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Abstract

We show the existence of an explicit pseudorandom generator G of linear stretch such that
for every constant k, the output of G is pseudorandom against:

• Oblivious branching programs over alphabet {0, 1} of length kn and size 2O(n/ logn) on
inputs of size n.

• Non-oblivious branching programs over alphabet Σ of length kn, provided the size of Σ is
a power of 2 and sufficiently large in terms of k.

• The well-studied model of logarithmic space randomized Turing Machines (over alphabet
{0, 1}) extended with an unbounded stack that make k passes over their randomness.

The construction of the pseudorandom generator G is the same as in our previous work
(FOCS 2011). The results rely on a stronger analysis of the construction. For the last result,
we give a length-efficient simulation of such stack machines by non-deterministic branching
programs (over large alphabet) whose accepting computations have a unique witness.
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1 Introduction

We consider the problem of constructing an explicit pseudorandom distribution for branching pro-
grams of bounded width. A branching program with input symbols from the alphabet Σ, is a
directed acyclic graph with a unique start vertex, where every non-sink vertex is labeled by one of
n variables and has |Σ| outgoing arcs, each labelled with σ ∈ Σ, and each sink vertex is labeled by
an output value “accept” or “reject.” The branching program computes a Boolean function over
n variables in the natural way: it begins at the start vertex, reads the value of the variable at that
vertex, and follows the corresponding arc to the next vertex. When it reaches a sink vertex, it halts
and outputs the corresponding label.

Fix an alphabet Σ. A family of distributions p : Σs(n)→Σn is pseudorandom with seed length
s(n) < n, and bias ε(n) for a class of functions F if for every f ∈ F in n inputs,∣∣Ep[f(p)]−Eu[f(u)]

∣∣ ≤ ε(n).

where u is the uniform distribution on n symbols.
The problem of constructing explicit, unconditionally pseudorandom distributions for various

models of computation has been met with the most success for two types of models, the first being
small-depth computation [AB84, AW85, Nis91, Bra10]. The second type is space-bounded compu-
tation, for which branching programs play an important role: the computation of a randomized
Turing Machine that uses n random bits and space S can be modeled as a width 2S branching
program, where the inputs to the program are the n random bits. The pseudorandom generators
constructed by Nisan [Nis92] and by Impagliazzo et al. [INW94] use seed length O(log2 n) to fool
fixed input-order, poly(n) width, read-once branching programs.

Pseudorandom generators for space-bounded algorithms take advantage of the limited commu-
nication that can occur between parts of the computation, and are typically based on the following
principle: a space-bounded algorithm records a small amount of information between stages of
its computation, so randomness may be reused from one stage to the next without substantially
altering performance.

However, in the constructions mentioned, the ability to recycle randomness relies not only on
limited communication between the computation stages, but also on the nature of its access to the
randomness. The random bits cannot be accessed too often and the order in which they are accessed
must be known in advance. A natural goal is to construct distributions that remain pseudorandom
without these access restrictions.

Recent work [BPW11] makes some progress towards removing these restrictions, giving the first
pseudorandom generator (with linear stretch) for read-once branching programs under any ordering
of the inputs. However, the access to the randomness is still restricted: the branching program is
read-once and oblivious, i.e., it reads bits in an order independent of their values.

One motivation for our work comes from the problem of derandomizing log-space stack machines
(see Section 4) which make a bounded number of sequential passes over their randomness. These
machines were proposed by David et al. [DNPS11] as a model of randomized polynomial time with
limited access to randomness.1 Without the random tape access restriction, randomized stack
machines characterize randomized polynomial time [Coo71]. If they are allowed one pass over the
randomness, however, such machines can be simulated deterministically. David et al. suggest
studying what happens between these two extreme cases.

1They are also known as auxiliary pushdown automata, see the full version of [DP10] for terminology.
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1.1 Results

In this work we show that the distribution in [BPW11] (with different parameters) is pseudorandom
even for bounded-width branching programs that have linear length. In other words, the input
symbols may be accessed adaptively and arbitrarily many times, provided that the total number
of accesses is O(n).

Theorem 1. For every k > 1 there exist constants ρ, γ, λ and and an explicit pseudorandom
distribution family p : Σ(1−ρ)n→Σn, where Σ = {0, 1}λ so that for every n,∣∣Ep[F (p)]−Eu[F (u)]

∣∣ = 2−Ω(n)

for every length kn, width 2γn branching program F : Σn→{0, 1} over n inputs.

