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Summary & Conclusions - This paper presents a quantitative 
reliability analysis of a system designed to tolerate both hardware 
& software faults. The system achieves integrated fault tolerance 
by implementing N-version programming (NVP) on redundant 
hardware. The system analysis considers unrelated software faults, 
related software faults, transient hardware faults, permanent hard- 
ware faults, and imperfect coverage. The overall model is Markov 
in which the states of the Markov chain represent the long-term 
evolution of the system-structure. For each operational configura- 
tion, a fault-tree model captures the effects of software faults and 
transient hardware faults on the task computation. The software 
fault model is parameterized using experimental data associated 
with a recent implementation of an NVP system using the current 
design paradigm. The hardware model is parameterized by con- 
sidering typical failure rates associated with hardware faults and 
coverage parameters. Our results show that it is important to con- 
sider both hardware & software faults in the reliability analysis 
of an NVP system, since these estimates vary with time. Moreover, 
the function for error detection & recovery is extremely impor- 
tant to fault-tolerant software. Several orders of magnitude reduc- 
tion in system unreliability can be observed if this function is pro- 
vided promptly. 

1. INTRODUCTION 

Computer systems used for critical applications, such as 
flight control, air-traffic control, patient monitoring, or power 
plant monitoring, are designed to tolerate faults in the software 
as well as in the hardware. Distinguishing between hardware 
& software faults can be difficult, because symptoms of tran- 
sient hardware faults and those of software design faults are 
often very similar [6]. Fault-tolerant system designers thus now 
advocate a unified treatment of hardware & software faults. 

Acronyms 

HECA, SECA [hardware, software] error confinement area 
NVP N-version programming. 

513 

Three recent systems provide an integrated approach to 
hardware & software fault tolerance. Distributed Recovery 
Blocks (DRB) scheme [6] combines both distributed process- 
ing and Recovery Block (RB) [ 131 concepts to provide a unified 
approach to tolerating both hardware & software faults. Ar- 
chitectural considerations for the support of NVP [2J were ad- 
dressed in 171, in which the FTP-AP system is described. The 
FTP-AP system achieves hardware & software design-diversity 
by attaching AP (application processors) to the byzantine 
resilient hard core FTP (fault-tolerant processor). N self- 
checking programming (NSCP) [8] uses diverse hardware & 
software in self-checking groups to detect hardware & software 
induced errors. The NSCP concept forms the basis of the flight 
control system used on the Airbus A310 & A320 aircraft, and 
was analyzed in [3]. 

This paper analyzes a system which uses NVP on redun- 
dant hardware. A combination of fault-tree and Markov models 
provides a framework for the analysis of hardware & software 
fault-tolerant systems. The system model is Markov in which 
the states of the Markov chain represent the evolution of the 
hardware configuration as permanent faults occur. A fault-tree 
model for each state captures the effects of software faults and 
transient hardware faults. This hierarchical approach simplifies 
the development, solution, and understanding of the modeling 
process. The model is parameterized using actual data derived 
from an experimental implementation of a real, automatic (com- 
puterized) airplane landing system (‘autopilot”). The software 
systems of this project were developed & programmed by 15 
programming teams at the University of Iowa and the 
Rockwell/Collins Avionics Division. A total of 40 students (33 
from ECE & CS departments at the University of Iowa, 7 from 
the Rockwell International) participated in this project to design, 
code, and test (all independently) the computerized airplane- 
landing system [ 1 1 ]. 

2. ASSUMPTIONS & DEFINITIONS 

2.1 Definitions 

Coverage: Pr(system can automatically recovery from a per- 
manent hardware fault 1 a permanent hardware fault occurs}. 
Decider: A computing routine which determines the correct 
results from the multiple software versions using consensus. 
Error: The manifestation of a fault, eg, in the information 
that is processed or in the internal system state. 
Failure: An unacceptable deviation from the anticipated 
delivered service. 
Fault: An undesirable imperfection in a hardware or software 
component of the system. eg. a short circuit between 2 leads, 
or an incorrect program statement. 
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Related software fault: A software fault that affects at least 

Unrelated software fault: A software fault that affects only 
2 versions, causing similar erroneous results. 

1 version. 

