to May-June in Figure 1 (a). However, emerging

issues can influence the issue distribution of one period, creating

significant differences with those of previous periods in terms of

proportion. For example, the proportion of the crash issue presents a

huge increase during the July-August period. We further investigate

the number of reviews containing the keyword “crash” along with

3The company has many popular products, such as WeChat, QQ, and Honor of Kings,
and serves billions of users worldwide.
4https://github.com/ReMine-Lab/IDEA

their timing, and present the results in Figure 1 (b). The volume of

the crash issue shows a sudden increase around July-August, which

signifies that the issue tends to be an emerging issue during that

period.

Definition 2.1 (Emerging Issues in User Reviews). An issue in a

time slice is called an emerging issue if it rarely appears in previous

slice but is mentioned by a significant proportion of user reviews

in current slice.

In Definition 2.1, the “time slice”, the degree of “rarely”, and

the “significant proportion” can be defined according to different

situations. For example, the “time slice” in this paper corresponds to

the app version. Based on the detected emerging issues, developers

can locate the buggy features of their apps efficiently, update the

apps accordingly, and ultimately improve the user experience.

(a) Issue distribution in Facebook Messenger.

(b) The number of reviews containing the keyword “crash”.

Figure 1: Illustration of emerging issues.

2.2 Online Review Analysis

Online review analysis (ORA) is an automated way to acquire and

process user reviews in real time as reviews are arrived continuously.

As shown in Figure 2, ORA takes the reviews of slice t (current review
slice) as input, and outputs analysis results, such as tracking user

preference and detecting emerging issues. In this way, the urgent

user concerns incarnated by app reviews can be captured by ORA

in a timely manner and fed back to developers for instant bug fixing

or feature improvement. Thus, ORA is a crucial component in the

closed cycle of app development.

User Reviews

Online Review Analysis

App Update

Current Review Slice

Slice (t-3) Slice (t-2) Slice (t-1) Slice t
Review Stream

…

• Emerging Issues
• Rating Changes
• Bug Tracking
• …

Figure 2: Closed cycle for app development.

2

49

Currently, most of the app issues mined from user reviews are

manually settled or defined [24, 40, 42], such as privacy and GUI,

which are usually general categories. Although such definition

facilitates the process of task assignment to individuals, it is un-

favorable for detecting newly-presented and more detailed issues

(e.g., notification center). Thus, for detecting emerging issues, ORA

is a practical way due to its timeliness and no need for predefined

issues, which has rarely been studied previously.

2.3 App Changelogs

App changelogs describe the noticeable modifications of the latest

versions for attracting users to install and experience new releases.

Similar to user reviews. changelogs also correspond to specific ver-

sions. Generally, developers write into the changelogs with infor-

mation related to whether the apps are adding or removing features,

and whether the apps have made improvements with certain de-

vices or to specific bugs. Figure 3 illustrates a sample changelog of

NOAA Radar Pro, a weather alerts & forecast app in App Store.

What's New in Version 3.16
- Introducing weather reporting. The app now allows anyone to be
a weather reporter. Confirm the weather or report your weather
conditions and take part in improving our data and forecasts.
- Performance improvements you won't necessarily notice but
definitely enhancing your experience with the app.

Figure 3: Changelog of NOAA Radar Pro. The rectangles

highlight two key terms which represent the major changes

of Version 3.16.

As Figure 3 indicates, the new version introduces new function-

ality (i.e., weather reporting) and refines performance issues. The

delivered changes exhibit the issues that are concerned by develop-

ers. Although the changelogs may not cover all the modifications

to the releases, they represent a lower bound and the prominent

part of the changes. Hence, changelog is a reasonable ground truth

for verifying whether the extracted emerging issues are helpful for

developers.

3 METHODOLOGY

Figure 4: Framework of IDEA.

In this section, we first outline the overall framework of IDEA
in Figure 4 and then elaborate on the four components involved

in the framework. Each time, in the first stage (Part A in Figure 4),

IDEA preprocesses a version of raw reviews from the review stream

for reducing noisy words and non-informative words, and extracts

phrases for subsequent analysis (Section 3.1). In the second stage

(Part B in Figure 4), the proposed algorithm AOLDA captures the

topic distributions of each version by considering the topics in

previous versions, based on which emerging topics are identified

using anomaly discovery (Section 3.2). Then, to interpret the topics

(Part C in Figure 4), IDEA employs the meaningful phrases and sen-

tences as candidates to label each topic according to their semantic

relevance and user sentiment (Section 3.3). The topic labels are the

identified app issues. Finally (Part D in Figure 4), IDEA visualizes
the app issues along with the different versions, and highlight the

emerging ones for better understanding (Section 3.4).

3.1 Preprocessing

Since app reviews are generally submitted via mobile terminals

and written using limited keyboards, they contain massive noisy

words, such as casual words, repetitive words, misspelled words,

and non-informative words (e.g., the words simply describing users’

feelings). In the following, we introduce our rule-based methods for

formatting words, the phrase extraction process, and our filtering

method for reducing non-informative words.

3.1.1 Word Formatting. We first convert all the words in the

review collection into lowercase, and then stem each word into

its original form. We employ the preprocessing method in [26]

for lemmatization. We then replace all digits with “<digit>”. Since

new terms and casual words would continuously increase in user

reviews, we do not employ the dictionaries provided by [42] for

avoiding over correction. We adopt the rule-based methods based

on [42, 26] to rectify repetitive words, misspelled words, and non-

English words.

3.1.2 Phrase Extraction. Since phrases (mainly referring to two

consecutive words in our paper) are employed in Part C of IDEA for
interpreting topics, they should be extracted in the preprocessing

step and trained along with all the other words in Part B. In this

way, we can capture the semantics of each phrase, based on which

we can label the topics with the most relevant phrases. Since the

topic labels in phrases should be meaningful and comprehensible,

we use a typical phrase extraction method based on PMI (Point-

wise Mutual Information) [35], which is effective in identifying

meaningful phrases based on co-occurrence frequencies:

PMI (wi ,w j) = log
p(wiw j)

p(wi)p(w j)
, (1)

wherep(wiw j) indicates the co-occurrence probability of the phrase

wiw j and p(wi) (or p(w j)) represents the probability of the word

wi (or w j) in the whole review collection. Higher PMI values ex-

hibit that the combination of the two words is more likely to be a

meaningful phrase. We extract the meaningful phrases by exper-

imentally set a threshold for PMI. The phrases with PMIs larger

than the threshold are extracted.

3.1.3 Filtering. The filtering step aims to reduce the non-informative

words, such as emotional words (e.g., “bad” and “nice”), abbrevia-

tions (e.g., “asap”), and uselesswords (e.g., someone). Non-informative

words are summarized by two researchers from 1,000 reviews,

which are also referred to as predefined stop words. The box be-

low lists 18 of the total 78 non-informative words due to space

limitations. The predefined stop words are filtered out together with

3

50

the stop words provided by NLTK [34]. We do not employ the

supervised method in [6] for filtering, since in this work labeling

massive non-informative reviews requires a great deal of manual

effort. Finally, all the remaining words and extracted phrases (where

the words in each phrase are connected with “_”) are fed into the

next step for emerging topic detection.

