
Front. Comput. Sci., 2013, 7(3): 431–445

DOI 10.1007/s11704-013-2193-4

An online service-oriented performance profiling tool for cloud
computing systems

Haibo MI 1, Huaimin WANG1, Yangfan ZHOU2, Michael Rung-Tsong LYU2,
Hua CAI3, Gang YIN1

1 National Lab for Parallel & Distributed Processing, National University of Defense Technology, Changsha 410073, China

2 Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518000, China

3 Computing Platform, Alibaba Cloud Computing Company, Hangzhou 310000, China

c© Higher Education Press and Springer-Verlag Berlin Heidelberg 2013

Abstract The growing scale and complexity of compo-

nent interactions in cloud computing systems post great chal-

lenges for operators to understand the characteristics of sys-

tem performance. Profiling has long been proved to be an

effective approach to performance analysis; however, exist-

ing approaches confront new challenges that emerge in cloud

computing systems. First, the efficiency of the profiling be-

comes of critical concern; second, service-oriented profil-

ing should be considered to support separation-of-concerns

performance analysis. To address the above issues, in this

paper, we present P-Tracer, an online performance profil-

ing tool specifically tailored for cloud computing systems.

P-Tracer constructs a specific search engine that proactively

processes performance logs and generates a particular index

for fast queries; second, for each service, P-Tracer retrieves a

statistical insight of performance characteristics from multi-

dimensions and provides operators with a suite of web-based

interfaces to query the critical information. We evaluate P-

Tracer in the aspects of tracing overheads, data preprocess-

ing scalability and querying efficiency. Three real-world case

studies that happened in Alibaba cloud computing platform

demonstrate that P-Tracer can help operators understand soft-

ware behaviors and localize the primary causes of perfor-

mance anomalies effectively and efficiently.

Received June 1, 2012; accepted November 3, 2012

E-mail: rainmhb@gmail.com

Keywords cloud computing, performance profiling, per-

formance anomaly, visual analytics

1 Introduction

In recent years, cloud computing has surged in popularity

in software industry to deliver Internet-based services. The

growing scale and complexity of typical cloud computing

systems post great challenges for system operators to under-

stand system performance and diagnose problems. Profiling

has long been proved to be an effective approach to software

analysis [1]. Although, many profiling tools for stand-alone

softwares [2], high-performance computing systems [3] and

distributed systems [4] have been proposed recently, ranging

from profiling kernel functions [5] to application-level meth-

ods [4], an urgent and critical concern is whether these ex-

isting tools can be applicable to cloud computing systems,

i.e., whether there are emerging design requirements of per-

formance profiling tools for cloud computing systems.

To answer this problem, we interview over 30 operators

in Alibaba Cloud Computing Company1), which designs and

maintains a data-centric cloud computing service platform to

the public. Their experiences reveal that many new special

design requirements of performance profiling for large-scale

cloud computing systems. We summarize them as the follow-

ing two aspects.

1) Alibaba Cloud Computing Company is a subsidiary of Alibaba Company, one of the largest e-commerce companies in the world. Our work is carried out
in Alibaba Cloud Computing Company.

432 Front. Comput. Sci., 2013, 7(3): 431–445

First, the efficiency of the performance profiling tool is of

critical concern in cloud computing systems. A cloud com-

puting system requires providing non-stop services to a huge

number of concurrent users. For a typical service, thousands

of requests are served every second, which can generate mas-

sive performance data. For example, more than 12 million

lines of performance logs can be generated in a 350-host

cloud platform in Alibaba Cloud Computing Company in an

hour. Moreover, the huge volume of performance logs is dis-

tributed across a large number of cloud hosts. The perfor-

mance profiling tool should therefore handle such massive,

distributed logs efficiently. In particular, when an operator

analyzes a performance problem, the tool should retrieve and

combine the performance logs of interest (e.g., those for a

type of service in a given time period) to generate a report in

a timely manner.

Second, to cope with the specifics of cloud computing sys-

tems, more comprehensive performance information should

be captured, organized, and visualized by the profiling tool.

A typical cloud computing system provides multiple appli-

cations to the public simultaneously. Each application (e.g.,

mail application) will handle user requests of many differ-

ent types, each of which conducts a particular service (e.g.,

sending an email). The internal components of the systems

can be simultaneously accessed by user requests of differ-

ent services. Furthermore, requests to the same service may

involve different call trees. Different call trees have differ-

ent response latencies. For example, consider two SendMail

requests: one sends an email with an attachment and the

other sends an email without. The two requests, although both

being SendMail requests, have different response latencies.

Hence, service-oriented profiling should be considered, so

as to support separation-of-concerns performance analysis. In

other words, requests should be analyzed separately accord-

ing to their service types and call trees. These can greatly

facilitate operators to understand system behavior or conduct

a quick diagnosis of performance problems.

Unfortunately, these emerging requirements towards a

handy performance profiling tool for large-scale cloud com-

puting systems are not the focus of previous profiling ap-

proaches. Those approaches basically target to aggregated

functions profiling [6] or system resources profiling [7],

rather than the behavior of services. Furthermore, in order

to help the operators timely understand the behavior of the

large-scale cloud computing systems, a profiling tool needs

to provide the functionality of real-time statistical analysis.

Since it works on the massive tracing data, query efficiency

is one of key factors for a profiling tool to be utilized in such

production system. However, few approaches (e.g., [4]) con-

sider the query efficiency since they do not need to handle so

large volumes of the distributed logs.

Our work aim at advancing the current state-of-the-art of

performance profiling for large-scale cloud computing sys-

tems. In this paper, we present P-Tracer, an online perfor-

mance profiling tool, which is specifically tailored for large-

scale cloud computing systems. P-Tracer relies on the end-

to-end request tracing technique to record the execution in-

formation of individual requests. Then, P-Tracer constructs a

specific search engine that adopts a proactive way to process

tracing logs and generates a particular index for fast queries;

third, for each service, P-Tracer adopts a statistical insight

to its characteristic of performance from multi-dimensions

and provides operators with a suite of web-based interfaces

to query such information. It helps them quickly and intu-

itively understand the system behavior. Currently, P-Tracer

has been successfully launched in Alibaba Cloud Computing

Company for performance profiling in its production clusters.