2.2 Assumptions 

1. Task Computation. The computation being performed 
. i s  a task (or set of tasks) which is repeated periodically. 
A set of sensor inputs is gathered & analyzed, and a set 
of actuations is produced. All repetitions of a task are mutual- 
ly s-independent. The analysis goal is to find: Pr{a task suc- 
ceeds in producing an acceptable output, despite the possibili- 
ty of hardware or software faults}. [More-interesting task- 
computation processes could be considered using techniques 
in [9, 161. We do not address timing or performance issues 
in this model. See [15] for a performability analysis of fault- 
tolerant software techniques.] 

2. Software Failure Probability. Software faults exist in 
the code (despite rigarous testing). A fault can be activated 
by a random input, thus producing an erroneous result. Each 
instance of a task receives a different set of inputs which 
are mutually s-independent. A software task has a fixed prob- 
ability of failure when executed. All instances of a particular 
task are mutually s-independent. [We do not assign a failure 
rate to the software and thus do not consider reliability-growth 
models.] 

3. Coincident Software Failures in Different Versions. 
If two different software versions fail on the same input, 
they either produce similar or diferent results. Similar er- 
roneous results are caused by related software faults. Dg- 
ferent erroneous results which are simultaneously activated 
are caused by unrelated (mutually s-independent in the ter- 
minology of [l]) software faults. The sets of related and 
of unrelated software faults are mutually s-independent. [We 
use the model in [l] for software failures, except that: [l] 
assumes related & unrelated faults are mutually exclusive, 
whereas they are s-independent here.] [Our treatment of related 
& unrelated differs considerably from faults models for s- 
correlated failures [5, 10, 121 in which related & unrelated 
software failures are not differentiated.] 

4. Permanent Hardware Faults. The statistical arrival 
(activation) intensity of permanent hardware faults is cons- 
tant; ie, it is a homogeneous Poisson process. 

5 .  Transient Hardware Faults. A transient hardware fault 
upsets the software running on the processor+and produces 
an erroneous result which is indistinguishable from an input- 
activated software error. The lifetime of transient hardware 
faults is short compared to the time for a task computation. 
Thus a fixed probability is assigned to the occurrence of 
a transient hardware fault during a single computation. 

6. System Maintenance. The systems are not maintained. 
-rainability could be included in the Markov model; we have 
chosen not to include it in order to make the comparisons clearer.] 

7. Coverage Failure. The fault tolerant system fails if it 
is unable to detect and recover automatically from a permanent 
hardware fault. 

2.3 Notation 

x 
c coverage 
PH 

Pv 

PRv 

Poisson arrival intensity for a permanent hardware 
fault to a single processing element 

Pr { at least one transient hardware fault occurs during 
a single task computation} 
Pr { an unrelated software fault is activated dunng a task 
computation}, for each version 
Pr{a related fault, common to the version pair, is ac- 
tivated during a task computation), for each pair of 
versions 
Pr{a related fault, common to all versions, is activated 
during a single task computation} 
Pr{decider fails, either by accepting an incorrect result 
or by rejecting a correct result}. 

P U L L  

Po 

Other, standard notation is given in “Information for Readers 
& Authors” at the rear of each issue. 

3. SYSTEM DESCRIPTION 

The software project [ l]  was scheduled & conducted in 

1. Initial design - 4 weeks 
2. Detailed design - 2 weeks 
3. Coding - 3 weeks 
4. Unit testing - 1 week 
5. Integration testing - 2 weeks 
6. 2-Step formal acceptance testing (AT1 & A n )  - 2 

AT1. Each program was run in a test harness of 4 nominal 

AT2. One extra simulation profile, representing an ex- 

By the end of the formal acceptance testing phase, 12 of 
the 15 programs passed the acceptance test successfully and were 
engaged in operational testing for further evaluation. The 
average size of these programs was 1564 lines of uncommented 
code, or 2558 lines of commented code. The mean fault densi- 
ty of the program versions which passed AT1 was 0.48 
faults/1000 lines of uncommented code. The mean fault deensi- 
ty of the final versions was 0.05 faults/lOOO lines of uncom- 
mented code. 