Predefined Stop Words: cool, fine, hello, alright, poor, plz, pls, thank,

old, new, asap, someone, love, like, bit, annoying, beautiful, dear.

3.2 Emerging Topic Detection

In this section, we aim to detect the emerging topics of current

versions by considering the topics in previous versions. We first

introduce the proposed method AOLDA for adaptively online topic

modeling, from which we capture the topic evolutions along with

versions. We then present how we discover the emerging topics

(e.g., anomaly topics).

3.2.1 AOLDA - Adaptively Online Latent Dirichlet Allocation.

Online Latent Dirichlet Allocation (OLDA) [1] is a classic method

for tracking the topic variations of text streams, which models the

topics of texts in one time slice based on the topics of the last slice.

However, app reviews are typically short and contain massive noise

words. Such review features can influence the topic distributions in

consecutive versions with OLDA, and thereby decrease the perfor-

mance of emerging topic detection. To reduce the influence of noise

words and more accurately capture the topic evolution along with

versions, we propose an adaptively online topic modeling method,

AOLDA. The proposed AOLDA improves OLDA by adaptively com-

bining the topic distributions in previous versions. The details are

described below.

The preprocessed reviews are divided by version, denoted as

R = {R1,R2, ...,Rt , ...} (where t indicates the t-th version), and

input into AOLDA one by one. In AOLDA, each review is treated

as one document. The prior distributions over document-topic and

topic-word distributions are defined initially, represented as α and

β respectively. β determines the topic distributions of the terms in

the input. The number of the topics is specified as K . For the k-th
topic, ϕt

k
is the probability distribution vector over all the input

terms. We introduce the parameter - window sizew , which defines

the number of previous versions to be considered for analyzing

the topic distributions of the current version. The overview of the

model AOLDA is depicted in Figure 5.

Different from OLDA, as Figure 5 shown, we adaptively inte-

grate the topic distributions of the previous w versions, denoted

as {ϕt−1, ...,ϕt−i , ...,ϕt−w }, for generating the prior βt of the t-th
version. The adaptive integration refers to summing up the topic

distributions of different versions with different weights γ t,i :

βt
k
=

w∑

i=1

γ t,i
k

ϕt−i
k
, (2)

where i denotes the i-th previous version (1 ≤ i ≤ w). The weight

γ t,i
k

is determined by the similarity of the k-th topic between the

(t − i)-th version and the (t − 1)-th version, which is calculated by

the softmax function [39]:

Figure 5: OverviewofAOLDA.The red rectanglewith dashed

dots highlights the adaptive integration of the topics of the

w previous versions for generating the prior β in the t-th ver-

sion. Rt is the review corpus in the t-th version. The dotted

lines indicate that we simplify the original LDA [4] steps for

clearness.

γ t,i
k

=
exp(ϕt−i

k
· βt−1

k
)

∑w
j=1 exp(ϕ

t−j

k
· βt−1

k
)
, (3)

where the dot product (ϕt−i
k

·βt−1
k

) computes the similarity between

the topic distributionϕt−i
k

and the prior of the (t−1)-th version βt−1
k

.

Such adaptive integration can endow the topics of the previous

versions with different contributions to the topic distributions of

the current version.

3.2.2 Anomaly Discovery. Based on the captured topic evolution

by AOLDA, we identify the anomaly topics which present obvious

differences with those of the previous versions. The identified anom-

aly topics are regarded as emerging topics. To obtain the difference

of the k-th topics between two consecutive versions, e.g., ϕt
k
and

ϕt−1
k

, we employ the classic Jensen-Shannon (JS) divergence [19].

JS divergence measures the similarity between the two probability

distributions:

D J S (ϕ
t
k
| |ϕt−1

k
) =

1

2
DKL(ϕ

t
k
| |M) +

1

2
DKL(ϕ

t−1
k

| |M), (4)

where M = 1
2 (ϕ

t
k
+ ϕt−1

k
). The Kullback-Leibler (KL) divergence

DKL is utilized to measure the discrimination from one probability

distribution P to another Q , computed by:

DKL(P | |Q) =
∑

i

P (i) log(P (i)/Q(i)), (5)

where P (i) is the i-th item in P . Higher JS divergence indicates that
the two topic distributions have a larger difference.

Based on the computed divergences D J S between the topics of

consecutive versions, we capture anomaly topics by leveraging a

typical outlier detection method [37]. The method assumes that

the divergences follow a Gaussian distribution with the mean and

variance at μ and σ 2 respectively. The anomaly topics are then

detected by setting a threshold δ . For the t-th version, the threshold

δ t is dynamically defined according to the following steps.

4

51

1. We compute D J S of the previousw versions for each topic,

which generates aw × K matrix (where K is the number of

topics).

2. We compute the mean μ and variance σ 2 of all the values in

the computed D J S matrix.

3. We set the threshold δ t as δ t = μ + 1.25σ , where the coeffi-

cient 1.255 is experimentally set for accepting 10% of topics

as anomaly topics, as shown in Figure 6.

Figure 6: Gaussian distribution for anomaly discovery. The

shaded areameans the integral of the Gaussian distribution,

which equals 90%. The topics with divergence larger than δ t

are considered as emerging topics.

For the t-th version, the topics with divergences higher than the

defined threshold δ t are regarded as emerging topics.

3.3 Topic Interpretation

The topics based on AOLDA are represented as the probability dis-

tributions over all the input terms. One snapshot of the top five

terms to each topic is illustrated in Table 1. By only observing a

few words, it would be non-trivial for developers to capture the

meaning of the topics. In this section, we aim to interpret the topics

automatically. To interpret each topic, we can utilize words, phrases,

sentences, or entire reviews. However, single words may be am-

biguous in semantics and cannot display the complete meanings

of the topic. For example, we list the top five relevant words for

each of the four topics of YouTube, as shown in Table 1, although

both the words “video” and “work” are most relevant to Topics 2

and 4, these two topics may deliver different meanings, e.g., Topic

2 is related to the video descriptions and Topic 4 is about loading

videos. Moreover, one review may complain about several issues.

For example, one Instagram user complains about the videos and

stories in one review: Videos don’t post. Videos don’t load. Stories

disappear all the time. Therefore, topic labels in words or reviews

may not be helpful in accurately capturing the semantics of the

topics. To render the topics comprehensible, we employ the most

relevant phrases and sentences to label each topic in this section.

3.3.1 Candidate Extraction. We obtain candidate phrases and

sentences for labeling topics.