Here the constants ρ, γ, λ are inverse exponential in k; see the end of Section 3.2 for the precise
dependence on k.

For oblivious branching programs, we obtain a stronger form of the theorem in which Σ = {0, 1}.
This theorem is stated and proved as Theorem 2 in Section 3.1.

As an example application, consider the problem of identity testing for linear-size arithmetic
formulas (see [KI04]). Let f be a linear-size arithmetic formula on inputs of length n coming from
some subset S of a field F. Such a formula can be computed2 by a boolean oblivious branching
program of linear length and width |F|O(logn). The Schwarz-Zippel lemma says that if f is nonzero,
then f(u) takes value zero with probability at most deg(f)/|S|. By Theorem 2, f(p) takes value
zero with probability at most deg(f)/|S| − 2−Ω(n), as long as |F| � 2n/(logn)2 .

Our main application of Theorem 1 is in fooling (non-uniform) randomized Turing Machines over
alphabet {0, 1} extended with an unbounded stack, henceforth called stack machines, which make a
constant number of passes over their randomness tape. As mentioned previously, randomized log-
space stack-machines characterize probabilistic polynomial time. David et al. [DNPS11] showed
that pseudorandom generators that fool polynomial size circuits of depth d(n) = Ω(log n) also fool
stack machines that make 2O(d(n)) passes over their randomness. It is conceivable that one can
derandomize stack machines that make a sub-polynomial (and in particular constant) number of
passes over the randomness without the full derandomization of BPNC1.

In Section 4 we show that our pseudorandom distribution fools stack machines that make k
sequential passes over their input. This in particular implies that we can replace the random tape
of a randomized stack machine (restricted to make k passes over its randomness – and unrestricted
in every other tape) with our distribution. Here k is the same constant as in Theorem 1. Previously,
no nontrivial simulation was known even for k = 2.

1.2 Techniques

Fooling branching programs In order to construct pseudorandomness that can be accessed
in arbitrary order, the approach in [BPW11] addresses the issue of limited communication in
the following way. Consider the computation as occurring in two halves, where only a bit of
information (however, it may be computed in an arbitrary fashion) is remembered from each half.
The distribution p constructed in [BPW11] was shown to satisfy the following property:

For every pair of Boolean functions f, g : {0, 1}n/2→{0, 1} and every equipartition
(I, J) of [n], the joint distribution (f(p|I), g(p|J)) is close (in statistical distance) to the
distribution (f(U |I), g(U |J)).

2Lemma 1 of [BPW11] shows this for boolean formulas. The extension to larger domains is straightforward.
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The distribution output by the base generator of the expander-based construction from [INW94]
satisfies the above property for any fixed equipartition such as {1, · · · , n/2}∪{n/2+1, · · · , n} (but
not all at the same time).

The distribution from [BPW11] has the advantage that it is pseudorandom for every equiparti-
tion and hence will accomodate access to the inputs under every ordering. In fact, it was observed
in [BPW11], without proof, that the distribution remains pseudorandom for any f and g which
depend on at most (1 − Ω(1))n of the input bits. We prove this more general lemma (Lemma 1)
in Section 2. In the lemma, inputs to f and g can now be shared, so one might expect that the
distribution will remain pseudorandom with multiple accesses.

Now consider an oblivious branching program of length kn. We split the computation into t
stages, for some large enough t that will be set later. The result of the computation can then be
stated as a sum over wt products of t Boolean functions, each over nk/t variables. We do not argue
that the outputs of these functions look independent; instead, we show in Section 3.1 that each
summand can always be rewritten as a pair of functions (f, g), where f and g each depend on at
most (1− Ω(1))n bits, and then apply Lemma 1.

A more complicated argument is required if the branching program is non-oblivious; under the
previous decomposition, a single stage of the computation may depend on all n input symbols. In
fact, in this case we do not know how to construct a pseudorandom distribution with symbols from
{0, 1}. However, we can achieve this over any sufficiently large (in terms of k) alphabet Σ, where
|Σ| is a power of 2. Achieving this over {0, 1} is a very interesting open question (interesting even
for any non-trivial stretch; e.g. stretching 0.99n bits to n). In Lemma 3, we show how to rearrange
the paths of the branching program so that the combinatorial argument in Section 3.1 can still be
used. Thus, we can express any branching program as a short sum (the size of the summation is
substantially larger than in the oblivious case) over pairs of functions that fulfill the conditions of
Lemma 1.