6 phases: 

weeks 

flight simulation profiles 

tremely difficult flight situation, was imposed. 4 

3.1 NVP Operational Environment 

The operational environment for the application was an 
airplane-autopilot interacting in a simulated environment. as 
shown in figure 1. Three channels of diverse software auton- 
omously computed a surface command to guide a simulated air- 
craft along its flight path. To ensure that important a m m a d  
errors could be detected, several levels of random wind tur- 
bulences were superimposed to represent difficult flight d- 
tions. The individual commands were recorded, and compprrd 
for discrepancies that could indicate the presence of faults. 
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of AT2, more faults would have remained in the program ver- 
sions. We were interested in seeing how the remaining faults 
would be manifested during the operational testing, and how 
they would be tolerated in various NVP configurations. 

TABLE 1 
Errors in 3-Version Configurations 

Mean Occurence Frequency 
Version Number of 

ID Failures BY Case (IO-*) By Frame (W6) 

P 510 51 97 
Y 0 
E 0 
r 0 
9 1 

Figure 1. 3-Channel Flight Simulation Configuration 

This configuration of a 3-channel flight simulation system 6 

x consisted of: K 

360 
0 

730 

0 
0 
0 
0.1 

36 
0 

13 
3 lanes (autonomous software process) of control-law f i  140 14 

v 0 0 
0 0 t 

computation 
n 0 0 3 command monitors 

1 servo control 
1 airplane model 
1 turbulence generator. 

The lane computations and the command monitors were the ac- 
cepted software versions generated by the programming teams. 
Each lane of computation monitored, but did not interact with, 
the other two lanes. However, no single lane could decide 
whether another lane was faulty. A separate servo-control logic 
function was required to make that decision. The aircraft 
mathematical model provided the dynamic response of current 
medium size, commercial transports in the approach/landing 
flight phase. The 3 control signals from the autopilot computa- 
tion lanes were inputs to 3 elevator servos. The servos were 
force-summed at their outputs, so that the mid-value of the 3 
inputs became the final elevator command. The Landing 
Geometry and Turbulence Generator were models associated 
with the Airplane simulator. 

In summary, 1 run of flight simulation was characterized 
by 5 initial values regarding the landing position of an airplane: 

1. initial altitude (about 1500 feet) 
2. initial distance (about 52800 feet) 
3. initial nose up relative to velocity (range from 0 to 10 

4. initial pitch attitude (range from -15 to 15 degrees) 
5. vertical velocity for the wind turbulence (0 to 10 feet/s) . 

One simulation consisted of about 5280 iterations of lane com- 

degrees) 

Average 145.1 14.5 

0 
0 
0 
0.2 

68 
0 

138 
27 
0 
0 
0 

21.5 

Table 1 shows the software failures encountered in each 
single version, while table 2 shows different software error 
categories under all combinations of 3-version configurations. 
We examine 2 levels of granularity in defining software execu- 
tion errors and s-correlated errors: by case or byfiame. 

By case (based on lo00 test-cases). If a version failed at any 
time in a test case, it was considered failed for the whole case. 
If two or more versions failed in the same test case (no mat- 
ter at the same time or not), they were said to have coinci- 
dent errors for that test case. 
Byframe (based on 5 280 920 execution time-frames). Er- 
rors were counted only in the time-frame upon which they 
manifested themselves. Coincident errors were defined to be 
the multiple program versions failing at the same time in the 
same test case (with or without the same variables and values). 

TABLE 2 
Error Characteristics for 3-Version Configurations’ 

By Case By Frame 

Number of Number of 
Category cases Frequency cases Frequency 

mand computations (50 ms each) for a total landing time of ap- - 163370 0.7426 1160743690 0.999089 
F, - 1 error 51930 0.2360 1056010 0.000909 

proximately 264 seconds. F? - 2 coincident errors 4440 0.0202 2700 0.000002 

3.2 Operational Error Distribution 
F3 - 3 coincident errors 260 0.0012 0 0.0 
Total 22oooO 1.0000 1161802400 1.000000 

During the operational phase, lo00 flight simulations (over 
5. lo6 program executions) were conducted. We used the pro- 
gram versions which passed the AT1 for study. Our reason was 
that had the Acceptance Test not included an extreme situation 

’The number of significant figures is not intended to imply any ac- 
curacy in the estimates, but to illustrate the arithmetic. 
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By case. The mean failure probability for the 1-version (table 
1) is 14.5%. For all the 3-version combinations (table 2), the 
failure probability is 2.1 % (sum of error categories 3 & 4), 
an improvement over the 1-version by a factor of 7. 
Byframe. The mean failure probability for the 1-version (table 
1) is 27.10-6. For all the 3-version combinations (table 2), 
the failure probability is 2 (sum of error categories 3 
& 4), an improvement over the 1-version by a factor of 13. 

