
IEEE TRANSACTIONS ON RELIABILITY. VOL. 43. NO. 4, 1994 DECEMBER

System Reliability Analysis of
an N-Version Programming Application

Joanne Bechta Dugan, Senior Member IEEE
University of Virginia, Charlottesville

Michael R. Lyu, Member IEEE
Bell Communications Research, Morristown

Key Words - N-version programming (NVP), software fault
tolerance, fault tree, Markov model

Reader Aids -
General purpose: Present a system modeling example with ex-
perimental data
Special math needed for derivations: Probability
Special math needed to use results: Same
Results useful to: Reliability analysts

Summary & Conclusions - This paper presents a quantitative
reliability analysis of a system designed to tolerate both hardware
& software faults. The system achieves integrated fault tolerance
by implementing N-version programming (NVP) on redundant
hardware. The system analysis considers unrelated software faults,
related software faults, transient hardware faults, permanent hard-
ware faults, and imperfect coverage. The overall model is Markov
in which the states of the Markov chain represent the long-term
evolution of the system-structure. For each operational configura-
tion, a fault-tree model captures the effects of software faults and
transient hardware faults on the task computation. The software
fault model is parameterized using experimental data associated
with a recent implementation of an NVP system using the current
design paradigm. The hardware model is parameterized by con-
sidering typical failure rates associated with hardware faults and
coverage parameters. Our results show that it is important to con-
sider both hardware & software faults in the reliability analysis
of an NVP system, since these estimates vary with time. Moreover,
the function for error detection & recovery is extremely impor-
tant to fault-tolerant software. Several orders of magnitude reduc-
tion in system unreliability can be observed if this function is pro-
vided promptly.

1. INTRODUCTION

Computer systems used for critical applications, such as
flight control, air-traffic control, patient monitoring, or power
plant monitoring, are designed to tolerate faults in the software
as well as in the hardware. Distinguishing between hardware
& software faults can be difficult, because symptoms of tran-
sient hardware faults and those of software design faults are
often very similar [6]. Fault-tolerant system designers thus now
advocate a unified treatment of hardware & software faults.

Acronyms

HECA, SECA [hardware, software] error confinement area
NVP N-version programming.

513

Three recent systems provide an integrated approach to
hardware & software fault tolerance. Distributed Recovery
Blocks (DRB) scheme [6] combines both distributed process-
ing and Recovery Block (RB) [131 concepts to provide a unified
approach to tolerating both hardware & software faults. Ar-
chitectural considerations for the support of NVP [2J were ad-
dressed in 171, in which the FTP-AP system is described. The
FTP-AP system achieves hardware & software design-diversity
by attaching AP (application processors) to the byzantine
resilient hard core FTP (fault-tolerant processor). N self-
checking programming (NSCP) [8] uses diverse hardware &
software in self-checking groups to detect hardware & software
induced errors. The NSCP concept forms the basis of the flight
control system used on the Airbus A310 & A320 aircraft, and
was analyzed in [3].

This paper analyzes a system which uses NVP on redun-
dant hardware. A combination of fault-tree and Markov models
provides a framework for the analysis of hardware & software
fault-tolerant systems. The system model is Markov in which
the states of the Markov chain represent the evolution of the
hardware configuration as permanent faults occur. A fault-tree
model for each state captures the effects of software faults and
transient hardware faults. This hierarchical approach simplifies
the development, solution, and understanding of the modeling
process. The model is parameterized using actual data derived
from an experimental implementation of a real, automatic (com-
puterized) airplane landing system (‘autopilot”). The software
systems of this project were developed & programmed by 15
programming teams at the University of Iowa and the
Rockwell/Collins Avionics Division. A total of 40 students (33
from ECE & CS departments at the University of Iowa, 7 from
the Rockwell International) participated in this project to design,
code, and test (all independently) the computerized airplane-
landing system [1 1].