The contributions of this paper are as follows:

• We propose a profiling tool that can help operators con-

duct real-time performance analysis in large-scale cloud

comouting systems. Compared to existing approaches,

the tool can precisely trace requests without being af-

fected by clock drifts; furthermore, the tool designs a

specific index to help operators conduct statistical anal-

ysis more efficiently.

• We report three real-world cases in which P-Tracer

helps operators conduct performance profiling and lo-

calize the primary causes of performance anomalies to

demonstrate P-Tracer effectiveness.

This paper is organized as follows. In Section 2, we briefly

introduce end-to-end request tracing technologies and our

clock drifts avoided tracing approach. Section 3 discusses the

design details of the search engine. Section 4presents visual

dimensions of statistical information of system performance.

In Section 5, we evaluate P-Tracer in the aspects of over-

heads, data preprocessing scalability and querying efficiency.

Section 6 reports three real-world cases to validate the effec-

tiveness of P-Tracer. Section 7 compares our approach with

the related work. Section 8 provides some further discussions

and concludes this paper.

2 Background

Cloud computing systems generally consist of a lot of soft-

Haibo Mi et al. An online service-oriented performance profiling tool for cloud computing systems 433

ware components that can be assembled into multiple types

of services, serving tremendous user requests. Operators typi-

cally have much difficulty in knowing the system behavior for

a given service. Examples include: 1) where do the user re-

quests spend most of their time? 2) which types of execution

paths are the critical paths that are most frequently passed

through? 3) when the system performance changes beyond

expectation, which components might be the primary causes

of the problem? The end-to-end request tracing technology

is effective for operators to understand the casual relation-

ships of component invocations. It can record the execution

information of individual requests, for example, the entering

and exiting time when individual requests go through service

components. This information can be utilized to profile ser-

vices. Hence, our profiling tool relies on this technology to

profile system performance.

2.1 End-to-end request tracing technology

Basically, there are two kinds of instrumentation mech-

anisms, white-box-based mechanism and black-box-based

mechanism. A white-box-based mechanism (e.g., [4,8,9]) as-

sumes source codes are available and utilizes explicit global

identifiers to correlate runtime events; while a black-box-

based mechanism (e.g., [10–14]) assumes no knowledge of

the source code and adopts probabilistic correlation methods

or statistical regression techniques to infer the casual paths.

Since the source codes of services are generally available in

typical production cloud systems, in this paper, we utilize

an annotation-based tracing mechanism to capture the system

activities of a request when it is processed in the system.

Figure 1 shows an instrumentation example of our target

system. The interface of ENABLE_TRACE() invoked in

main is engaged to activate a tracing process, which gen-

erates a global identifier for the request. The interface of

TRACE_LOG() is used to record contextual information into

logs when instrumented methods are invoked.

Fig. 1 An example of explicit instrumentation.

2.2 Clock drifts avoided request tracing

In large-scale cloud computing systems, a request may span

many hosts. The sequence of events (i.e., method invocations)

along one execution is recorded into logs that are distributed

across the system. The distributed tracing logs could be uti-

lized to profile system performance.

The upper half of Fig. 2 shows an process in which a re-

quest spans three hosts and invokes three instrumented meth-

ods. When a user request is tagged with a global identifier

(GID) that is randomly generated, all instrumented methods

through which it passes will record the contextual informa-

tion into local log files, as shown in the lower half of Fig. 2.

When the invocation of the instrumented method starts, a line

of log is recorded that sequentially contains the current time

stamp, log level, process number, line number of statement

generating the log, GID for the request, GID for the invoked

method, name of the invoked method, and flag signifying the

Fig. 2 A request passes through three instrumented methods which are in different hosts. Instrumentation points record contextual information into
logs. These logs contain the current time stamp, log level, process number, line number of statement generating the log, GID for the request, GID for the
invoked method, name of the invoked method, and a flag signifying the start or end of the invocation. When the request spans between hosts, P-Tracer
assigns new GIDs for methods in remote hosts. The GID of the first invoked method is initially set identical to the GID of the request (i.e., 001).

434 Front. Comput. Sci., 2013, 7(3): 431–445

start of the invocation, as shown in the first line of three local

log files in Fig. 2. When the invocation ends, another line of

log will be recorded. The content is almost the same as that

of the first line except that the flag changes to signify the end

of the invocation, as shown in the last line of the three local

log files in Fig. 2.

Former research investigations (e.g., Stardust [4]) always

utilize one global identifier to mark a request and construct

the call relationships of instrumented methods depending on

the sorted time-stamps in tracing logs. However, this ap-

proach does not work in cloud computing systems because

of the clock drifts among the hosts. Although the clocks of

the hosts have been synchronized by Network Time Proto-

col [15], there are still millisecond-level deviations between

the clocks. Figure 3 shows an example of the clock drifts in

a 100-host cluster. From the figure, we select one host ran-

domly and consider the local clock of this host as the stan-

dard time. The biggest difference is larger than 20 ms. Be-

cause requests may span many hosts and the time-stamps in

logs are recorded according to the local clocks, it may lead to

the disorder of time-stamps when dispersed logs are merged

together. For instance, the start time-stamp of the callee in

one host is earlier than the start time-stamp of the caller in

another host.

Fig. 3 The clock drifts of a cluster with 100 hosts

In order to precisely trace requests without being affected

by the clock drifts, for a sampled request, besides the GID of

the request, P-Tracer also assigns GIDs to its invoked meth-

ods. When a method in host A calls another method in host

B, besides passing the request GID to the callee, the caller

also generates and sends a new GID for the callee. Then, P-

Tracer records the GID relationship between the caller and

callee into the tracing log to explicitly mark the original and

new value of the method GIDs. To reduce the overheads of

generating GID, invoked methods within the same host share

the same identifiers.

For example, when the instrumented MethodA makes an

RPC call for the instrumented MethodB, it generates a new

GID (i.e., 007) and stores the change process into the trac-

ing log, as shown in the second line of the lower left part in

Fig. 2. Relying on the parent-child relationship of the method

GIDs within one request, P-Tracer can precisely retrieve its

call tree.

3 Constructing the search engine

In order to online provide operators with the statistical infor-

mation of services , we need to construct a specific search

engine to proactively process the execution paths. The chal-

lenge is how to effectively merge distributed massive tracing

logs and generate a suitable index.