These software failure probability estimates were obtained 
by empirical program-execution results. Section 4 derives a 
general reliability model for an integrated fault-tolerant system. 
We verify our reliability model with the empirical results. 

4. MODEL DESCRIPTION 

A reliability model of an integrated fault-tolerant system 
must include at least 3 considerations: 

computation errors, 
system structure, 
coverage modeling. 

We concentrate on the first two, as coverage modeling has been 
addressed in detail elsewhere [4]. 

4.1 Computation Error Model 

The task computation process consists of a repeated ex- 
ecution of a fault tolerant software component as described in 
section 2.2. The software component designed to perform the 
task is designed to be fault tolerant. During 1 task-iteration, 
2 types of events can interfere with the computation: 

the particular set of inputs activates a software fault in at least 

a hardware transient fault upsets the computation but does 

The combinations of software faults and hardware transients 
that can cause an erroneous output for a single computation are 
modeled with a fault tree. 

1 software-version and/or the decider. 

not permanently damage the hardware. 

1- I 

Figure 2. Fault-Tree Model of Computation Errors in Full-Up 
State 

Figure 2 shows the fault-tree model for the computation 
error process when the system is fully operational. The basic 
events are labeled with the symbol which represents the prob- 
ability of occurrence; the symbols are defined in table 3. 

TABLE 3 
Parameterization of Model 

By Case (%) By Frame 

A. Fault-Tree Basic-Event Probabilities 
PV 9.6 300 

PRALL 0.03 0.0 
P D  0.01 0.1 

pRV 0.0 0.6 

PH 0.00073 0.0028 
B. Markov Model Parameters 

x 1.10.~ 
C 0.999 

An erroneous output can result from software failure, hardware 
failure, or a combination. The software fails i f  

unrelated faults are activated in 2 or 3 versions by the same 

a related fault is activated between any 2 or 3 versions, or 
a fault in the decider is activated. 

The hardware causes a computation error in the resident soft- 
ware if a transient fault occurs during a computation. Any com- 
bination of hardware & software faults affecting 2 of the 3 ver- 
sions leads to an unacceptable output. 

If a permanent hardware-fault disables one of the host pro- 
cessors, then the system is reconfigured to a simplex system. 
In the simplex mode, an unacceptable output results from either 
an unrelated software fault activation, or a hardware transient. 
Figure 3 shows the fault-tree model for the comnutation-error 
process while in the simplex mode. 

test case, 

ERRONEOUS 0" 'n 
Figure 3. Fault-Tree Model of Computation Errors in Simplex 

State 

4.2 System Structure Model 

The longer-term system behavior is affected by the ar- 
rival (activation, manifestation) of permanent faults requiring 
system reconfiguration to a degraded mode of operation. The 
system structure is modeled by a Markov process, where the 
Markov states and transitions model the evolution of the system. 
Each state in the Markov process represents a particular 
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configuration of hardware & software components and thus a 
different level of redundancy. 

For the NVP-system modeled in this paper, there are 2 
operational states and 1 absorbing failure state. The initial state 
of the system represents the original system configuration, with 
3 software versions hosted on 3 different processors. When one 
of the processors experiences a hard fault, the system is recon- 
figured to a simplex system, with 1 software version running 
on 1 processor. 

Figure 4. Markov Model of System Structure 

Figure 4 shows the Markov model for this system. The 
2 operational states show the HECA & SECA associated with 
the system structure. The HECA is the lightly shaded region; 
the SECA is the darkly shaded region. The HECA or SECA 
covers +\e region of the system affected by faults in that com- 
ponent ?or example, HECA covers the software component 
since the software component fails if that hardware experiences 
a fault. The SECA covers only the software component since 
no other components are affected by a fault in thdt component. 