2. ASSUMPTIONS & DEFINITIONS

2.1 Definitions

Coverage: Pr(system can automatically recovery from a per-
manent hardware fault 1 a permanent hardware fault occurs}.
Decider: A computing routine which determines the correct
results from the multiple software versions using consensus.
Error: The manifestation of a fault, eg, in the information
that is processed or in the internal system state.
Failure: An unacceptable deviation from the anticipated
delivered service.
Fault: An undesirable imperfection in a hardware or software
component of the system. eg. a short circuit between 2 leads,
or an incorrect program statement.

0018-9529/94/$4.00 01994 IEEE

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 08,2021 at 09:59:07 UTC from IEEE Xplore. Restrictions apply.

514 IEEE TRANSACTIONS ON REUABILITY, VOL. 43, NO. 4, 1994 DECEMBER

Related software fault: A software fault that affects at least

Unrelated software fault: A software fault that affects only
2 versions, causing similar erroneous results.

1 version.

2.2 Assumptions

1. Task Computation. The computation being performed
. i s a task (or set of tasks) which is repeated periodically.
A set of sensor inputs is gathered & analyzed, and a set
of actuations is produced. All repetitions of a task are mutual-
ly s-independent. The analysis goal is to find: Pr{a task suc-
ceeds in producing an acceptable output, despite the possibili-
ty of hardware or software faults}. [More-interesting task-
computation processes could be considered using techniques
in [9, 161. We do not address timing or performance issues
in this model. See [15] for a performability analysis of fault-
tolerant software techniques.]

2. Software Failure Probability. Software faults exist in
the code (despite rigarous testing). A fault can be activated
by a random input, thus producing an erroneous result. Each
instance of a task receives a different set of inputs which
are mutually s-independent. A software task has a fixed prob-
ability of failure when executed. All instances of a particular
task are mutually s-independent. [We do not assign a failure
rate to the software and thus do not consider reliability-growth
models.]

3. Coincident Software Failures in Different Versions.
If two different software versions fail on the same input,
they either produce similar or diferent results. Similar er-
roneous results are caused by related software faults. Dg-
ferent erroneous results which are simultaneously activated
are caused by unrelated (mutually s-independent in the ter-
minology of [l]) software faults. The sets of related and
of unrelated software faults are mutually s-independent. [We
use the model in [l] for software failures, except that: [l]
assumes related & unrelated faults are mutually exclusive,
whereas they are s-independent here.] [Our treatment of related
& unrelated differs considerably from faults models for s-
correlated failures [5, 10, 121 in which related & unrelated
software failures are not differentiated.]

4. Permanent Hardware Faults. The statistical arrival
(activation) intensity of permanent hardware faults is cons-
tant; ie, it is a homogeneous Poisson process.

5 . Transient Hardware Faults. A transient hardware fault
upsets the software running on the processor+and produces
an erroneous result which is indistinguishable from an input-
activated software error. The lifetime of transient hardware
faults is short compared to the time for a task computation.
Thus a fixed probability is assigned to the occurrence of
a transient hardware fault during a single computation.

6. System Maintenance. The systems are not maintained.
-rainability could be included in the Markov model; we have
chosen not to include it in order to make the comparisons clearer.]

7. Coverage Failure. The fault tolerant system fails if it
is unable to detect and recover automatically from a permanent
hardware fault.

2.3 Notation

x
c coverage
PH

Pv

PRv

Poisson arrival intensity for a permanent hardware
fault to a single processing element

Pr { at least one transient hardware fault occurs during
a single task computation}
Pr { an unrelated software fault is activated dunng a task
computation}, for each version
Pr{a related fault, common to the version pair, is ac-
tivated during a task computation), for each pair of
versions
Pr{a related fault, common to all versions, is activated
during a single task computation}
Pr{decider fails, either by accepting an incorrect result
or by rejecting a correct result}.

P U L L

Po

Other, standard notation is given in “Information for Readers
& Authors” at the rear of each issue.