In this section, we discuss the design details of the search

engine. As shown in Fig. 4, our approach contains four parts:

1) extract the key parameters from the raw tracing logs and

collect the refined logs from production and testing clusters

to an analysis cluster; 2) retrieve call trees of requests from

the refined tracing logs, and classify structure-identical call

trees together; 3) generate the index for them; and 4) provide

operators with web-based interfaces to perform online query.

Fig. 4 The structure of the search engine

3.1 Collecting

A log collecting daemon is deployed for each host in pro-

duction and testing clusters. It collects raw tracing logs at a

controlled time window. In order to reduce the overheads of

the network traffic, the daemon does not send the raw logs

to the analysis cluster directly, but first extracts the primary

parameters from them.

Haibo Mi et al. An online service-oriented performance profiling tool for cloud computing systems 435

Figure 5 shows an example of the extracting process in

one host. First, the selected lines (i.e., the grey parts) in the

desired time window are extracted by the daemon from the

raw log; then the daemon filters out all redundancy informa-

tion (e.g., process number and log level) and puts the refined

lines into one temporary file (called refined file). Note that

the daemon appends the host address to the refined lines in

order to keep the physical information. Finally, the daemon

compresses the file and sends it to the aggregator daemon in

the analysis cluster. After refining, the volumes of network

transmission are decreased by 90%.

Fig. 5 An example of refining a raw log in one host. All related lines un-
der the desired time window (i.e., the grey parts) are merged into a refined
temporary file in ascending order of time stamps.

3.2 Parsing

After collecting the refined logs together, the aggregator dae-

mon deployed on the analysis cluster dump them into the

distributed file system. Then, the aggregator daemon begins

to correlate tracing logs to call trees of requests and classify

them. In order to make the preprocessing scalable to the mas-

sive volumes of tracing logs, a customized map-reduce pro-

cess is [16] designed. First, map tasks assign correlated trac-

ing logs that belong to the same requests to corresponding

reduce tasks. Second, reduce tasks generate and classify re-

quests.

The map task sends the tracing logs to the reducers, with

a guarantee that the logs belonging to the same request are

sent to the same reducer. This ensures that the entire call tree

of each request can be worked out by only one reducer. First,

each map task is assigned a portion of tracing logs (called

a split) from the distributed file system. Then, it parses the

split into key/value pairs (called records). The key of a record

is the GID of the request. The value contains two kinds of

formats according to the log formats. The first one is a five-

tuple. Its items are sequentially the time stamp, method GID,

method name, start/end flag and host address. The second one

is a three-tuple that is composed of the time stamp, GID of

caller and GID of callee. Finally, the map task uses a modular

arithmetic to decide which reduce task the record should be

assigned to. Specifically, suppose the number of the reduce

tasks is m. The map task assigns the log entry to the ith re-

ducer, where i = (k mod m)+ 1 and mod denotes the modular

arithmetic.

The reduce task first retrieves call trees of individual re-

quests from those records and generates the corresponding

call sequences. It then classifies the requests into different

categories according to their call sequences such that the

requests within one category bear the same call sequence.

The call sequences are constructed by adopting a depth-first

traversal of call trees. Through concatenating the method

name and depth of each node of a call tree, we can get a string

representation. The string representation is the signature of

the call tree and its corresponding call sequences. Using the

logs in Fig.2, Fig. 6(a) plots a call tree and its correspond-

ing signature where X is an abbreviation for MethodX. With-

out adding the depths of the nodes, different types of the call

trees may generate the same signature. For instance, Fig. 6(b)

plots another type of the call tree and its corresponding signa-

ture. If removing the depths of the nodes, the two types of the

call trees (shown in Fig. 6) will generate the same signature

〈ABC〉.

Fig. 6 Examples of generating signatures from call trees. Note that without
the depth information, the same signature will be constructed for two types
of call trees. (a) Example 1; (b) Example 2

3.3 Indexing

In order to support operators to timely understand the behav-

ior of the system which serves large amounts of user requests,

P-Tracer needs to provide the functionality of real-time statis-

tical analysis. Since it works on the massive tracing data, for

efficiency considerations, P-Tracer constructs a specific index

of categories for fast access. The categories are the output of

the map-reduce procedure. Requests within the one category

436 Front. Comput. Sci., 2013, 7(3): 431–445

belong to the same service and share the same call sequence.

With this index, P-Tracer can help operators conduct statisti-

cal analysis more efficiently.

Recall that each type of call trees has a unique signature.

For each time window of log collection, all kinds of signa-

tures are merged together and stored into a meta file. The

call sequences with the same signature (i.e., within the same

category) are kept into one data file. Figure 7 shows an ex-

ample of the structures of a meta file and three data files. S X

in the meta file is an abbreviation for the value of signature

X. T X in the data files is the time stamps of requests when

they enter the system. Elements in one call sequence are kept

sequentially as a row of one data file. LX and HX denote the

response latency and host address of the invoked method re-

spectively. Meta and data files are stored in the distributed file

system of the analysis cluster.

Fig. 7 The structure of an index

3.4 Querying

Finally, the search engine provides the operators with web-

based interfaces to facilitate the query operations. It not only

supports the query of statistic information for a time window

(e.g., types of the call sequences and the latency distribu-

tion), but also allows the operators to compare performance

changes between any two time periods. It is quite useful for

the operators to find differences of the system performance

between two workloads. The result is represented in a user-

friendly way, which will be introduced in the next section in

detail.

4 Visualization for performance profiling

P-Tracer offers multi-dimensional statistical information to

help operators deeply understand the system performance.

For space consideration, we introduce some typical metrics

which are summarized in Table 1. Note that all figures are

drawn according to the ListMail service of the Aliyun mail

application. Due to the confidentiality agreement with Al-

ibaba Cloud Computing Company, call trees in the figures

have been simplified and all real method names are also re-

placed.

P-Tracer provides operators with web-based interfaces to

construct ad hoc queries, which makes it easy to access and

retrieve information from the search engine. Figure 8 dis-

plays the primary interfaces and parts of results that match

the query parameters. Additionally, the operators can modify

any of the parameters (e.g., filter out requests with latencies

smaller than 100 milliseconds) of the current query to create

a detailed profile view.