In fact, the decompositions we obtain for (oblivious) branching programs are implicit in work
of Beame, et al. [BJS01]. That work gives similar decompositions for branching programs in order
to prove lower bounds using communication complexity arguments. Accordingly, they decompose
a branching program as a disjunction of function pairs, and the conditions on the function pairs
are stronger. Our application requires the summation instead of the disjunction; however, the
proofs are essentially the same, and we include them here for completeness and simplification. We
remark that further decompositions that yielded stronger lower bounds were given in subsequent
work [Ajt99, BSSV03], but, to our knowledge, these are not relevant to the constructions here.

Fooling Stack Machines We show that for every constant λ, a log-space stack machine over
alphabet {0, 1} that makes k(n) passes over its randomness can be simulated by a family of nonde-
terministic branching programs over alphabet {0, 1}λ of size 2O((logn)2) and length nk(n). Moreover,
the branching programs can be designed to have unique witnesses; namely, for every accepting input
there is exactly one accepting computation path. We observe that our proof of Theorem 1 easily
extends to nondeterministic branching programs with unique witnesses, and we conclude that our
distribution p is pseudorandom for the corresponding stack machines.

A log-space stack machine computes a polynomial time predicate but it may run in time 2n
O(1)

.
In [DNPS11] it is shown that given a stack machine that makes k(n) passes over its randomness, for
a given input x, there is an advice string and a stack machine that computes the same predicate,
runs in time k(n) · poly(n), and preserves the number of passes over the random tape. Such stack
machines can be simulated by small space computations [All89, BCD+89, Ruz80]. Niedermeier
and Rossmanith [NR95] give a variant of this simulation that preserves the number of witnesses.
However, these simulations fail to preserve the number of accesses to the input, even when the
stack machines are equipped with an index tape to access the memory.
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We show that with a non-trivial modification to [Ruz80], a randomized stack machine that
makes k(n) many passes can be simulated by a non-deterministic branching program with a unique
witness that preserves the number of accesses to input bits (but not necessarily the order). More
specifically, the branching program recursively verifies a kind of a “proof tree” that the computation
accepts. For our purposes it is crucial to ensure that the random tape is not accessed more than
nk(n) times.

2 Fooling pairs of functions with shared inputs

In this section we give a distribution p over {0, 1}n that looks pseudorandom to any pair of functions
f, g : {0, 1}n→[−1, 1] such that f and g depend on at most (1 − Ω(1))n of their inputs. The
construction is identical to the one from our previous work [BPW11], with different parameters.
Note, however, that later on we will apply this theorem in two different ways, one of which regards
distributions over alphabets other than {0, 1} (and this is essential for obtaining non-trivial stretch).
In [BPW11] we proved that the desired pseudorandomness under the additional restriction that f
and g each depend on n/2 bit inputs which are disjoint. We also remarked (without proof) that
our analysis can be extended to the more general case, which is needed for the applications in this
work. We now give a proof of that statement.

Our pseudorandom distribution The pseudorandom distribution p has the form p = Mz+ e,
where M is a fixed n×m for m = (1− ρ) · n matrix over GF (2) such that every subspace spanned
by α · n rows has dimension α · n − r, and all operations are over GF (2). Here z ∼ {0, 1}m is a
uniformly random seed, and e ∈ {0, 1}n is chosen independently of z from an ε-biased distribution.
(Recall that e is ε-biased if for every s ∈ {0, 1}n, s 6= 0, |Ee[(−1)|〈s,e〉|]| ≤ ε.)

The existence of an explicit matrix M with the desired properties follows from constructions
of binary codes with small list size for list-decoding radius bounded away from 1/2. We now
explain this connection. Recall that a linear code C over {0, 1}n is (δ, `) list-decodable if for every
x ∈ {0, 1}n, the number of codewords of C within hamming distance δn of x is at most `. A parity
check matrix M for C is a GF (2) matrix such that cTM = 0 if and only if c is a codeword of C.