3. SYSTEM DESCRIPTION

The software project [l] was scheduled & conducted in

1. Initial design - 4 weeks
2. Detailed design - 2 weeks
3. Coding - 3 weeks
4. Unit testing - 1 week
5. Integration testing - 2 weeks
6. 2-Step formal acceptance testing (AT1 & A n) - 2

AT1. Each program was run in a test harness of 4 nominal

AT2. One extra simulation profile, representing an ex-

By the end of the formal acceptance testing phase, 12 of
the 15 programs passed the acceptance test successfully and were
engaged in operational testing for further evaluation. The
average size of these programs was 1564 lines of uncommented
code, or 2558 lines of commented code. The mean fault densi-
ty of the program versions which passed AT1 was 0.48
faults/1000 lines of uncommented code. The mean fault deensi-
ty of the final versions was 0.05 faults/lOOO lines of uncom-
mented code.

6 phases:

weeks

flight simulation profiles

tremely difficult flight situation, was imposed. 4

3.1 NVP Operational Environment

The operational environment for the application was an
airplane-autopilot interacting in a simulated environment. as
shown in figure 1. Three channels of diverse software auton-
omously computed a surface command to guide a simulated air-
craft along its flight path. To ensure that important a m m a d
errors could be detected, several levels of random wind tur-
bulences were superimposed to represent difficult flight d-
tions. The individual commands were recorded, and compprrd
for discrepancies that could indicate the presence of faults.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 08,2021 at 09:59:07 UTC from IEEE Xplore. Restrictions apply.

DUGAN/LYU: SYSTEM-RELIABILITY ANALYSIS OF N-VERSION PROGRAMMING 515

of AT2, more faults would have remained in the program ver-
sions. We were interested in seeing how the remaining faults
would be manifested during the operational testing, and how
they would be tolerated in various NVP configurations.

TABLE 1
Errors in 3-Version Configurations

Mean Occurence Frequency
Version Number of

ID Failures BY Case (IO-*) By Frame (W6)

P 510 51 97
Y 0
E 0
r 0
9 1

Figure 1. 3-Channel Flight Simulation Configuration

This configuration of a 3-channel flight simulation system 6

x consisted of: K

360
0

730

0
0
0
0.1

36
0

13
3 lanes (autonomous software process) of control-law f i 140 14

v 0 0
0 0 t

computation
n 0 0 3 command monitors

1 servo control
1 airplane model
1 turbulence generator.

The lane computations and the command monitors were the ac-
cepted software versions generated by the programming teams.
Each lane of computation monitored, but did not interact with,
the other two lanes. However, no single lane could decide
whether another lane was faulty. A separate servo-control logic
function was required to make that decision. The aircraft
mathematical model provided the dynamic response of current
medium size, commercial transports in the approach/landing
flight phase. The 3 control signals from the autopilot computa-
tion lanes were inputs to 3 elevator servos. The servos were
force-summed at their outputs, so that the mid-value of the 3
inputs became the final elevator command. The Landing
Geometry and Turbulence Generator were models associated
with the Airplane simulator.

In summary, 1 run of flight simulation was characterized
by 5 initial values regarding the landing position of an airplane:

1. initial altitude (about 1500 feet)
2. initial distance (about 52800 feet)
3. initial nose up relative to velocity (range from 0 to 10

4. initial pitch attitude (range from -15 to 15 degrees)
5. vertical velocity for the wind turbulence (0 to 10 feet/s) .

One simulation consisted of about 5280 iterations of lane com-

degrees)

Average 145.1 14.5

0
0
0
0.2

68
0

138
27
0
0
0

21.5

Table 1 shows the software failures encountered in each
single version, while table 2 shows different software error
categories under all combinations of 3-version configurations.
We examine 2 levels of granularity in defining software execu-
tion errors and s-correlated errors: by case or byfiame.

By case (based on lo00 test-cases). If a version failed at any
time in a test case, it was considered failed for the whole case.
If two or more versions failed in the same test case (no mat-
ter at the same time or not), they were said to have coinci-
dent errors for that test case.
Byframe (based on 5 280 920 execution time-frames). Er-
rors were counted only in the time-frame upon which they
manifested themselves. Coincident errors were defined to be
the multiple program versions failing at the same time in the
same test case (with or without the same variables and values).