4.1 Call tree characteristics

4.1.1 Call tree overviews

In cloud computing systems, for a kind of service, it will in-

volve thousands of requests per second that may take different

types of call trees. Different call trees imply different seman-

tics. For example, two types of call trees can be constructed

depending on whether the required file is in the cache or

Table 1 Summary of the dimensions of statistical analysis

Category Metric Description Example

Call tree characteristics Overviews of call trees Type list of call trees for one kind of service in a desired time window,
including the request count in each type, frequency and average latency
for each type

Figure 8

Statistics of a particular type of call
tree

Structure of a call tree as well as statistics of each node in the call tree Figure 9

Structure comparison between call
trees

Highlighting the differences with two call trees Figure 10

Temporal and spatial char-
acteristics

Histogram of request latencies Latencies distribution of requests with the same type of call tree Figure 8

Variation tendency of request laten-
cies

Trend of latency change for a particular type of call trees Figure 11

Comparison characteristic Overall comparison Overall change for a kind of service between two data sets, such as the
types of call trees, latency deviation

Figure 12

Detailed comparison Latency deviation of a particular type of call tree between two data sets Figure 13

Haibo Mi et al. An online service-oriented performance profiling tool for cloud computing systems 437

not. P-Tracer allows the operators to query the statis-

tical information of the overall call trees for one kind

of service in a desired time window. The left part of

Fig. 8 shows a query result for the ListMail service, which

includes the statistical information about each type of the call

tree, such as the request count in each type, frequency, and

average latency. The types are listed in the descending or-

der of frequency. From this figure, operators can easily ob-

serve which types of call trees are the critical paths. Ideally,

requests within the same type of call tree should have the

approximate latencies; however, many factors may cause la-

tency fluctuation. The types in which latencies of requests

are overly deviated are defined to be anomalous. We utilize

the measure of coefficient of variation (by default, the thresh-

old is set to be 1) [17] to pick anomalous types and highlight

them. As shown in the left part of Fig. 8, there are two anoma-

lous types (i.e., type C and type E) that are labeled in dark

background.

4.1.2 Statistics of a particular type of call tree

When operators click on a particular type of call tree, P-

Tracer not only visualizes its structure, but also shows sta-

tistical information of each node in the call tree, including

maximum, minimum, average latencies and the ratio of the

average latency of the node to that of the call tree. The la-

tency of the root node is defined as the latency of the entire

call tree. The latency ratios of nodes in one call tree are plot-

ted as swimlanes, which helps operators observe statistical

time consumption in every part of invocation and provides an

intuitive way of understanding the bottlenecks of the services,

as shown in the right part of Fig. 9.

Fig. 8 The main page of P-Tracer contains the primary interfaces to let operators query what they are interested in. Operators can query a
specific metric within a desired time window. It also supplies links for operators to modify parameters of the current query, such as filtering out
requests with latencies smaller than 100 ms

Fig. 9 Structure and statistical information for a particular type of call tree

4.1.3 Structure comparison between call trees

P-Tracer provides operators with an interface to distinguish

structure differences between call trees. For example, Fig.

10 shows a comparison of two call trees for the ListMail

service. We can see the first call tree has two more RPC call Fig. 10 Comparison of two types of call trees

438 Front. Comput. Sci., 2013, 7(3): 431–445

processes than the second one. Through comparing the call

trees, operators can learn the differences between execution

paths with finer granularities.

4.2 Temporal and spatial characteristics

Apart from call tree characteristics, P-Tracer provides opera-

tors to analyze temporal and spatial characteristics of requests

to help them better understand the system performance.

4.2.1 Latency distribution

P-Tracer plots a latency histogram of requests that share the

same type of call tree in a desired time window, which allows

operators to quantify the latency distribution in a finer granu-

larity. The horizontal axes are the latency bins and the vertical

axis represents the request count in each bin. The right part

in Fig. 8 shows an example of the latency histogram of type

F. We can see that most latencies aggregate into the former 5

bins.

4.2.2 Latency variation tendency

P-Tracer provides the operators to observe the latency varia-

tion tendency of requests (i.e., the root nodes of the call trees)

as well as invoked methods (i.e., the son nodes of call trees)

in a desired time window. It is different to performance coun-

ters [18] that show the changes of a given metric as a function

of time; however, P-Tracer could differentiate the requests to

the same service base on the types of call trees. Figure 11

plots the latency variation tendency of requests in the abnor-

mal type E. The horizontal axis is the time tick and the ver-

tical axis is the average latency of requests within the same

time tick. It shows the latency of first time tick increases by

nearly 30% comparing with those of other ticks, which may

push operators to analyze why this happens.

4.3 Performance comparison

Next, P-Tracer allows the operators to compare two groups

of tracing data and analyze the root cause of performance

changes. It is quite helpful when they need to detect why the

performance of the systems with two versions is different un-

der the same load.

4.3.1 Overall comparison

Given a kind of service, P-Tracer visualizes the total aver-

age latencies for two datasets as well as the average latencies

for particular types of call trees. Figure 12 shows the over-

all comparison of two datasets for the ListMail service. Both

datasets are composed of the tracing logs for two days. On the

horizontal axis, each tick represents the number of requests

with the same type of call tree. The vertical axis represents

the latency. From the figure, we can see that the average la-

tencies of the 5th type in both data sets are larger than those

corresponding total average latencies by nearly 30%, which

means the fifth type of call trees is perhaps a bottleneck for

the ListMail service. Furthermore, the average latency of the

5th type in the second dataset is larger than that in the first

dataset by 25%. This detailed information could help opera-

tors localize the abnormal types which cause the performance

changes.

4.3.2 Detailed comparison

For a suspicious type of call tree, P-Tracer further calculates

the statistical information in two datasets respectively and

Fig. 11 Evolution of the average latency of requests in the type E along the time proceeding

Haibo Mi et al. An online service-oriented performance profiling tool for cloud computing systems 439

Fig. 12 Overall comparison of two data sets for the ListMail service, which visualizes total average latencies for two datasets as well as
average latencies for particular types of call trees.

then compares the latency deviations between the same

nodes. In order to identify which methods are the causes of

performance changes, for each method, we apply the standard

Mann-Whitney U test [19] to quantify the difference between

the two datasets. A method is defined to be anomalous if the

difference is calculated to be statistically significant. Figure

13 shows the detailed comparison of the fifth type in Fig.