The reconfiguration from the TMR-system to a simplex 
system is successful with probability c. If the reconfiguration 
is unsuccessful, the system fails. 

4.3 Combining the Models 

For each state in the Markov chain, there is a different 
combination of hardware transients and software faults that can 
cause an erroneous output. A fault-tree model for each state 
captures the probability that 1 computation results in an er- 
roneous output. 

Notation (for Markov Model) 

i 
qi 
Pi(t)  
Q (t)  

state in the Markov model 
Pr { output error occurs during 1 task-computation} 
Pr{system is in state i at time t }  
Pr {an unacceptable result is produced at time t} . 

The fault-tree model solution produces qi for each i. The 
Markov model solution produces Pi ( t). The model combines 

5. PARAMETERIZATION & RESULTS 

This section details the methodology used for estimating 
the parameters, and discusses the assumptions. Table 3 sum- 
marizes the resulting parameter values. 

5.1 Software Parameters 

The experimental results from [l]  in table 2, were used 
to estimate the probabilities associated with the activation of 
software faults. 

Divide (1) by (2); the result depend> 
be used to estimate it. 

. on Pv, and thus can 

The data from table 2, used 'q (3), yield an estimate of 
Pv = 0.096 for the probability . Activation of an unrelated 
fault in a 3-version configuration. ble 4 compares the observ- 
ed values with the probability of activation of 1, 2, 3 faults as 
predicted by a model assuming s-independence between 
versions. 

TABLE 4 
Comparison of s-Independent Model with Observed Data' 

[N = number of errors activated] 

By Frame By Case 

Independent Observed Independent Observed 
N Model Frequency Model Frequency 

0 0.7393 0.1426 0.999090 G 7426 
1 0.2350 0.2360 0.000909 0.2360 
2 0.0249 0.0202 3.10.' 2.10-6 
3 O.OOO9 0.0012 3.10-1' 0.0 

By case. The observed probability of 2 simultaneous errors 
is lower than predicted by the s-independent model, while 
the observed probability of 3 simultaneous errors is higher 
than predicted. For this set of data we conclude that PRv = 
0; instead we derive an estimate for PRALL. Since PRv=O, 

these two measures to produce e(;) .  yielding an estimate of PRALL = 0.03 % . 
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Byframe. The byframe data in table 2, put into (3), estimates 
Pv = 0.03%. For these data, when the failure probabilities 
which are predicted by the s-independent model are compared 
to the actual data in table 4, the observed probability of 2 er- 
rors is 10 times the predicted probability. There were no cases 
for which all three programs produced erroneous results. Thus, 
we estimate PWL = 0 and derive an estimate for PRv. Let 
2 errors be produced; this could be caused by either the activa- 
tion of 2 simultanmus unrelated faults, or by the activation of 
a related fault. Also, it depends on the non-failure of the re- 
maining version, either by unrelated or related fault. Then, con- 
sider the 3 combinations of 2 failures which can occur. 

lEEE TRANSACTIONS ON RELIABILITY, VOL 43, NO. 4, 1994 DECEMBER 

Eq (3) & (5) are used to estimate PRv = 6 .  

(5) 

4 

N W  FAILS $4 

2F-l 
Figure 5. Fault-Tree Model of NVP Software System 

For both the by case and byfiume scenarios, the parameters 
derived from the data were applied to the fault-tree model in figure 
5. 

By case. The fault-tree model predicts a failure probability of 
0.026, while the observed failure probability was 0.0214. 
Byframe. The fault-tree model predicts a failure probability 
of 2.07- lo6, while the observed failure probability was 
2.3010". 4 

In the model solution section 5.3, these parameters are combined 
with hardware parameters to predict the NVP system reliability. 

2. The lifetime of a transient fault is 1 s. 
4 

Typical permanent-failure rates for processors are in the 
10-~/hour range, with transients perhaps 10 times as large. n u s ,  
for the Markov model, we use: 

3. c = 0.999; a fairly typical value. 

Ap = 10-5/hour, 

A, = 104/hour. 