Phrase Candidate: The candidates of the phrase labels are gen-

erated based on the extracted phrases in Section 3.1. Three rules

are employed to identify more meaningful phrases: 1) Length limit:

The length of each word in the phrase should be no less than three;

2) Stop word limit: The phrase should not contain words that are in

the stop word list of NLTK [34]; and 3) Part-Of-Speech limit: The

5The coefficient can be adjusted according to the percentage of anomaly topics to be
discovered. We use 1.25 here for accepting 10% of the total topics as anomalies.

Table 1: Top five terms for each topic of YouTube.

Topic Topic 1 Topic 2 Topic 3 Topic 4

Term

comment link back load

say video also video

reply open button even

try work change work

error description go back take

phrase should include at least one noun or verb, and no adverbs

(e.g., “here”) or determiners (e.g., “the”).

Sentence Candidate: We employ the reviews before the filter-

ing step in Section 3.1, starting by chunking them into sentences

based on NLTK’s punkt tokenizer [36]. Then we retrieve sentences

with more than four words, during which the noisy sentences (such

as so far so bad and great one) are filtered out. The remaining sen-

tences are regarded as our sentence candidates.

3.3.2 Topic Labeling. The topic labeling method is a ranking

method, which considers two aspects: the semantic similarity be-

tween the candidates and the topics, and also the user sentiment of

the candidates.

Semantic Score:Good topic labels should cover the latent mean-

ing of the topic [30]. The semantic score measures the semantic

similarity between the candidate and the topic. Moreover, the la-

bels of different topics should be discriminative and cover different

aspects of input reviews, instead of delivering overlapping infor-

mation. Hence, the semantic score of one candidate involves the

semantic similarity to the target topic and also the semantic similar-

ities to all the other topics. A good topic label should be similar to

the target topic and also different from the other topics in semantics.

We employ the method in [30] to measure the semantic similarity

between one phrase candidate a and the target topic ϕt
k
, defined as:

sim(a,ϕt
k
) = −DKL(a | |ϕ

t
k
)

≈
∑

w

p(w |ϕt
k
) log

p(a,w |C)

p(a |C)p(w |C)
,

(6)

where p(w |ϕt
k
) is the probability of termw in the topic distribution

ϕt
k
.p(w |C) andp(a |C) denote the percentages of the termsw anda in

the whole review collectionC , respectively. The p(a,w |C) indicates
the co-occurrence probability of the two terms a and w in the

collection C . For the sentence candidates s , we utilize Equation (7)

to calculate the similarity.

sim(s,ϕt
k
) = −DKL(s | |ϕ

t
k
)

≈
∑

w

p(w |ϕt
k
) log

p(w |s)/len(s)

p(w |ϕt
k
)
,

(7)

wherep(w |s) can be calculated by the term frequency ofw in the sen-

tence s . The semantic score is then defined by combining sim(l ,ϕt
k
)

with the similarity scores to other topics
∑
j �=k sim(l ,ϕtj), which

means the label l should be semantic close to the topic distribution

ϕt
k
and discriminate from other topic distributions.

Scoresem (l ,ϕt
k
) = sim(l ,ϕt

k
) −

μ

K − 1

∑

j �=k

sim(l ,ϕtj), (8)

5

52

where l can be a phrase candidate a or sentence candidate s , and
K is the number of topics. The parameter μ is utilized to adjust

the penalty for the semantic similarities to other topics. Larger

μ signifies that the candidates that are more different from other

topics.

Sentiment Score: The topic labels should reflect users’ con-

cerns. Generally, the reviews with low ratings tend to express poor

user experience and app issues [6], and the reviews with longer

lengths are more likely to provide valuable information to devel-

opers. Therefore, we compute the sentiment score Scoresen of one

candidate l by combining the user ratings and review lengths:

Scoresen (l) = exp(
rl

log(hl)
), (9)

where l can be a phrase candidate or sentence candidate. r and h
denote the average user rating and the average word length of the

reviews containing l , respectively.
Overall Score:We prioritize the candidates for each topic based

on their semantic scores and sentiment scores. The overall score

Score(l ,ϕt
k
) is defined as:

Score(l ,ϕt
k
) = Scoresem (l ,ϕt

k
) + λ Scoresen (l), (10)

where the weight λ is to balance the two aspects. In this manner, all

the topics including the detected emerging topics are labeled with

the prioritized candidates. The topic labels are the identified app

issues. For each topic, there is a trade off between the number of

prioritized labels and the cost of user comprehension (e.g., too many

labels usually spend users more time in understanding the meaning

of the topic). According to the survey [43], three labels are the

moderate choice for users to comprehend the topics. Therefore, for

one topic, we choose the three most relevant phrases and sentences

respectively as labels for each topic.

3.4 Visualization

In this part, we visualize the the evolution of app issues (i.e., topic

labels) along with versions for better understanding. We employ an

issue river to display issue variations. Figure 7 presents one example

of YouTube for iOS. All the app issues constitute one river and each

branch of the river indicates one topic. By moving the mouse over

one topic, one can track detailed issue changes along with versions,

where the emerging issues are highlighted as shown in Figure 7.

The app issues with wider branches are of greater concern to users,

where thewidth of the k-th branch in the t-th version is defined as:

widtht
k
=
∑

a

logCount (a) × Scoresen (a), (11)

where Count (a) is the count of the phrase label a in the review

collection of the t-th version, and Scoresen (a) denotes the sentiment

score of the label a.

4 EXPERIMENTATION

We evaluate the performance of IDEA in identifying emerging app

issues based on case studies. In this section, we explain how we

select the subject apps for experiments, the performance metrics,

and finally the comparison results of different methods. We focus

on answering the following three research questions.

Figure 7: Issue River of YouTube for iOS. The number of top-

ics K is set as 10, corresponding to 10 branches of the river.

The horizontal axis represents the app versions, and the

branches with larger widths indicate that the corresponding

issues are more cared about by users at those versions.

RQ1: What is the performance of IDEA in identifying emerging

app issues?

RQ2: Can IDEA achieve better performance compared with other

methods?

RQ3: How do different parameter settings impact the performance

of IDEA?

4.1 Dataset

We select the subject apps based on the following four criteria: The

apps are i) popular apps in the app markets - indicating that the

developers would update their apps regularly and the user reviews

can be collected from several consecutive versions; ii) apps from

different categories and platforms - to ensure the generalization

of the proposed framework; iii) apps with enough user reviews -

which necessitates an automated analysis; and iv) apps with detailed

changelogs for most versions - to facilitate our validation process.

To obtain apps that satisfy the first three criteria, we randomly

inspect the apps ranked in the top 100 on either App Store or

Google Play according to App Annie [2], an app analytics platform.