It is easily seen (by substituting α for 1/2) that the proof of Proposition 1 from [BPW11] yields
the following more general statement:

Proposition 1. Let C be a (α2 , `) list-decodable code over {0, 1}n. Let M be the parity check matrix
of C. Then every subset of α · n rows of M spans a vector space over GF (2) of dimension at least
α · n− log2(2`).

Then we have the following fact, which follows from the Johnson bound and standard construc-
tions of asymptotically good binary linear codes; see Theorems 3.1 and 7.1 from [Gur07].

Proposition 2. For every α > 0 there exists ρ > 0 and an explicit matrix M of size n× (1− ρ)n
such that every subset of α ·n rows spans a vector space over GF (2) of dimension at least α ·n− r,
with r = 4 log(4n/(1− α)).

The main lemma Now, we prove the main lemma that powers our results in Section 3.

Lemma 1. For every α > 0 there exists ρ > 0 and an explicit matrix M of size n× (1− ρ) · n so
that for every pair of (possibly intersecting) ordered sets I, J with |I|, |J | ≤ αn and for every pair

of functions f : {0, 1}|I|→[−1, 1], g : {0, 1}|J |→[−1, 1],∣∣Ep[f(p|I)g(p|J)]−Eu[f(u|I)g(u|J)]
∣∣ ≤ 2rε
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where u is the uniform distribution over {0, 1}n, p is defined as above, and x|I , x|J denote the
projections of x on the sets I and J , respectively, and r = 4 · log 4n

1−α .

In particular, when g = 1, |Ep[f(p|I)] − Eu[f(u|I)]| ≤ 2rε, so the pseudorandom distribution
also preserves the marginal probabilities of events, within 2rε, over all subsets of size at most α ·n.

Proof of Lemma 1. Using Fourier decomposition, for any pair of subsets I, J of [n] with |I|, |J | ≤
αn, we have

Ep[f(p|I)g(p|J)] = Ez,e[f((Mz + e)|I)g((Mz + e)|J)]

=
∑

S⊆I,T⊆J
f̂(S)ĝ(T )Ez,e[χS(Mz|I)χS(e|I)χT (Mz|J)χT (e|J)] (1)

We may view subsets S ⊆ I and T ⊆ J as subsets of [n], so we write χS(Mz|I) = χS(Mz) and
χT (Mz|J) = χT (Mz), and (1) becomes:∑

S⊆I,T⊆J
f̂(S)ĝ(T )Ez[χS(Mz)χT (Mz)]Ee[χS(e)χT (e)].

We denote by S∆T the symmetric difference of S and T viewed as subsets of [n].
We have that Eu[f(u|I)g(u|J)] =

∑
S⊆I∩J f̂(S)ĝ(S) and |Ee[χS∆T (e)]| ≤ ε, therefore∣∣Ep[f(p|I)g(p|J)]−Eu[f(u|I)g(u|J)]
∣∣ =

∣∣∣∣ ∑
S⊆I,T⊆J
S∆T 6=∅

f̂(S)ĝ(T )Ez[χS∆T (Mz)]Ee[χS∆T (e)]

∣∣∣∣
≤

∑
S⊆I,T⊆J
S∆T 6=∅

ε · |f̂(S)||ĝ(T )|
∣∣Ez[χS∆T (Mz)]

∣∣.
Let G be a bipartite graph over vertices (subsets of I)∪ (subsets of J), with an edge (S, T ) present
whenever Ez[χS∆T (Mz)] 6= 0. We will shortly argue that G has maximum degree 2r. Assuming
this, we can upper bound the last expression by

ε ·
∑

edge (S, T )

|f̂(S)||ĝ(T )| ≤ ε ·
√ ∑

edge (S, T )

f̂(S)2

√ ∑
edge (S, T )

ĝ(T )2

≤ ε ·
√

2r ·
∑
S⊆I

f̂(S)2

√
2r ·

∑
T⊆J

ĝ(T )2

≤ ε · 2r,

where the first line follows from the Cauchy-Schwarz inequality, the second line follows from the
fact that G has maximum degree 2r, and the third line is an application of Parseval’s identity.

It remains to argue that G has maximum degree 2r. We let s ∈ {0, 1}n, t ∈ {0, 1}n be indicator
vectors for the sets S and T , respectively, and s and t as vectors in GF (2)n. Then

Ez[χS∆T (Mz)] = E[(−1)(s+t)TMz] =

{
1, if (s+ t)TM = 0

0, otherwise.