TABLE 2
Error Characteristics for 3-Version Configurations’

By Case By Frame

Number of Number of
Category cases Frequency cases Frequency

mand computations (50 ms each) for a total landing time of ap- - 163370 0.7426 1160743690 0.999089
F, - 1 error 51930 0.2360 1056010 0.000909

proximately 264 seconds. F? - 2 coincident errors 4440 0.0202 2700 0.000002

3.2 Operational Error Distribution
F3 - 3 coincident errors 260 0.0012 0 0.0
Total 22oooO 1.0000 1161802400 1.000000

During the operational phase, lo00 flight simulations (over
5. lo6 program executions) were conducted. We used the pro-
gram versions which passed the AT1 for study. Our reason was
that had the Acceptance Test not included an extreme situation

’The number of significant figures is not intended to imply any ac-
curacy in the estimates, but to illustrate the arithmetic.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 08,2021 at 09:59:07 UTC from IEEE Xplore. Restrictions apply.

516 IEEE TRANSACTIONS ON RELIABILITY, VOL. 43, NO. 4, 1994 DECEMBER

By case. The mean failure probability for the 1-version (table
1) is 14.5%. For all the 3-version combinations (table 2), the
failure probability is 2.1 % (sum of error categories 3 & 4),
an improvement over the 1-version by a factor of 7.
Byframe. The mean failure probability for the 1-version (table
1) is 27.10-6. For all the 3-version combinations (table 2),
the failure probability is 2 (sum of error categories 3
& 4), an improvement over the 1-version by a factor of 13.

These software failure probability estimates were obtained
by empirical program-execution results. Section 4 derives a
general reliability model for an integrated fault-tolerant system.
We verify our reliability model with the empirical results.

4. MODEL DESCRIPTION

A reliability model of an integrated fault-tolerant system
must include at least 3 considerations:

computation errors,
system structure,
coverage modeling.

We concentrate on the first two, as coverage modeling has been
addressed in detail elsewhere [4].

4.1 Computation Error Model

The task computation process consists of a repeated ex-
ecution of a fault tolerant software component as described in
section 2.2. The software component designed to perform the
task is designed to be fault tolerant. During 1 task-iteration,
2 types of events can interfere with the computation:

the particular set of inputs activates a software fault in at least

a hardware transient fault upsets the computation but does

The combinations of software faults and hardware transients
that can cause an erroneous output for a single computation are
modeled with a fault tree.

1 software-version and/or the decider.

not permanently damage the hardware.

1- I

Figure 2. Fault-Tree Model of Computation Errors in Full-Up
State

Figure 2 shows the fault-tree model for the computation
error process when the system is fully operational. The basic
events are labeled with the symbol which represents the prob-
ability of occurrence; the symbols are defined in table 3.

TABLE 3
Parameterization of Model

By Case (%) By Frame

A. Fault-Tree Basic-Event Probabilities
PV 9.6 300

PRALL 0.03 0.0
P D 0.01 0.1

pRV 0.0 0.6

PH 0.00073 0.0028
B. Markov Model Parameters

x 1.10.~
C 0.999

An erroneous output can result from software failure, hardware
failure, or a combination. The software fails i f

unrelated faults are activated in 2 or 3 versions by the same

a related fault is activated between any 2 or 3 versions, or
a fault in the decider is activated.

The hardware causes a computation error in the resident soft-
ware if a transient fault occurs during a computation. Any com-
bination of hardware & software faults affecting 2 of the 3 ver-
sions leads to an unacceptable output.

If a permanent hardware-fault disables one of the host pro-
cessors, then the system is reconfigured to a simplex system.
In the simplex mode, an unacceptable output results from either
an unrelated software fault activation, or a hardware transient.
Figure 3 shows the fault-tree model for the comnutation-error
process while in the simplex mode.

test case,

ERRONEOUS 0" 'n
Figure 3. Fault-Tree Model of Computation Errors in Simplex

State

4.2 System Structure Model

The longer-term system behavior is affected by the ar-
rival (activation, manifestation) of permanent faults requiring
system reconfiguration to a degraded mode of operation. The
system structure is modeled by a Markov process, where the
Markov states and transitions model the evolution of the system.
Each state in the Markov process represents a particular

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 08,2021 at 09:59:07 UTC from IEEE Xplore. Restrictions apply.