Only the apps with more than 2,000 US reviews [6] are inspected

further, since significant effort is required for manual analysis. To

filter out the apps that do not meet the fourth criterion, we check

the historical changelogs of these apps. We eliminate apps with

more than five successive sketchy changelogs, i.e., the changelogs

provide no details related to what functionality had been changed

or how the user experience was being affected. One example of

sketchy changelogs is “Multiple bug fixes and improvements across

the entire app”, where the bugs and improvement are not concrete

enough for verifying prioritized app issues. Finally, we select six

subject apps, with the details illustrated in Table 2.

In Table 2, we list the subject apps with the app name, category,

platform, the number of reviews crawled, and the number of ver-

sions in the review collection. Overall, we obtain 164,026 reviews

(from August 2016 to April 2017) for the six apps, from 89 versions

in total. The apps are distributed in different categories, with two

6

53

Table 2: Subject apps.
App Name Category Platform #Reviews #Versions

NOAA Radar Weather App Store 8,363 16

YouTube Multimedia App Store 37,718 33

Viber Communication Google Play 17,126 8

Clean Master Tools Google Play 44,327 7

Ebay Shopping Google Play 35,483 9

Swiftkey Productivity Google Play 21,009 16

of them from App Store and the others from Google Play. With

multiple categories and platforms, the generalization of IDEA can
be ensured.

4.2 Performance Metrics

The app changelogs, i.e., our ground truth, are collected from App

Annie. Since the prioritized issues of IDEA are in phrases and sen-

tences, we manually extract key terms from these changelogs for

verification. One example is illustrated in Table 6, with the key

terms highlighted. For each key term in changelogs, we validate

whether the term is covered by the prioritized issues. Since the

word2vec model [31] can accurately capture the semantic meanings

of input terms based on their vector representations, we obtain

the cosine similarities between each key term and the phrase-level

issues based on the model. The key term is considered covered if its

similarity to one of the issues is larger than 0.6 [18]. For sentence-

level issues, we split the sentences into terms (including phrases

and words) and verify whether the key term in changelogs can be

covered in a similar way. We employ such semi-automatic evalu-

ation method to facilitate parameter adjustment and comparison

with other methods.

We employ three performance metrics6 for verifying the effec-

tiveness of IDEA. The first metric is for measuring the accuracy

in detecting emerging issues, defined as PrecisionE . The second
is to evaluate whether our prioritized app issues (including both

emerging and non-emerging issues) reflect the changes mentioned

in the changelogs, defined as RecallL . We introduce the third metric

Fhybr id to measure the balance between PrecisionE and RecallL .
Higher values of Fhybr id indicate that changelogs are more pre-

cisely covered by detected emerging issues and more changelogs

are reflected in the prioritized issues.

PrecisionE =
I (E ∩G)

I (E)
, RecallL =

I (L ∩G)

I (G)
,

Fhybr id = 2 ×
PrecisionE × RecallL
PrecisionE + RecalL

.

(12)

where E, G, and L are three sets, containing the detected emerging

issues, the key terms in the changelogs, and all app issues (including

both emerging and non-emerging issues), respectively. I (·) denotes
the number of the issues in ·. During evaluation, we experimentally

set the parameters asw = 3, K = 10, λ = 0.5, PMI = 5, and μ = 0.75.

We also initialize α and β with 0.1 and 0.01 respectively.

6We do not involve RecallE for validation since changelogs possibly include partial
emerging issues. Also, PrecisionL cannot be considered because changelogs may
cover items other than user-concerned issues. Here, PrecisionE and RecallL mea-
sure the precision of the emerging issues and coverage rate of changelogs by all the
extracted issues respectively, which are consistent with the standards and convincing
for this task.

Table 3: Topic-word distributions based on AOLDA.

v11.07 v11.10 v11.11

Topic 1

link open video

open video watch

video work fine go

work go want

description click change

Topic 2

make <digit> back

want thing make

button get would

back interface button

use want people

4.3 Result of RQ1: Case Study

In this part, we evaluate the performance of IDEA by employing a

case study on YouTube. We first present the results of the version-

sensitive topic distributions based on AOLDA, then exhibit the

prioritized labels to interpret the topics, and finally illustrate the

performance of the proposed framework on YouTube.

4.3.1 Result of AOLDA. Table 3 depicts the example topic-word

distributions based on AOLDA, where the top five words are listed

for each topic. According to the table, the general meanings of the

topics are consistent along with versions. For example, Topic 1 is re-

lated to the video for all the three versions, and Topic 2 is constantly

related to the user interface. However, for one topic, the specific

meanings may be distinguished in the three versions. Take Topic 1

as an example. The topic may discuss the video description/link for

version 11.07, while it talks about “click”-related things in version

11.10. It would be very laborious for developers to comprehend

topics based on the top words. Therefore, we conduct automatic

topic interpretation in the next step.

4.3.2 Result of Topic Interpretation. Table 4 illustrates the prior-

itized phrases for labeling topics, where only one of the three labels

are listed for saving space. The highlighted labels in Table 4 are the

emerging app issues detected by the anomaly discovery method in

Section 3.2.2. Topic 1 of version 11.07 is interpreted as “description

box”, which is consistent with the meaning of that topic in Table 3

intuitively. Table 5 illustrates the ranked sentence for labeling each

topic. Although phrase labels can be quickly understood, we dis-

cover that sentence labels can detail the information conveyed by

phrases and interpret the topics more comprehensively. For exam-

ple, the sentence label of Topic 1 for version 11.07 (i.e., “...click a link

in the description...”) provides more details than the corresponding

phrase label (“description box”) in Table 4. With both issues in

phrases and sentences, developers can efficiently spot and locate

specific app issues. To help developers gain better understanding,

we visualize the identified issues along with versions in Figure 7.

By moving the mouse over Topic 10 of version 11.15, we can ob-

serve both phrase-level and sentence-level issues, among which

the emerging ones are highlighted. Developers can readily track

the changes of each topic and discover urgent issues in a timely

manner.

4.3.3 Performance Evaluation. We collect the ground truth of

YouTube based on the method in Section 4.2. Table 6 displays part

of the changelogs. We manually inspect whether the identified

app issues of one version can be reflected in the changelogs of the

next version. According to Table 6, version 11.10 improves the user

7

54

Table 4: Topic labels in phrases for YouTube. The high-

lighted ones indicate detected emerging issues. The value

after each label is the overall score of the label.
v11.07 v11.10 v11.11

Topic 1 description box: 2.03 comment section: 1.48 notification center: 1.33

Topic 2 user interface: 1.25 split screen: 1.23 split screen: 0.94

Topic 3 playback error: 1.44 battery drain: 0.99
performance

improvement: 1.41

Topic 4 certain spot: 1.81 cpu usage: 0.85 camera roll: 1.22

Topic 5 profile picture: 2.19 main page: 1.11 home screen: 1.18

Topic 6 say playback error: 1.54 long period: 0.92 force quit: 1.26

Topic 7 copyright issue: 1.11 bring back: 1.14 nothing happen: 1.53

Topic 8 take forever: 1.88 ten minute: 1.12 pure torture: 1.02

Topic 9 sound quality: 1.55 major issue: 1.45 buffer forever: 1.03

Topic 10 home button: 1.15 full screen: 1.07 home page: 1.29

Table 5: Topic labels in sentences for YouTube. The high-

lighted ones are the detected emerging issues.
v11.07 v11.10

Topic 1

I mean it work but why do you take off

where you would click a link in the

description and it doesn’t even let me

go through the video: -0.05

It say error every time I try to reply

back to a comment: 0.52

Topic 2

But right now the lack of multitasking

have actually make it a better

experience to use YouTube in safari:

-0.79

Add split view and slide over but no

picture in picture: -1.36

Topic 3
Please fix this app fix this bug and that

playback error: -0.80

Dear YouTube please release a fix for

overheat issue on older iPhone and the

battery drain just too ridiculous: -0.45

Table 6: Changelog of YouTube
Version Date Changelog

11.10 22-Mar-16

(1) Added slide over and split view support

(2) Moved home tabs into navigation bar for iPad in land-

scape mode

(3) Fixed bug that prevented URLs in video descriptions

from opening

11.11 29-Mar-16

(1) Fixed bug where accessibility VoiceOver looped over the

same elements

(2) Fixed issue where the video couldn’t be exited after

completing

(3) Bug fixes and stability improvements

Vi
ew

s

0
5
10
15
20
25
30
35
40

0
1
2
3
4
5
6
7
8 Posts Views

Po
st
s

Figure 8: Count of posts and views related to the battery is-

sue in YouTube iOS forum.

interface by adding the functionality of multitasking (i.e., sliding

over and splitting view [32]) and fixes the bug in video descriptions.

Referring to Table 4 and Table 5, we discover that the two issues are

detected by IDEA in Topic 1 and Topic 2 of the previous version 11.07.
Then to statistically measure the performance of our framework,

we employ the proposed three metrics in Section 4.2. Based on

the collected 33 versions for YouTube, IDEA achieves PrecisionE ,
RecallL , and Fhybr id at 0.628, 0.666, 0.636 in sentence-level issues

and 0.592, 0.472, and 0.523 in phrase-level issues, respectively.

Discussion of the performance: Since the changelogsmay not

cover all the changes in releases, the metric PrecisionE represents

Table 7: Comparison result of different methods on six sub-

ject apps. The value under each app name indicates the av-

erage number of reviews across the versions.

��������	
 ����

� ������� ��������	
 ����

� �������

���� ����� ����� ����� ����� ����� �����
 �
�!� ����� ����" ����� ����� ����� �����
 �
�!# ����� ���	� ����� ���"� ����� �����

 �
�
$ ����" ���%� ���	
 ����� ���	� �����

���� ����" ����� ����" ����� ����� ���%�
 �
�!� ����� ����% ����� ����� ����% �����
 �
�!# ����� ����� ����� ����� ����� �����

 �
�
$ ����� ����� ����	 ����� ����� ���	�

���� ��"�� ����� ��"�� ���"� ����� �����
 �
�!� ����� ����� ����� ����� ����" ���%�
 �
�!# ����� ��	�� ����� ����� ���"� ����%

 �
�
$ ����� ����� ����� ����� ����
 ���	�

���� ����� ����% ��"�� ����� ����" ��"�%
 �
�!� ����� ���"� ����" ����� ����� �����
 �
�!# ����� ����% ����� ����� ���%� �����

 �
�
$ ����� ��	
� ���	
 ����� ���	� �����

���� ��"�� ����� ��"%� ����� ����� ���%�
 �
�!� ����� ����� ����� ����� ���%� ����"
 �
�!# ��"�� ����� ��"�� ����� ����� �����

 �
�
$ ����� ����" ����� ����� ����� �����

���� ��"�� ����� ��"�� ����� ���"� �����
 �
�!� ����� ���"" ����� ���"� ���		 ���"�
 �
�!# ����� ����� ����� ����� ���"" �����
 �
�

$ ���
� ����	 ����	 ����	 ����� �����

&����

'�("�")

*
��	+,��-��

'�(���)

���

'�(%��)

#.�/-0��

'"(�"�)

�11+2�3�

'4�56�+��5��.�)
,�-���

������ #�	-�	��

2���+�����

'���)

7�8-8��

'"("��)

a lower bound of the performance. For example, the highlighted

emerging issues, such as “split screen” and “battery drain” for ver-

sion 11.10 in Table 4, are not clearly embodied by the changelog of

version 11.11 (shown in Table 6). We then inspect the reason why

the detected issues “fail” to be noticed by developers. We discover

that “split screen” is one new added feature of version 11.10 and

it is reasonable for a hot discussion about the drawbacks of this

feature in the user reviews, which explains why “split view” is

identified as one emerging issue. Then for the issue “battery drain”,

we dig into the official user forum of YouTube for iOS [41], and

observe the number of posts and views of the issue by searching the

phrase (illustrated in Figure 8). We find that there exists a sudden

increase in the counts of posts and views around May 2016, which

also demonstrates that the battery issue was an emerging issue

for the version. Therefore, we summarize that changelogs may not

completely cover all emerging issues, and our performance metric

computes a lower bound of the performance of IDEA. The compari-

son with other methods can validate our proposed framework more

sufficiently.

4.4 Result of RQ2: Comparison Results with

Different Methods

For validating the performance of AOLDA in IDEA, we choose the
typical method for online topic modeling - OLDA [1]. For evalu-

ating the proposed topic labeling method in Section 3.3.2, we also

compare with the method only considering the sentiment score for

labeling (denoted as IDEA-R), and the method only considering the

semantic score for labeling (denoted as IDEA-S). For clarity, our
proposed framework is represented as IDEA+. Table 7 illustrates the
comparison results on the six subject apps. We discuss the perfor-

mance of IDEA from three aspects in the following subsections.

4.4.1 Issues in Phrases v.s. Issues in Sentences. According to the

results of IDEA+ in Table 7, issues in sentences can attain better

performance than those in phrases by 30.7%, 52.5%, and 43.2% in

PrecisionE , RecallL , and Fhybr id on average respectively. This may

be attributed to the fact that sentences can deliver more detailed and

complete information than phrases (explained in Section 4.3.2), and

8

55

thereby cover more key terms in changelogs. Focusing on themetric

Fhybr id , employing sentence-level issues improves the properties

of using phrase-level issues by 2.7%∼1.56 times. For PrecisionE ,
the issues in sentences increase those in phrases by -16.7%∼1.8

times. The negative increase only occurs to the app NOAA Radar,

which may be because the small datasets of the app (512 reviews

per version) introduce instability for our framework [23]. For the

metric RecallL , IDEA
+ shows an increase range of 7.1%∼1.1 times.