Now, (s+ t)TM = 0 if and only if sTM = tTM , where sTM is zero at least everywhere outside
I and similarly for tTM and J . Since (by assumption) the matrix M |I has rank at least αn − r,
for every t ∈ {0, 1}n, there can be at most 2r distinct vectors s ∈ {0, 1}n such that sTM = tTM .
Similarly, for every s ∈ {0, 1}n, there can be at most 2r vectors t ∈ {0, 1}n such that sTM = tTM .

�
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In Sections 3.2 and 4 we will apply the pseudorandom generator to strings of length n over
alphabet Σ = {0, 1}λ. These can be viewed as strings in {0, 1}λn in the natural way.

3 Fooling branching programs of linear length

We show that essentially the same generator (modulo the setting of the parameters and the different
input alphabets) fools branching programs of linear length. For oblivious branching programs we
obtain this for binary {0, 1} input alphabets (Section 3.1), whereas for arbitrary branching programs
we show this for branching programs over (larger) constant size alphabets (Section 3.2).

Let F be a width w, length kn, layered branching program over n inputs; we think of k as
an arbitrarily large but fixed constant as n increases. We view the computation of the branching
program on an input x as occurring in t stages, where each stage reads kn/t variables. Suppose
first that the branching program is oblivious. Then, for every input each stage reads the same kn/t
variables. In this case, we may write the branching program as a sum over wt many t-tuples of
Boolean functions (as was done in [BPW11] for k = 1 and t = 2).

More formally, divide the inputs into t sets of layers so that S1 consists of inputs {1, · · · , kn/t},
S2 of inputs {kn/t+1, · · · , 2kn/t}, etc. (if variables reoccur within a set, its size might be smaller).

We define functions fi,p,q(x|Si) : {0, 1}|Si|→{0, 1} to be indicator functions for the event that the
program moves from state p to q when the inputs in Si are read from x. By definition, we have

F (x) =
∑

p1,...,pt:

pt∈accept

f1,s,p1(x|S1)f2,p1,p2(x|S2) · · · ft,pt−1,pt(x|St) (2)

3.1 Pseudorandomness for oblivious branching programs

We will argue that each of the summands in (2) can be rewritten in terms of two functions, each
over at most αn bits. Then, we apply Lemma 1 to show that the output of the generator fools each
of these summands. This will give us the following theorem for oblivious branching programs.

Theorem 2. Let F : {0, 1}n→{1,−1} be computable by a width w, length kn oblivious branching
program on n inputs. Let p be the pseudorandom distribution. Then

|Ep[F (p)]−EU [F (U)]| ≤ wt · 2rε.

where t = 24k, r = 4 log 4n
1−α , and α > 1− 1

22k
.

The proof of Theorem 2 will use the following combinatorial lemma, which shows that we can
always find a way to color each stage by one of two colors, so that neither color will contain too
many variables. A slightly different version of this lemma was proven in [BJS01]; we include a proof
in Appendix B for simplicity and completeness.

Lemma 2. Fix any k ∈ Z+. Let {S1, · · · , St} be a collection of subsets over [n], each of size at
most kn/t. Then there exists a partition (C, C) of {1, · · · , t} satisfying:∣∣⋃

i∈C
Si
∣∣ ≤ α · n and

∣∣⋃
i∈C

Si
∣∣ ≤ α · n

where α ≥ 1− 1
2k

+ 2k√
t

+ 2√
n

.

In Appendix B we argue that our lower bound on α is close to optimal.
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Proof of Theorem 2. Now, consider the expected bias of the branching program using Equation 2;
by linearity of expectation and the triangle inequality, we have:

|E[F (U)]−E[F (p)]| ≤
∑

p1,...,pt:

pt∈accept

|E[f1,s,p1(p|S1) · · · ft,pt−1,pt(p|St)]−E[f1,s,p1(U |S1) · · · ft,pt−1,pt(U |St)]|.

For each expectation of the summation, we can apply Lemma 2 to rewrite each product as a
product of two functions, i.e.,

f1,s,p1(x|S1) · · · ft,pt−1,a(xSt) = g1(x|S)g2(x|S),

where both S :=
∣∣⋃

i∈C Si
∣∣ ≤ α · n and S contain at most α · n variables.