12. The left is the structure of this type of call tree and the

right shows the changes of the average latency for each node.

The latency ratios in two datasets are shown in the form of

swimlanes. From the figure, we can see that the last method

highlighted in the last line is the anomalous one, which is the

primary cause of the performance change.

Fig. 13 Detailed comparison of the same type of call tree in two datasets

5 Evaluation

P-Tracer has been successfully applied in Alibaba Cloud

Computing Company to conduct online performance profil-

ing in both production clusters and testing clusters. The scales

of clusters range from 40 hosts to 350 hosts. These clusters

are under different load conditions. All clusters are equipped

with the Alibaba cloud computing platform, which contains

a series of service components, such as distributed scheduler,

storage, communication, monitor. There are about one hun-

dred instrumented points in the systems. All the tracing logs

from those clusters are dumped into a 10-host analysis clus-

ter at every controlled time window (1 h by default). For each

cluster, P-Tracer creates an index and adopts an independent

map-reduce procedure to preprocess its tracing logs. All in-

dices together with the retrieved call sequences are imported

into the distributed file system of the analysis cluster. In this

section, we evaluate P-Tracer in the aspects of tracing over-

heads, data preprocessing scalability and query efficiency.

5.1 Evaluation of tracing overheads

As the request tracing process will inevitably cause distur-

bance to the target systems; in this section, we first evaluate

the extra overheads that P-Tracer brings to systems. Figure

14 shows the extra overheads to the CPU usage that P-Tracer

causes under the conditions of different sample rates when

tracing requests. The horizontal axis represents the sample

rate and the vertical axis denotes the CPU overhead.

Fig. 14 Extra overheads brought by the request tracing process

In total, we adopt eight kinds of sample rates (from trac-

ing per request to tracing one request on every 500 requests).

As shown in the figure, the overheads decrease as the sam-

ple rate decreases in the three clusters with different scales.

Meanwhile, we can see that the larger the system scale in-

creases, the smaller the overheads are caused. P-Tracer gen-

erates on average less than 1.7% CPU overheads to the 40-

host cluster. When the scale of the cluster increases to 100

440 Front. Comput. Sci., 2013, 7(3): 431–445

hosts, the overheads will decrease below 0.7%, and P-Tracer

brings negligible overheads to the 350-host cluster. It demon-

strates the effectiveness of such a request tracing mechanism.

In the production environment, the default sampling policy

for tracing in the clusters is at 1 out of 200 requests.

5.2 Evaluation of data preprocessing scalability

The customized map-reduce procedure is designed to guar-

antee the scalability of the tracing data preprocessing step.

Figure 15 plots the computation time of the map-reduce pro-

cedure when processing different volumes of tracing logs.

We can see that the computational time is linearly-related

to the data volume. This is further confirmed by a regres-

sion analysis on the data, which finds that the linear depen-

dency between the computational time and the data volume

is around 0.93. This shows the scalability of the customized

map-reduce procedure for the massive tracing data prepro-

cessing. Actually, it takes less than 340 seconds to process

the 240 million lines (about 60GB) of tracing logs in our ex-

periment.

Fig. 15 Scalability of the map-reduce based tracing logs preprocess

5.3 Evaluation of querying efficiency

Tremendous user requests are simultaneously served per sec-

ond in the cloud computing environment; hence, P-Tracer

needs to provide the operators with the functionality of sta-

tistical analysis to understand system behaviors. Query ef-

ficiency is one of key factors for P-Tracer to be utilized in

such production system and the query index is one of the core

mechanisms to support the real-time profiling in the environ-

ment of massive requests. In order to highlight the engineer-

ing merit of the index, we evaluate the query efficiency of

P-Tracer with and without the index. The experiment is to

calculate the average latencies of requests that share the same

call sequences. From Fig. 16, we can see that the computa-

tion time with the index is on average one order of magni-

tude smaller than that without the index. Without the index,

the requests have to be reclassified to get the query results,

which wastes extra time. On the contrary, with the index,

since all requests are proactively organized based on their call

sequences, it is more efficient for the operators to conduct sta-

tistical analysis.

Fig. 16 Querying time of P-Tracer with and without the index under differ-
ent request numbers

6 Validation

In this section, we report three real-world cases of applying

P-Tracer to analyze performance for the mail service in the

production and testing clusters.

6.1 Detecting design defects

After a system upgrade, we utilized P-Tracer to conduct per-

formance profiling and found a design defect. While check-

ing the overall call trees of the SendMail service (used to send

mails), we observed that there was a call tree that contained

a method labeling the transaction aborted. The frequency of

this call tree was more than 25 percent and the average la-

tency was about three times larger than those of other call

trees. After trying different scales of time windows (from one

hour to two weeks), we found the ratio of this call tree was

steady.

We presented this result to the relevant developers. They

opened a bug report to investigate the case. Afterwards, they

found that the root cause was a design defect of sending group

mails. When sending mails to a group, the redundant mails

were not wiped off in the application level, but directly dis-

patched to the system level. In the system level, each sending

mail would invoke a transaction to store the content. When a

mail was kept by the former transaction, other transactions to

store the same mail would be aborted. After the developers

added the logic of wiping off redundant mails in the applica-

tion level, the performance of the SaveMail service increased

about one fifth.

Not like functional problems that will directly cause break

Haibo Mi et al. An online service-oriented performance profiling tool for cloud computing systems 441

down of the systems, performance problems are hard to de-

tect as they are influenced by many factors. Without P-Tracer,

developers will experience difficulty in understanding the be-

havior of requests in such a fine granularity to discover per-

formance bottlenecks. Furthermore, P-Tracer supports oper-

ators to conduct online profiling of system performance in

a large time scale, which can statistically reflect the system

behavior more precisely.

6.2 Detecting code bugs

This is another problem detected by P-Tracer. During a per-

formance test that last two days, a developer used P-Tracer to

check the top ten types of call trees of the ReadMail service,

and he found that the average latency taken in the client was

about two times larger than that taken in the server, which

was quite an unexpected result.