Overall, sentence-level issues can better represent app issues, and

we employ such issue representations for comparing with different

methods in the following.

4.4.2 AOLDA v.s. OLDA. On average, IDEA+ achieves 0.604,

0.603, and 0.585 for PrecisionE , RecallL , and Fhybr id respectively,

while the OLDA-based method only obtains 0.407, 0.560, and 0.431

for the three metrics. Considering the metric Fhybr id , AOLDA en-

hances the performance of OLDA by 2.1%∼3.08 times, where OLDA

presents the poorest performance (0.129) on the app with the largest

quantity of reviews (e.g., Clean Master with 6,332 reviews per ver-

sion). For the metrics PrecisionE and RecallL , our framework can

improve the performance by -1.1%∼2.33 times and 0.3%∼18.4% re-

spectively. Although IDEA+ exhibits a slightly lower PrecisionE
than the OLDA-based method for the app NOAA Radar, it shows

better performance in both Fhybr id and RecallL , which indicates

that our framework can well balance the precision and recall in

issue detection.

4.4.3 IDEA v.s. Different Topic Labeling Methods. We discover

that IDEA+ can achieve better performance than IDEA-R and present
the increase rates at 7.1%, 7.3%, and 7.7% on average for the three

metrics respectively. For Fhybr id , our framework improves IDEA-R
by 3.4%∼14.0%. When compared with IDEA-S, our framework in-

creases by 34.9%, 10.4%, and 20.7% on average in PrecisionE ,RecallL ,
and Fhybr id , respectively. Therefore, both the user sentiment and

semantic similarity should be considered for topic labeling.

4.5 RQ3: Effect of Different Parameter Settings

In this part, we demonstrate the impact of different parameter set-

tings on the performance of our framework. We focus on analyzing

two important parameters, including the window size w and the

number of topics K . We also explain how we choose the parameters

in our experiments.

4.5.1 Window Size. Figure 9 illustrates the results of different

window sizes on two apps, including YouTube and Ebay. For both

apps, the values of Fhybr id present an inverted “U” shape for both

phrase-level and sentence-level issues. We attribute this to the

reason that the topic distributions of the current version are strongly

dependent on those of the previous versions. When the window

size is set relatively small, the detected issues of current versions

may be more divergent and unstable. However, larger window sizes

may weaken the distinction of app issues among versions, which

is unfavorable for detecting the emerging issues. Sincew = 3 can

achieve the best performance on our datasets (indicated in Figure 9),

we set the window size as three in our experiments.
4.5.2 The Number of Topics. Generally, the topic number should

be defined according to the size of the review collection [3]. In

IDEA, a larger topic number can bring more prioritized app issues,

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5

Phrase Sentence 0.05

0.15

0.25

0.35

0.45

0.55

1 2 3 4 5

Phrase Sentence

Window size Window size
(a) Youtube (b) Ebay

Figure 9: Impact of window size.

which can cover more changelogs (i.e., increasing RecallL). How-
ever, more app issues may be a double-edged sword, since the

metric PrecisionE can be decreased. Figure 10 shows the results of

different topic numbers on two apps, including NOAA Radar and

Ebay. For Ebay (on average 3,943 reviews per version), the values

of Fhybr id display an ascending tendency in both phrase-level and

sentence-level issues. But for NOAA Radar (on average 523 reviews

per version), a larger topic number will reduce the performance

when using phrase-level issues. To better balance the precision and

recall, we set the topic number as 10 during experiments.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

6 7 8 9 10 11 12

Phrase Sentence

Topic Number
(a) Noaa Radar

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

6 7 8 9 10 11 12

Phrase Sentence

Topic Number
(b) Ebay

Figure 10: Impact of topic number.

5 IDEA IN PRACTICE

In this section, we explore the performance of IDEA in practice.

First, we introduce a user survey conducted in Tencent. Then we

describe the successful application of IDEA in Tencent’s products.

5.1 User Survey

To further demonstrate the significance and effectiveness of our

work, we conduct a user study among 45 staff in Tencent, with 29

developers (64.4%), five data analysts (11.1%), four product man-

agers (8.9%), three maintenance engineers (6.7%), one test engineer

(2.2%), and three from other positions (6.7%). The user study is

conducted through an online questionnaire, which consists of six

questions: one question on participants’ background, four questions

for experimental assessment, and one question for understanding

their attitude towards such automatic analysis.

5.1.1 Changelogs as Ground Truth. We interview the partici-

pants about their opinions of using changelogs as ground truth,

since changelogs may only include partial changes of the releases.

The survey results indicate that 31 (68.9%) of the interviewees agree

that changelogs can reflect modified issues of the new releases, and

10 (22.2%) of them indicate a strong approval. Moreover, 88.9% of

participants think that changelogs embody the user concerns of

the previous releases, with 11.1% echoing strong agreement. Since

our framework aims to prioritize app issues based on user reviews,

using changelogs as ground truth is reasonable.

5.1.2 Effectiveness of Our Framework. During the survey, we

validate our framework in terms of three aspects: the presentation

9

56

style of IDEA’s results, the performance achieved by our framework,

and the significance of such automatic analysis. The survey results

indicate that 75.6% of participants think the visualization with an

issue river is comprehensible for them, while the phrase-level issues

(only with the approval rate at 11.1%) are considered more difficult

to understand than sentence-level issues (with an approval rate

of 37.8%). For inquiring about their opinions of the performance

of IDEA, we present the example results of WizNote [44] with

PrecisionE and Fhybr id at 50%∼60%. According to the survey, 88.9%

of the interviewees think that the performance is acceptable in

practical usage, and 31.1% strongly approve of such performance.

In addition, all the participants think such automatic analysis of

detecting emerging issues is significant for app development, with

73.3% of them strongly agreeing with this sentiment. These results

provide strong evidence of the effectiveness of our framework.

5.2 Successful Story in Industrial Practice

TeamX of Tencent aims to provide developers with abnormal events

report and operation statistics of 20+ apps of Tencent. Traditional

review analysis in X requires lots of manpower. With the increasing

quantities of app reviews and the onslaught of spam in user reviews,

X has been seeking a means of automatic analysis. We have suc-

cessfully applied IDEA into X to maintain four apps with review

quantities at 500∼5,000 per day. The four apps serve hundreds of

millions of users worldwide, and their quality is very important for

the company. IDEA obtains user reviews by the hour or day based

on the review collection API provided by X. The collected reviews

are grouped by versions and processed in real time. The detected

emerging issues are fed back to developers for further analysis.

In July of 2017, App Y encountered a serious problem when the

content search service was not available for a period of time, and

received a sudden increase in the amount of user feedback. With

IDEA, the team X quickly identified the issue and reported it to the

development team. The team also confirmed this issue.

Moreover, IDEA can efficiently analyze large numbers of reviews.