Setting t = 24k in Lemma 2 and applying Lemma 1 with α from Lemma 2, we bound the
magnitude of each difference by 2rε. Since there are wt terms, we obtain

|E[F (U)]−E[F (p)]| ≤ wt2r · ε. �

3.2 Arbitrary linear size branching programs over large alphabets

We show how to fool arbitrary branching programs with inputs over alphabet Σ = {0, 1}λ, where
λ is a sufficiently large constant which depends on the multiplicative constant k in the length of
the branching program.

Lemma 3. Let P (x) = P1(x) ∧ . . . ∧ Pt(x), where P1, · · · , Pt : Σn→{0, 1} are branching programs
of length at most kn/t each. Then, there exist collections of boolean functions {FC,U} and {GC,V },
where C ranges over all partitions of {1, . . . , t} and U, V range over all subsets of [n] of size αn
such that

P (x) =
∑

C⊆[t],U,V⊆[n]
|U |=|V |=αn

FC,U (x) ·GC,V (x) (3)

and α ≥ 1− 1
2k

+ 2k√
t

+ 2√
n

.

Proof. We can express every Pi as

Pi(x) =
∑
`i∈Li

fi,`i(x)

where the summation ranges over Li which denotes all accepting paths `i of Pi and fi,`i(x) is the
indicator function for the event that the computation of Pi on input x takes path `i. We can write

P (x) =
t∏
i=1

Pi(x) =
t∏
i=1

∑
`i∈Li

fi,`i(x) =
∑

(`1,...,`t)∈L1×···×Lt

f1,`1(x) · . . . · ft,`t(x).

By Lemma 2, for every collection ` = (`1, . . . , `t) there exists a partition C(`) of [t] and sets
U(`) and V (`), each of size at most αn, such that when i ∈ C, fi,`i(x) depends only on inputs in
U(`) and when i ∈ C, fi,`i(x) depends only on inputs in V (`). Without loss of generality we will
assume that the sizes of U(`) and V (`) are exactly αn. We set

FC,U (x) =
∨

`:C(`)=C
U(`)=U

∧
i∈C

fi,`i(x) and GC,V (x) =
∨

`:C(`)=C
V (`)=V

∧
i∈C

fi,`i(x)
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We now prove the identity (3). If P (x) = 1, then there is a unique path ` = (`1, . . . , `t) such that
fi,`i(x) = 1 for all i, and so FC,U (x) and GC,V (x) both take value 1 when and only when C = C(`),
U = U(`), and V = V (`). Then exactly one term on the right hand side of (3) evaluates to 1.

If P (x) = 0, then Pi(x) = 0 for some i, so fi,`i(x) = 0 for all accepting paths `i of Pi. This
forces FC,U (x) to equal zero when i ∈ C, and GC,V (x) = 0 when i ∈ C. So all terms on the right
hand side of (3) evaluate to 0. �

To prove Theorem 3 below, we will use Lemma 3 to write the branching program as a sum of
a limited number of pairs of functions, where each pair satisfies the desired property. We then use
Lemma 1 to bound the deviation of each term in this summation when the uniform distribution is
replaced by the pseudorandom one.

Theorem 3. Let k > 0 be a constant, and let λ be sufficiently large given k. Let F : Σn→{0, 1} be
computable by a branching program on n inputs of width w and length kn. Then

|Ep[F (p)]−Eu[F (u)]| ≤
(

4λn

1− α

)4

· w24k · 22H(α)n · ε,

where p is the pseudorandom distribution over {0, 1}λn, and α ≥ 1− 1
22k

.

Proof. Applying the decomposition (2) we write

F (x) =
∑

p1,...,pt:

pt∈accept

f1,s,p1(x|S1)f2,p1,p2(x|S2) · · · ft,pt−1,pt(x|St) =
∑

p1,...,pt:

pt∈accept

Fp1,...,pt(x).