After analyzing the source code, he localized the main

cause of the latency disproportion. A developer mistakenly

accessed a deprecated method in the new version of the sys-

tem. The method tried to access a security authentication file

which had been renamed. Moreover, this performance test

was done in a test environment, but the security class was

mistakenly set high in the configuration file. Therefore, large

mounts of thrown-out exceptions were generated and dumped

into the alarm log files, which caused the performance degra-

dation.

P-Tracer can visualize the latency ratios of the invoked

methods through which requests passed, facilitating devel-

opers to easily check if the behavior of the requests matches

their expectation and infer the possible root causes when per-

formance degrades.

6.3 Performance comparison

As shown in Fig. 17, during a performance test under

steady load, the performance sharply decreased. To diagnose

this degradation, we compared the tracing logs in the non-

problem period with that in the problem period and found

that the proportion of request count in one type of call trees

increased by 25%. Then, we made a detailed comparison

about this type. From visualizing the structure of this type

of call trees, and we found that it reflected the behavior of

requests when some replicated instances of the service com-

ponent cashed.

In large-scale cloud computing systems, one service com-

ponent runs many replicated instances deployed on different

hosts. When an instance of one service component crashes,

the platform provides a failover mechanism to restart it. The

Fig. 17 Performance degradation during a load test

crashed instance cannot be accessed during the recovery,

which causes the failure of parts of requests. These failed re-

quests generate a type of call trees the structure of which is to

retry the server with RPC call for three times and then abort.

Most of time the failover mechanism guarantees the recov-

ery of crashed instances; however, from the increased ratio

of the failure type of call trees, we inferred that the failover

mechanism did not work at this time. We presented the result

to the developer, who confirmed our inference after check-

ing the event logs. The load of the host with the crashed in-

stance was so high that there were not enough resources left

to recovery the instance. This case again demonstrates that

P-Tracer can help developers identify the possible primary

cause of the performance changes.

7 Related work

7.1 Performance counter vs end-to-end request tracing

Extensive research efforts try to utilize the explicit

annotation-based instrumentation to conduct performance

monitoring, tuning and debugging for large-scale distributed

systems. There are mainly two types of instrumentation based

approaches: performance counter based and end-to-end trac-

ing based schemes. Performance counter based approaches

[18,20,21] aggregate the utilization of system resources (e.g.,

CPU utilization, disk I/O, and network traffic) or user-defined

operations (e.g., the number of requests in queue and hit ratio

of cache). However, developers tend to add so large num-

bers of counters (in Alibaba Cloud Computing Company,

more than three hundred of counters are added to the sys-

tem) that it is quite difficult to infer which ones are the most

relevant with the performance changes. Furthermore, perfor-

mance counters just expose an aggregated view of different

workloads, which provides little assistance for operators to

442 Front. Comput. Sci., 2013, 7(3): 431–445

understand the resource demands of individual workloads.

Compared to performance counters, end-to-end tracing ap-

proaches record the execution information of requests in the

system, e.g., the entering and exiting time stamps when the

requests go through service components, which directly re-

flects the causal dependency among component interactions

for individual requests and is informative for developers to

understand system performance.

7.2 Performance profiling in a single process

Diverse single process-oriented performance profiling tools

are proposed to help developers identify time-consuming

parts of the computation in a single node. DTrace [5], gprof

[2], and DARC [6] visualize the execution of systems as call

graphs to signify where requests spend time in a single node.

Misailovic et al. [22] propose a loop perforation approach

to optimize the tradeoff between execution time and qual-

ity of service. Our work builds on some ideas from these

approaches; however, more factors have been considered in

large-scale cloud computing systems, such as large volumes

of tracing logs, clock drifts and complex execution paths.

7.3 Performance analysis in distributed systems

Extensive work has employed the explicit annotation-based

instrumentation mechanism to conduct performance profil-

ing in distributed system. Magpie [23] applies application-

specific event schemas to correlate events and captures the

resource consumption of individual requests with the goal

of understanding system performance. Stardust [4] captures

resource demands for per workload and stores them into a

relational database. Pinpoint [24] traces causal relationships

of requests in multi-layers of web service components and

adopts a statistical analysis process to identify abnormal re-

quests. Chen et al. [25] engage runtime request paths to man-

age and assess performance issues in the evolution of sys-

tems. These techniques generally assume that the clock drifts

are negligible, and then utilize a global identifier to trace

requests that spans many hosts. Since the clock drifts are

millisecond-level in large-scale distributed systems, they can-

not retrieve the call tree of requests precisely. Compared to

these techniques, besides the global identifiers of the sam-

pled requests, P-Tracer also assigns global identifiers to the

invoked methods. In order to reduce the overheads of gener-

ating identifiers, for each sampled request, invoked methods

within the same host share the same identifiers. Therefore, P-

Tracer can precisely retrieve the call trees of requests based

on the parent-child relationships of identifiers.

Dapper [8] is a distributed performance analysis tool in

Google, which is the most similar to P-Tracer. However, there

is a major difference between Dapper and P-Tracer. Dapper

keeps one request into Bigtable [26] as a row, whereas P-

Tracer proactively groups user requests into different cate-

gories according to their call trees and constructs a specific

index for these categories. With this index, P-Tracer can help

operators conduct statistical analysis more efficiently.

A number of techniques have been proposed for analyz-

ing the system performance based on the request tracing

logs. Spectroscope [27] aims to isolate the root cause of per-

formance changes through identifying latency anomaly and

structure anomaly of requests. Pip [28] and Ironmodel [29]

compare users’ actual behavior with self-defined expectation

to determine whether a request is abnormal or not. Huang

et al. [7] rely on a layered queuing network to model the

relationship between time-varying workloads and system re-

sources in order to capture system behaviors. Mann et al. [30]

utilize the latencies of request traces to construct a directed

acyclic graph to infer the parent RPC latencies of parallel

services. Relying on this directed acyclic graph model, Os-

trowski et al. [31] conduct an automated hierarchical detec-

tion to identify the system elements that cause the changes

of end-to-end latencies. The above algorithms can be easily

plugged into the framework of P-Tracer and the tracing data

generated by P-Tracer can be the input of those algorithms.

Compared to our previous work [32], this paper systemati-

cally discusses the functionalities of statistical analysis, eval-

uates P-Tracer in the aspects of tracing overheads and data

preprocessing scalability, and extends two real-world cases

to demonstrate the effectiveness of P-Tracer.