We deploy IDEA on a PC with Intel(R) Xeon E5-2620v2 CPU (2.10

GHz, 6 cores) and 16GB RAM. For 36,000 product reviews per ver-

sion, IDEA achieves a high throughput (nearly 160 reviews per

second), and only consumes 1.02GB of memory on average. Overall,

IDEA is proved to be effective and efficient in quickly pinpointing

urgent app issues for developers in the industrial practice.

6 THREATS TO VALIDITY

First, we only select six subject apps for validating our framework

and the apps represent a tiny portion of all apps on app markets.

Since we utilize user reviews for detecting emerging issues, our

methods can be easily applied to other apps, even those with other

languages. Also, we alleviate this threat by choosing the apps from

different categories and platforms. Second, the number of user re-

views can impact the performance of IDEA. However, since small

datasets can be easily analyzed manually, our framework aims for

automatic analysis of large review datasets. We also mitigate this

threat by selecting apps with different quantities of user reviews (on

average 523∼6,332 reviews per version). Third, the topic number

should be manually defined, which can influence the performance

of our framework. Such a threat stems from the original topic mod-

eling method [4], which is still a great challenge in academia [45].

In this paper, we alleviate this threat by testing on different topic

numbers (introduced in Section 4.5.2). In practice, we can employ

heuristic approaches [45] to determine the optimal topic number.

7 RELATEDWORK

7.1 App Review Mining

Some previous work [12, 20] focuses on identifying users’ major

concerns or preferences from app reviews [28]. Different from

these work, where the reviews are manually analyzed, there exists

some research which extracts app issues automatically. For exam-

ple, [17, 42] design frameworks for automatic retrieval of mobile

app feature requests from reviews. Mcilroy et al. [29] contribute to

automatically assigning multiple labels to each review. Although

the work [40, 25, 14] classify app reviews into different categories

for recommending software updates, they mainly analyze static

reviews and pay little attention to tracking issue changes. In [21,

9, 15, 27], the authors analyze variations in app ratings, prices, or

review sizes along with time, but the issues are neither identified

automatically nor studied online. Similarly, online review analysis

is not the focus of Gao et al.’s work [10, 11]. There also exists some

work [13] focusing on analyzing the parts of apps that are loved

by users. Different from previous efforts, our work aims to detect

the emerging issues automatically and dynamically. We employ

changelogs for verifying effectiveness of our framework. Moreover,

we present app issues in an interactive and comprehensible manner.

7.2 Emerging Topic Detection

There are research efforts focused on detecting emerging topics in

social media, such as Twitter [5] and Microblog [7]. Online topic

models [1, 22] are the typical methods for discovering burst topics.

We are the first to apply online topic modeling methods into app

reviews, and we improve on previous work by proposing a novel

AOLDA. AOLDA can adaptively combine the topics in previous

app versions and greatly enhances the performance of OLDA [1].

8 CONCLUSION

Timely and effectively detecting app issues is crucial for app de-

velopers. We propose IDEA, a novel framework for automatically

identifying emerging issues from user reviews. Our framework

can be easily applied to text-based online detection tasks and re-

port emerging issues timely. Industrial practice also validates the

effectiveness of IDEA. In the future, we will refine IDEA to be capa-

ble of defining the topic number automatically, and make IDEA a
distributed algorithm for supporting ultra-large-scale datasets.

ACKNOWLEDGMENTS

We greatly thankWeiwen Qiu and Jun Ouyang of Tencent for assist-

ing our industry study. This work was supported by the Key Project

of National Natural Science Foundation of China (No. 61332010

and No. 61472338), the Research Grants Council of the Hong Kong

Special Administrative Region, China (No. CUHK 14234416 and No.

14208815 of the General Research Fund), and Microsoft Research

Asia via 2018 MSRA Collaborative Research Award.

10

57

REFERENCES
[1] Loulwah AlSumait, Daniel Barbará, and Carlotta Domeniconi. “On-line LDA:

Adaptive Topic Models for Mining Text Streams with Applications to Topic
Detection and Tracking”. In: Proceedings of the 8th IEEE International Conference
on Data Mining, ICDM 2008, December 15-19, 2008, Pisa, Italy. 2008, pp. 3–12.

[2] App Annie. https://www.appannie.com/en/.
[3] R. Arun et al. “On Finding the Natural Number of Topics with Latent Dirichlet

Allocation: Some Observations”. In: Advances in Knowledge Discovery and Data
Mining, 14th Pacific-Asia Conference, PAKDD 2010, Hyderabad, India, June 21-24,
2010. Proceedings. Part I. 2010, pp. 391–402.

[4] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. “Latent Dirichlet Alloca-
tion”. In: Journal of Machine Learning Research 3 (2003), pp. 993–1022.

[5] Mario Cataldi, Luigi Di Caro, and Claudio Schifanella. “Emerging topic detec-
tion on twitter based on temporal and social terms evaluation”. In: Proceedings
of the Tenth International Workshop on Multimedia Data Mining (MDMKDD).
ACM. 2010, p. 4.

[6] Ning Chen et al. “AR-miner: mining informative reviews for developers from
mobile app marketplace”. In: 36th International Conference on Software Engi-
neering, ICSE 2014, Hyderabad, India - May 31 - June 07, 2014. 2014, pp. 767–
778.

[7] Yan Chen et al. “Emerging topic detection for organizations from microblogs”.
In: The 36th International ACM SIGIR conference on research and development
in Information Retrieval, SIGIR 2013, Dublin, Ireland - July 28 - August 01, 2013.
2013, pp. 43–52.

[8] Facebook Messenger is getting slammed by tons of negative reviews. http : / /
www.businessinsider.com/facebook-messenger- app- store- reviews- are-
humiliating-2014-8.

[9] Bin Fu et al. “Why people hate your app: making sense of user feedback in
a mobile app store”. In: The 19th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD 2013, Chicago, IL, USA, August
11-14, 2013. 2013, pp. 1276–1284.

[10] Cuiyun Gao et al. “AR-Tracker: Track the Dynamics of Mobile Apps via User
Review Mining”. In: 2015 IEEE Symposium on Service-Oriented System Engi-
neering, SOSE 2015, San Francisco Bay, CA, USA, March 30 - April 3, 2015. 2015,
pp. 284–290.

[11] Cuiyun Gao et al. “PAID: Prioritizing app issues for developers by tracking
user reviews over versions”. In: 26th IEEE International Symposium on Software
Reliability Engineering, ISSRE 2015, Gaithersbury, MD, USA, November 2-5, 2015.
2015, pp. 35–45.

[12] Judith Gebauer, Ya Tang, and Chaiwat Baimai. “User requirements of mobile
technology: results from a content analysis of user reviews”. In: Inf. Syst. E-
Business Management 6.4 (2008), pp. 361–384.