DUGAN/LYU: SYSTEM-RELIABILITY ANALYSIS OF N-VERSION PROGRAMMING

~

51 7

configuration of hardware & software components and thus a
different level of redundancy.

For the NVP-system modeled in this paper, there are 2
operational states and 1 absorbing failure state. The initial state
of the system represents the original system configuration, with
3 software versions hosted on 3 different processors. When one
of the processors experiences a hard fault, the system is recon-
figured to a simplex system, with 1 software version running
on 1 processor.

Figure 4. Markov Model of System Structure

Figure 4 shows the Markov model for this system. The
2 operational states show the HECA & SECA associated with
the system structure. The HECA is the lightly shaded region;
the SECA is the darkly shaded region. The HECA or SECA
covers +\e region of the system affected by faults in that com-
ponent ?or example, HECA covers the software component
since the software component fails if that hardware experiences
a fault. The SECA covers only the software component since
no other components are affected by a fault in thdt component.

The reconfiguration from the TMR-system to a simplex
system is successful with probability c. If the reconfiguration
is unsuccessful, the system fails.

4.3 Combining the Models

For each state in the Markov chain, there is a different
combination of hardware transients and software faults that can
cause an erroneous output. A fault-tree model for each state
captures the probability that 1 computation results in an er-
roneous output.

Notation (for Markov Model)

i
qi
Pi(t)
Q (t)

state in the Markov model
Pr { output error occurs during 1 task-computation}
Pr{system is in state i at time t }
Pr {an unacceptable result is produced at time t} .

The fault-tree model solution produces qi for each i. The
Markov model solution produces Pi (t). The model combines

5. PARAMETERIZATION & RESULTS

This section details the methodology used for estimating
the parameters, and discusses the assumptions. Table 3 sum-
marizes the resulting parameter values.

5.1 Software Parameters

The experimental results from [l] in table 2, were used
to estimate the probabilities associated with the activation of
software faults.

Divide (1) by (2); the result depend>
be used to estimate it.

. on Pv, and thus can

The data from table 2, used 'q (3), yield an estimate of
Pv = 0.096 for the probability . Activation of an unrelated
fault in a 3-version configuration. ble 4 compares the observ-
ed values with the probability of activation of 1, 2, 3 faults as
predicted by a model assuming s-independence between
versions.

TABLE 4
Comparison of s-Independent Model with Observed Data'

[N = number of errors activated]

By Frame By Case

Independent Observed Independent Observed
N Model Frequency Model Frequency

0 0.7393 0.1426 0.999090 G 7426
1 0.2350 0.2360 0.000909 0.2360
2 0.0249 0.0202 3.10.' 2.10-6
3 O.OOO9 0.0012 3.10-1' 0.0

By case. The observed probability of 2 simultaneous errors
is lower than predicted by the s-independent model, while
the observed probability of 3 simultaneous errors is higher
than predicted. For this set of data we conclude that PRv =
0; instead we derive an estimate for PRALL. Since PRv=O,

these two measures to produce e(;) . yielding an estimate of PRALL = 0.03 % .

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 08,2021 at 09:59:07 UTC from IEEE Xplore. Restrictions apply.

518

Byframe. The byframe data in table 2, put into (3), estimates
Pv = 0.03%. For these data, when the failure probabilities
which are predicted by the s-independent model are compared
to the actual data in table 4, the observed probability of 2 er-
rors is 10 times the predicted probability. There were no cases
for which all three programs produced erroneous results. Thus,
we estimate PWL = 0 and derive an estimate for PRv. Let
2 errors be produced; this could be caused by either the activa-
tion of 2 simultanmus unrelated faults, or by the activation of
a related fault. Also, it depends on the non-failure of the re-
maining version, either by unrelated or related fault. Then, con-
sider the 3 combinations of 2 failures which can occur.

lEEE TRANSACTIONS ON RELIABILITY, VOL 43, NO. 4, 1994 DECEMBER

Eq (3) & (5) are used to estimate PRv = 6 .