There are also many black-box-based performance tuning

and diagnosing techniques (e.g., [11, 13, 14, 33]). These ap-

proaches do not need the domain-specific knowledge and can

work when the source codes of applications are unavailable

or uninstrumented. However, they have to spend more time

on training logs in exchange for sufficient accuracy of infer-

ence. Furthermore, there is a tradeoff between tracing granu-

larity and debugging efforts. A black-box mechanism can be

deemed as a tracing mechanism with the coarse granularity

(e.g., in node level) and will increase more human efforts in

analyzing the system behaviors.

8 Discussion and conclusion

8.1 Discussion

Although P-Tracer has provided operators with web-based

Haibo Mi et al. An online service-oriented performance profiling tool for cloud computing systems 443

query interfaces that cover most of their requirements, some-

times specific tailor-made computation may be needed. In or-

der to support self-defined analysis, we have opened trace

data store to engineers and supplied APIs for operators to di-

rectly access meta files and data files.
Moreover, tracing logs are invaluable to conduct perfor-

mance analysis and finer granularity information could be

mined. For example, relying on the historical tracing data,

we could construct an online detection tool that automatically

report alarms to operators when performance degrades.

8.2 Conclusion

Currently, distributed systems are continuously growing in

scale and complexity of component interactions, which posts

great challenges for operators to online capture the charac-

teristic of system performance. This paper presents P-Tracer,

a service-oriented profiling tool to support separation-of-

concerns performance analysis in real time. P-Tracer is eval-

uated in the aspects of tracing overheads, data preprocessing

scalability and query efficiency. Experiences with three real-

world cases demonstrate that P-Tracer can effectively help

operators conduct performance profiling and localize the pri-

mary causes of performance anomalies.

Acknowledgements This research was supported by the National Basic
Research Program of China (2011CB302600), the National High Technol-
ogy Research and Development Program of China (2012AA011201), the
National Natural Science Foundation of China (Grant Nos. 61161160565,
90818028, 91118008, 60903043), and an NSFC/RGC Joint Research
Scheme sponsored by the Research Grants Council of Hong Kong, China and
National Natural Science Foundation of China Project (JC201104220300A).

References

1. Ren G, Tune E, Moseley T, Shi Y, Rus S, Hundt R. Google-wide profil-

ing: a continuous profiling infrastructure for data centers. IEEE Micro

Magazine, 2010, 30(4): 65–79

2. Graham S, Kessler P, McKusick M. Gprof: a call graph execution pro-

filer. ACM SIGPLAN Notices, 2004, 39(4): 49–57

3. Mohr B, Wylie B, Wolf F. Performance measurement and analysis tools

for extremely scalable systems. Concurrency and Computation: Prac-

tice and Experience, 2010, 22(16): 2212–2229

4. Thereska E, Salmon B, Strunk J, Wachs M, Abd-El-Malek M, Lopez

J, Ganger G. Stardust: tracking activity in a distributed storage system.

ACM SIGMETRICS Performance Evaluation Review, 2006, 34(1): 3–

14

5. Cantrill B, Shapiro M, Leventhal A. Dynamic instrumentation of pro-

duction systems. In: Proceedings of the 2004 USENIX Annual Tech-

nical Conference. 2004, 2–15

6. Traeger A, Deras I, Zadok E. DARC: dynamic analysis of root causes

of latency distributions. ACM SIGMETRICS Performance Evaluation

Review, 2008, 36(1): 277–288

7. Huang X, Wang W, Zhang W, Wei J, Huang T. An adaptive perfor-

mance modeling approach to performance profiling of multi-service

web applications. In: Proceedings of the 35th IEEE Computer Soft-

ware and Applications Conference. 2011, 4–13

8. Sigelman B, Barroso L, Burrows M, Stephenson P, Plakal M, Beaver

D, Jaspan S, Shanbhag C. Dapper, a large-scale distributed systems

tracing infrastructure. Technical Report, Google, 2010

9. Park I, Buch R. Event tracing-improve debugging and performance

tuning with etw. MSDN Magazine-Louisville. 2007, 81–92

10. Sang B, Zhan J, Lu G, Wang H, Xu D, Wang L, Zhang Z, Jia Z. Pre-

cise, scalable, and online request tracing for multitier services of black

boxes. IEEE Transactions on Parallel and Distributed Systems, 2012,

23(6): 1159–1167

11. Tak B, Tang C, Zhang C, Govindan S, Urgaonkar B, Chang R. Vpath:

precise discovery of request processing paths from black-box obser-

vations of thread and network activities. In: Proceedings of the 2009

Conference on USENIX Annual Technical Conference. 2009, 19–32

12. Koskinen E, Jannotti J. Borderpatrol: isolating events for black-box

tracing. ACM SIGOPS Operating Systems Review, 2008, 42(4): 191–

203

13. Reynolds P, Wiener J, Mogul J, Aguilera M, Vahdat A. WAP5: black-

box performance debugging for wide-area systems. In: Proceedings of

the 15th International Conference on World Wide Web. 2006, 347–356

14. Aguilera M, Mogul J, Wiener J, Reynolds P, Muthitacharoen A. Per-

formance debugging for distributed systems of black boxes. ACM

SIGOPS Operating Systems Review, 2003, 37(5): 74–89

15. Mills D. Network time protocol (Version 3) specification, implementa-

tion and analysis. RFC Editor, 1992

16. Dean J, Ghemawat S. Mapreduce: simplified data processing on large

clusters. Communications of the ACM, 2008, 51(1): 107–113

17. Abdi H. Coefficient of variation. Sage Publications, 2010

18. Massie M, Chun B, Culler D. The ganglia distributed monitoring sys-

tem: design, implementation, and experience. Parallel Computing,

2004, 30(7): 817–840

19. Fay M, Proschan M. Wilcoxon-mann-whitney or t-test? on assump-

tions for hypothesis tests and multiple interpretations of decision rules.

Statistics Surveys, 2010

20. Malik H, Adams B, Hassan A. Pinpointing the subsystems responsi-

ble for the performance deviations in a load test. In: Proceedings of

the 21st International Symposium on Software Reliability Engineer-

ing. 2010, 201–210

21. Bodik P, Goldszmidt M, Fox A, Woodard D, Andersen H. Fingerprint-

ing the datacenter: automated classification of performance crises. In:

Proceedings of the 5th European Conference on Computer Systems.