[13] Xiaodong Gu and Sunghun Kim. “"What Parts of Your Apps are Loved by
Users?" (T)”. In: 30th IEEE/ACM International Conference on Automated Software
Engineering, ASE 2015, Lincoln, NE, USA, November 9-13, 2015. 2015, pp. 760–
770.

[14] Emitza Guzman and Walid Maalej. “How Do Users Like This Feature? A Fine
Grained Sentiment Analysis of App Reviews”. In: IEEE 22nd International
Requirements Engineering Conference, RE 2014, Karlskrona, Sweden, August
25-29, 2014. 2014, pp. 153–162.

[15] Leonard Hoon et al. “An analysis of the mobile app review landscape: trends
and implications”. In: Faculty of Information and Communication Technologies,
Swinburne University of Technology, Tech. Rep (2013).

[16] Jiajia Huang et al. “A probabilistic method for emerging topic tracking in
Microblog stream”. In: World Wide Web 20.2 (2017), pp. 325–350.

[17] Claudia Iacob and Rachel Harrison. “Retrieving and analyzing mobile apps
feature requests from online reviews”. In: Proceedings of the 10th Working
Conference on Mining Software Repositories, MSR 2013, San Francisco, CA, USA,
May 18-19, 2013. 2013, pp. 41–44.

[18] Aminul Islam and Diana Zaiu Inkpen. “Semantic text similarity using corpus-
based word similarity and string similarity”. In: TKDD 2.2 (2008), 10:1–10:25.

[19] Jensen Shannon divergence. https://en.wikipedia.org/wiki/Jensen-Shannon_
divergence.

[20] H Khalid et al. “What do mobile app users complain about? A study on free
iOS apps. 2014”. In: IEEE Software 10 (2015).

[21] Jieun Kim et al. “Trends and relationships of smartphone application services:
Analysis of apple app store using text mining-based network analysis”. In:
Proceedings of the 4th ISPIM Innovation Symposium. 2012.

[22] Jey Han Lau, Nigel Collier, and Timothy Baldwin. “On-line Trend Analysis with
Topic Models: \#twitter Trends Detection Topic Model Online”. In: COLING

2012, 24th International Conference on Computational Linguistics, Proceedings
of the Conference: Technical Papers, 8-15 December 2012, Mumbai, India. 2012,
pp. 1519–1534.

[23] LDA on small datasets. https://stats.stackexchange.com/questions/78926/at-
what-point-does-lda-latent-dirichlet-allocation-not-make-sense-to-use.

[24] Qingwei Lin et al. “iDice: problem identification for emerging issues”. In:
Proceedings of the 38th International Conference on Software Engineering, ICSE
2016, Austin, TX, USA, May 14-22, 2016. 2016, pp. 214–224.

[25] Walid Maalej and Hadeer Nabil. “Bug report, feature request, or simply praise?
On automatically classifying app reviews”. In: 23rd IEEE International Require-
ments Engineering Conference, RE 2015, Ottawa, ON, Canada, August 24-28, 2015.
2015, pp. 116–125.

[26] Yichuan Man et al. “Experience Report: Understanding Cross-Platform App
Issues from User Reviews”. In: 27th IEEE International Symposium on Software
Reliability Engineering, ISSRE 2016, Ottawa, ON, Canada, October 23-27, 2016.
2016, pp. 138–149.

[27] William Martin, Federica Sarro, and Mark Harman. “Causal impact analysis
for app releases in google play”. In: Proceedings of the 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, FSE 2016,
Seattle, WA, USA, November 13-18, 2016. 2016, pp. 435–446.

[28] William Martin et al. “A Survey of App Store Analysis for Software Engineer-
ing”. In: IEEE Trans. Software Eng. 43.9 (2017), pp. 817–847.

[29] Stuart McIlroy et al. “Analyzing and automatically labelling the types of user
issues that are raised in mobile app reviews”. In: Empirical Software Engineering
21.3 (2016), pp. 1067–1106.

[30] Qiaozhu Mei, Xuehua Shen, and ChengXiang Zhai. “Automatic labeling of
multinomial topic models”. In: Proceedings of the 13th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, San Jose, California,
USA, August 12-15, 2007. 2007, pp. 490–499.

[31] Tomas Mikolov et al. “Distributed Representations of Words and Phrases and
their Compositionality”. In: Advances in Neural Information Processing Systems
26: 27th Annual Conference on Neural Information Processing Systems 2013.
Proceedings of a meeting held December 5-8, 2013, Lake Tahoe, Nevada, United
States. 2013, pp. 3111–3119.

[32] Multi-tasking in iOS. https : / /developer. apple . com/ ios /human- interface -
guidelines/features/multitasking/.

[33] Thanh-Son Nguyen, Hady Wirawan Lauw, and Panayiotis Tsaparas. “Review
Synthesis for Micro-Review Summarization”. In: Proceedings of the Eighth ACM
International Conference onWeb Search and Data Mining, WSDM 2015, Shanghai,
China, February 2-6, 2015. 2015, pp. 169–178.

[34] NLTK. http://www.nltk.org.
[35] PMI. https://en.wikipedia.org/wiki/Pointwise_mutual_information.
[36] Punkt tokenizer. http://www.nltk.org/modules/nltk/tokenize/punkt.html.
[37] Peter J. Rousseeuw and Mia Hubert. “Robust statistics for outlier detection”. In:

Wiley Interdisc. Rew.: Data Mining and Knowledge Discovery 1.1 (2011), pp. 73–
79.

[38] Federica Sarro et al. “Feature lifecycles as they spread, migrate, remain, and die
in App Stores”. In: 23rd IEEE International Requirements Engineering Conference,
RE 2015, Ottawa, ON, Canada, August 24-28, 2015. 2015, pp. 76–85.

[39] Softmax function. https://en.wikipedia.org/wiki/Softmax_function.
[40] Andrea Di Sorbo et al. “What would users change in my app? summarizing

app reviews for recommending software changes”. In: Proceedings of the 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering,
FSE 2016, Seattle, WA, USA, November 13-18, 2016. 2016, pp. 499–510.

[41] User forum of Youtube iOS. https://productforums.google.com/forum/#!forum/
youtube.

[42] Phong Minh Vu et al. “Mining User Opinions in Mobile App Reviews: A
Keyword-Based Approach (T)”. In: 30th IEEE/ACM International Conference on
Automated Software Engineering, ASE 2015, Lincoln, NE, USA, November 9-13,
2015. 2015, pp. 749–759.

[43] Xiaojun Wan and Tianming Wang. “Automatic Labeling of Topic Models Using
Text Summaries”. In: Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics, ACL 2016, August 7-12, 2016, Berlin, Germany,
Volume 1: Long Papers. 2016.

[44] WizNote. https://www.wiz.cn/.
[45] Weizhong Zhao et al. “A heuristic approach to determine an appropriate num-

ber of topics in topic modeling”. In: BMC Bioinformatics 16.13 (2015), S8.

11

58