(5)

4

N W FAILS $4

2F-l
Figure 5. Fault-Tree Model of NVP Software System

For both the by case and byfiume scenarios, the parameters
derived from the data were applied to the fault-tree model in figure
5.

By case. The fault-tree model predicts a failure probability of
0.026, while the observed failure probability was 0.0214.
Byframe. The fault-tree model predicts a failure probability
of 2.07- lo6, while the observed failure probability was
2.3010". 4

In the model solution section 5.3, these parameters are combined
with hardware parameters to predict the NVP system reliability.

2. The lifetime of a transient fault is 1 s.
4

Typical permanent-failure rates for processors are in the
10-~/hour range, with transients perhaps 10 times as large. n u s ,
for the Markov model, we use:

3. c = 0.999; a fairly typical value.

Ap = 10-5/hour,

A, = 104/hour.

By case. A typical test case has 5280 frames, each frame being
50 ms; so a typical computation executes for 264 s. The prob-
ability that a hardware transient occurs is:

By frame. The probability that a transient occurs is:

1 - exp(-A,.0.05 s) = 1.4.10-9. (7)

From assumption #2, a transient can affect as many as 20 time
frames. We thus take the probability of a transient to be 20 times
the value in (7): 2.8.10-*.

5.3 Model Solution

The full model, including the two fault trees (figures 2 &
3) and the Markov model (figure 4) were solved using the
parameters in table 3. The results are shown in figures 6 & 7.

5.2 Hardware Parameters

Assumptions

1. [we assume that] A hardware transient that occurs
anywhere during the execution of a task disrupts the entire com-
putation running on the host.

0.04s ,
A

A 1 0.04
O.OU t

Figure 6. Probability of Producing an Unacceptable Result
[during 1 test-case: by case data]

By case. Figure 6 shows the time-dependent probability that
the NVP system produces an unacceptable result. The length
of a typical test case is 264 s (4.4 minutes). Initially, in the
full-up state, the probability of an unacceptable result is 2.6%,
increasing to 4.5% after lo00 hours, as the probability of
operating in the simplex state or in the failure state increases.
The probability of producing an unacceptable result while in

T

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 08,2021 at 09:59:07 UTC from IEEE Xplore. Restrictions apply.

DUGAN/LYU: SYSTEM-RELIABILITY ANALYSIS O F N-VERSION PROGRAMMING 519

approach for uniform treatment of hardware and software faults in real-
time applications”, IEEE Trans. Computers, vol 38, 1989 May, pp

[7] J.H. Lala, L.S. Alger, “Hardware and software fault tolerance: A unified
architectural approach”, Proc. IEEE Int ’I Symp. Fault-Tolerant Com-
puting FTCS-IS, 1988 Jun, pp 240-245.

[8] J-C. Laprie, J. Arlat, C. Beounes, K. Kanoun, “Definition and analysis
of hardware- and software- fault-tolerant architectures”, IEEE Computer,

[9] J-C. Laprie, K. Kanoun, “X-Ware reliability and availability modeling”,
IEEE Trans. Sojiware Engineering, vol 19, 1992 Feb, pp 130-147.

[IO] B. Littlewood, D.R. Miller, “Theoretical basis for the analysis of
multiversion software subject to coincident errors”, IEEE Trans. So#-
ware Engineering, vol 15, 1989 Dec, pp 1596-1614,

[l l] M.R. Lyu, Y-T. He, “Improving the N-version programming process
through the evolution of a design paradigm”, IEEE Trans. Reliability,
vol 42, 1993 Jun, pp 179-189.

626-636.

VOI 23, 1990 JuI, pp 39-51.

Figure 7. Probability of Producing an Unacceptable Result [121 V.F. Nicola, A. ~ o y a l , “Modeling of correlated failures and communi-
ty error recovery in multiversion software”, IEEE Tram. Sojiware
Enaineerinf. vol 16. 1990 Mar. [during 1 time-frame: by frame data]

- .
[I31 B. Randell, “System structure for software fault tolerance”, IEEE T r m .