2010, 111–124

22. Misailovic S, Sidiroglou S, Hoffmann H, Rinard M. Quality of service

profiling. In: Proceedings of the 32nd ACM/IEEE International Con-

ference on Software Engineering. 2010, 25–34

23. Barham P, Donnelly A, Isaacs R, Mortier R. Using magpie for request

extraction and workload modelling. In: Proceedings of the 6th Sympo-

sium on Opearting Systems Design and Implementation (OSDI). 2004,

259–272

24. Chen M, Kiciman E, Fratkin E, Fox A, Brewer E. Pinpoint: Problem

determination in large, dynamic internet services. In: Proceedings of

the 32nd International Conference on Dependable Systems and Net-

444 Front. Comput. Sci., 2013, 7(3): 431–445

works. 2002, 595–604

25. Chen M, Accardi A, Kiciman E, Lloyd J, Patterson D, Fox A, Brewer

E. Path-based faliure and evolution management. In: Proceedings of

the 1st conference on Symposium on Networked Systems Design and

Implementation. 2004, 23–36

26. Chang F, Dean J, Ghemawat S, Hsieh W, Wallach D, Burrows M, Chan-

dra T, Fikes A, Gruber R. Bigtable: a distributed storage system for

structured data. ACM Transactions on Computer Systems, 2008, 26(2):

1–26

27. Sambasivan R, Zheng A, De Rosa M, Krevat E, Whitman S, Stroucken

M, Wang W, Xu L, Ganger G. Diagnosing performance changes by

comparing request flows. In: Proceedings of the 8th USENIX Sympo-

sium on Networked Systems Design and Implementation. 2011, 43–56

28. Reynolds P, Killian C, Wiener J, Mogul J, Shah M, Vahdat A. Pip: de-

tecting the unexpected in distributed systems. In: Proceedings of the

3rd Symposium on Networked Systems Design and Implementation.

2006, 115–128

29. Thereska E, Ganger G. Ironmodel: robust performance models in

the wild. ACM SIGMETRICS Performance Evaluation Review, 2008,

36(1): 253–264

30. Mann G, Sandler M, Krushevskaja D, Guha S, Even-Dar E. Modeling

the parallel execution of black-box services. In: Proceedings of the 3rd

USENIX Conference on Hot Topics in Cloud Computing. 2011, 20–24

31. Ostrowski K, Mann G, Sandler M. Diagnosing latency in multi-tier

black-box services. In: Proceedings of the 5th Workshop on Large

Scale Distributed Systems and Middleware. 2011

32. Mi H, Wang H, Zhou Y, Lyu M R, Cai H. P-tracer: service-oriented

performance profiling in cloud computing systems. In: Proceedings of

IEEE 36th Annual Computer Software and Applications Conference.

2012

33. Zhang Z, Zhan J, Li Y, Wang L, Meng D, Sang B. Precise request trac-

ing and performance debugging for multi-tier services of black boxes.

In: Proceedings of the 2009 IEEE/IFIP International Conference on

Dependable Systems & Networks. 2009, 337–346

Haibo Mi received the BEng and MEng

degrees from Communication Com-

mand University of Wu Han, in 2005

and 2008, respectively. He is currently

working toward the PhD degree in Na-

tional Laboratory for Parallel & Dis-

tributed Processing, National Univer-

sity of Defense Technology (NUDT),

Changsha, China. His thesis focuses on

performance maintenance in large-scale distributed systems. He has

been worked with the engineers and operators of Alibaba Cloud

Computing Company for two years. His research interests include

distributed computing, cloud computing, performance monitoring

and fault localization.

Huaimin Wang received his PhD in

computer science from NUDT in 1992.

He is now a professor and chief engi-

neer in department of educational af-

fairs, NUDT. He has been awarded

the “Chang Jiang Scholars Program”

professor by Ministry of Education of

China, and the Distinct Young Scholar

by the National Natural Science Foundation of China (NSFC), etc.

He has worked as the director of several grand research projects and

has published more than 100 research papers in international con-

ferences and journals. His current research interests include middle-

ware, software agent, trustworthy computing.

Yangfan Zhou is currently a research

staff member with the Shenzhen Re-

search Institute, The Chinese Univer-

sity of Hong Kong (CUHK) and De-

partment of Computer Science and

Engineering, CUHK. He received an

MPhil and a PhD from CUHK in 2006

and 2009, respectively, and a BSc from

Peking University in 2000. His current research is on software en-

gineering issues (e.g., fault management, fault tolerance, reliability

engineering, testing, and debugging) and their applications.

Michael Rung-Tsong Lyu received his

PhD degree in computer science from

University of California, Los Angeles,

in 1988. He is now a professor in the

Department of Computer Science &

Engineering. He initiated the 1st Inter-

national Symposium on Software Re-

liability Engineering (ISSRE) in 1990.

He was the program chair for ISSRE 1996, the general chair for

ISSRE 2001, the program cochair for PRDC 1999, WWW 2010,

SRDS 2005, and ICEBE 2007, the general cochair for PRDC 2005,

and a program committee member for many other conferences. Dr.

Lyu’s research interests include software reliability engineering, dis-

tributed systems, fault-tolerant computing, data mining, and ma-

chine learning. He has published over 400 refereed journal and con-

Haibo Mi et al. An online service-oriented performance profiling tool for cloud computing systems 445

ference papers in these areas. Dr. Lyu is an IEEE Fellow, an AAAS

Fellow, and received IEEE Reliability Society 2010 Engineer of the

Year Award.

Hua Cai received the BS degree

from the Shanghai Jiaotong University,

Shanghai, China, in 1999, and the PhD

degree from the Hong Kong University

of Science and Technology (HKUST)

in 2003, all in electrical and electronic

engineering. He is a member of the

IEEE and ACM. He joined Microsoft

Research Asia, Beijing, China, in De-

cember 2003 and was an associate researcher in the Media Commu-

nication Group. He is now a senior expert in Alibaba Cloud Com-

puting Company and leads the teams of cloud monitoring and com-

puting platform. His research interests include distributed system,

cloud computing, and mobile media computing.