By case. A typical test case has 5280 frames, each frame being 
50 ms; so a typical computation executes for 264 s. The prob- 
ability that a hardware transient occurs is: 

By frame. The probability that a transient occurs is: 

1 - exp(-A,.0.05 s) = 1.4.10-9. (7) 

From assumption #2, a transient can affect as many as 20 time 
frames. We thus take the probability of a transient to be 20 times 
the value in (7): 2.8.10-*. 

5.3 Model Solution 

The full model, including the two fault trees (figures 2 & 
3) and the Markov model (figure 4) were solved using the 
parameters in table 3. The results are shown in figures 6 & 7. 

5.2 Hardware Parameters 

Assumptions 

1. [we assume that] A hardware transient that occurs 
anywhere during the execution of a task disrupts the entire com- 
putation running on the host. 

0.04s , 
A 

A 1 0.04 
O.OU t 

Figure 6. Probability of Producing an Unacceptable Result 
[during 1 test-case: by case data] 

By case. Figure 6 shows the time-dependent probability that 
the NVP system produces an unacceptable result. The length 
of a typical test case is 264 s (4.4 minutes). Initially, in the 
full-up state, the probability of an unacceptable result is 2.6%, 
increasing to 4.5% after lo00 hours, as the probability of 
operating in the simplex state or in the failure state increases. 
The probability of producing an unacceptable result while in 

T 
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approach for uniform treatment of hardware and software faults in real- 
time applications”, IEEE Trans. Computers, vol 38, 1989 May, pp 

[7] J.H. Lala, L.S. Alger, “Hardware and software fault tolerance: A unified 
architectural approach”, Proc. IEEE Int ’I Symp. Fault-Tolerant Com- 
puting FTCS-IS, 1988 Jun, pp 240-245. 

[8] J-C. Laprie, J. Arlat, C. Beounes, K. Kanoun, “Definition and analysis 
of hardware- and software- fault-tolerant architectures”, IEEE Computer, 

[9] J-C. Laprie, K. Kanoun, “X-Ware reliability and availability modeling”, 
IEEE Trans. Sojiware Engineering, vol 19, 1992 Feb, pp 130-147. 

[IO] B. Littlewood, D.R. Miller, “Theoretical basis for the analysis of 
multiversion software subject to coincident errors”, IEEE Trans. So#- 
ware Engineering, vol 15, 1989 Dec, pp 1596-1614, 

[ l l ]  M.R. Lyu, Y-T. He, “Improving the N-version programming process 
through the evolution of a design paradigm”, IEEE Trans. Reliability, 
vol 42, 1993 Jun, pp 179-189. 

626-636. 

VOI 23, 1990 JuI, pp 39-51. 

Figure 7. Probability of Producing an Unacceptable Result [121 V.F. Nicola, A. ~ o y a l ,  “Modeling of correlated failures and communi- 
ty error recovery in multiversion software”, IEEE Tram. Sojiware 
Enaineerinf. vol 16. 1990 Mar. [during 1 time-frame: by frame data] 

- .  
[I31 B. Randell, “System structure for software fault tolerance”, IEEE T r m .  

Sojiware Engineering, vol SE-1, 1975 Jun, pp 220-232. 
[14] R. Sahner, K.S. Trivedi, “Reliability modeling using SHARPE”, IEEE 

Truns. Reliability, vol R-36, 1987 Jun, pp 186-193. 

fault-tolerant software”, IEEE Trans. Reliability, vol 42, 1993 Jun, pp 

the simplex mode is 9.6%; and the probability of producing 

100%. 
an in the absorbing state is [15] A,T, Tai, J,F, Meyer, A, Avidenis, “perfomability of 

Byframe. Figure 7 shows the time dependent probability that 227-237. 
the NVP system produces an unacceptable result. Initially, 

is 2.2.10-6, increasing by a factor of 3000 to 6800.10-6 at 
1000 hours. The probability of producing an unacceptable 
result while in the simplex mode is 300- 

1161 L. Wei, A ModelBared Study o f w o w  Infruence on Compdng System 
in the full-up state, the probability of an unacceptable result Dependability, PhD thesis, 1991; University of Michigan. 
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