Sojiware Engineering, vol SE-1, 1975 Jun, pp 220-232.
[14] R. Sahner, K.S. Trivedi, “Reliability modeling using SHARPE”, IEEE

Truns. Reliability, vol R-36, 1987 Jun, pp 186-193.

fault-tolerant software”, IEEE Trans. Reliability, vol 42, 1993 Jun, pp

the simplex mode is 9.6%; and the probability of producing

100%.
an in the absorbing state is [15] A,T, Tai, J,F, Meyer, A, Avidenis, “perfomability of

Byframe. Figure 7 shows the time dependent probability that 227-237.
the NVP system produces an unacceptable result. Initially,

is 2.2.10-6, increasing by a factor of 3000 to 6800.10-6 at
1000 hours. The probability of producing an unacceptable
result while in the simplex mode is 300-

1161 L. Wei, A ModelBared Study o f w o w Infruence on Compdng System
in the full-up state, the probability of an unacceptable result Dependability, PhD thesis, 1991; University of Michigan.

AUTHORS

Dr. Joanne Bechta Dugan; Dept. of Electrical Engineering; Thornton Hall;
University of Virginia; Charlottesville, Virginia 22903-2442 USA.
Internet (e-mail): jbd@Virginia.edu

Joanne Bechta Dugan was awarded the BA (1980) in Mathematics and
Computer Science from La Salle University, Philadelphia, and the MS (1982)
and P ~ D (1984) in ~lectrical Engineering from Duke University, Durham. Dr.
Dugan is Associate Professor of Electrical Engineering at the University of

ACKNOWLEDGMENT

This work was partially funded by the us NASA AMES
Research Center under grant number NCA2-617. The models
were solved using SHARPE 1141. ”

REFERENCES

J. Arlat, K. Kanoun, J-C. Laprie, “Dependability modeling and evalua-
tion of software fault-tolerant systems”, IEEE Trans. Computers, vol
39, 1990 Apr, pp 504-513.
A. AviZienis, “The N-version approach to fault-tolerant software”, IEEE
Trans. Sofhvare Engineering, vol SE-11, 1985 Dec, pp 1491-1501.
J.B. Dugan, R. Van Buren, “Reliability evaluation of fly-by-wire com-
puter systems”, J. Systems and Sojiware, (to appear).
J.B. Dugan, K.S. Trivedi, “Coverage mode@ for dependability analysis
of fault-tolerant systems”, IEEE T r m . Computers, vol38, nun 6, 1989,

D.E. Eckhardt, L.D. Lee, “Theoretical basis for the analysis of multiver-
sion software subject to coincident errors”, IEEE Trans. Sojiware
Engineering, vol SE-11, 1985 Dec, pp 1511-1517.
K.H. Kim, H.O. Welch, “Distributed execution of recovery blocks: An

pp 775-787.

Virginia, and was an Associate Professor of Computer science at Duke Univer-
sity and Visiting Scientist at the Research Triangle Institute. She has perform-
ed & directed research on the development & application of techniques for
analysis of computer systems which are designed to tolerate hardware & soft-
ware faults. Her research interests thus include hardware & software reliabili-
ty engineering; fault tolerant computing; and mathematical modeling using
dynamic fault-trees, Markov models, Petri nets, and simulation. Dr. Dugan
is an Associate Editor of the IEEE Trans. Reliability, a Senior Member of the
IEEE, and a member of ACM, Eta Kappa Nu, and Phi Beta Kappa.

Dr. Michael R. Lyu; Bell Communications Research; 445 South St; Momstown,
New Jersey 07960 USA.
Internet (e-mail): lyu@bellcore.com

1994 Dec, p 534.
Michael R. Lyu: For biography, see IEEE Trans. Reliability, vol 43,

Manuscript received 1994 May 15.

IEEE Log Number 94-06578 4TR b

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 08,2021 at 09:59:07 UTC from IEEE Xplore. Restrictions apply.

mailto:jbd@Virginia.edu
mailto:lyu@bellcore.com