Here, fi,p,q are all branching programs of length kn/t. By Lemma 3 we have

F (x) =
∑

p1,...,pt:

pt∈accept

∑
C,U,V

Fp1,...,pt,C,U (x) ·Gp1,...,pt,C,V (x). (4)

where C ranges over all partitions of [t], U, V range over all subsets of [n] of size αn, and Fp1,...,pt,C,U :
Σαn→{0, 1} andGp1,...,pt,C,V : Σαn→{0, 1} depend only on inputs coming from U and V respectively.
Now, let us view Fp1,...,pt,C,U , Gp1,...,pt,C,V as functions with domain {0, 1}αλn. Set t = 24k and
r = 4 log(4λn/(1−α)). By Lemma 1 for each term in the sum, the difference in expectations under
the uniform and pseudorandom distributions is at most ε2r in absolute value. Since there are at
most wt choices for (p1, . . . , pt), 2t choices for C, and

(
n
αn

)
choices for each of U and V , by the

triangle inequality we obtain that

|Ep[F (p)]−Eu[F (u)]| ≤ ε2r · wt · 2t
(
n

αn

)2

,

which yields the desired bound after substituting the values for r and t and the standard bound
for binomial coefficients. �

Parameters We now set the parameters to obtain Theorem 1. We assume the availability of a
family small-biased generators over {0, 1}m for bias ε and seed length log(m/ε)K for some constant
K constructible in time polynomial in the seed length (see e.g. [AGHP90] for a construction with
K = 2). We instantiate this construction with parameters m = λn and ε = 2−4n to obtain a seed
length of 4Kn+ o(n).

Set α = 1 − 2−2k. By Lemma 1, there exists a constant 2ρ (depending on α) for which the
distribution p can be generated efficiently with seed length (1 − 2ρ)λn + 4Kn + o(n). Setting
λ = 5K/ρ, the seed length is upper bounded by (1 − ρ)λn bits, i.e. (1 − ρ)n elements of Σ, when
n is sufficiently large.

To calculate the bias, we simplify the upper bound in Theorem 3 to 4λ4n4w24k · 22n · ε. When
w ≤ 2n/2

4k
, this expression is upper bounded by 4λ4n4 · 2−n = 2−Ω(n).
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4 Stack machines and branching programs

A stack machine is a space-bounded Turing Machine extended with a stack. The stack can be
accessed only through its top symbol but is otherwise unbounded (see [Coo71] for a precise defini-
tion). In the discussion here, the stack machines will be deterministic in the sense that the next
state and stack operation are uniquely determined by the current state, the current tape symbols
and the symbol on top of the stack.

A randomized stack machine is a stack machine with a read-only, polynomially long, two-way
random tape. In this section we sketch a proof that randomized stack machines (with random
tape alphabet {0, 1}) that make k passes (where k is any constant) over their randomness can be
simulated by families of read k-times nondeterministic branching programs over alphabet {0, 1}λ
for every constant λ. Moreover, the branching programs have unique witnesses, in the sense that
for every input there is at most one accepting computation path. We observe that our proof of
Theorem 1, which concerns deterministic branching programs, extends directly to nondeterministic
ones with unique witnesses.

A nondeterministic branching program is defined in the same way as a branching program,
except that there can be any number of transitions out of a node labeled by the same symbol. Such
a branching program accepts input r if there is a choice of transitions consistent with the input
that lead from its start state to its accept state. We say a nondeterministic branching program has
unique witnesses if for every input there are zero or one accepting computation paths.

Lemma 4. Let S be a log-space stack machine with random tape alphabet {0, 1} that makes k passes
over its random tape. Then, for every λ and x there is a nondeterministic branching program Bx
with random tape alphabet Σ = {0, 1}λ of width 2Oλ((logn)2) that reads every random input symbol
at most k times such that Bx on input r simulates S on input x and randomness r. Moreover, Bx
has unique witnesses.

We now sketch the proof of this lemma. We will first describe the proof without worrying about
the unique witness property, then describe some modifications that provide this additional feature.

To begin with, we may assume without loss of generality that the tape of S consists of dn/λe = m
symbols taking values in alphabet Σ instead of n symbols from {0, 1}. This can be shown by a
straightforward simulation of which we omit the details.

Notice that there is no a priori running time bound on log-space stack machines.3 However,
the time-compression lemma [DNPS11] allows us at the cost of some advice to bound the running
time of a stack machine in time proportional to its number of passes over the random tape. By
doing a standard timed simulation, we may also assume without loss of generality that the head
of the randomness tape moves in an oblivious manner, i.e. independent of the random bits seen
in the computation. It will also be convenient to assume without loss of generality that the stack
machine accesses its random tape only k many times, i.e. when it moves its head over the random
tape. Finally, we may assume that S empties its stack and enters a “canonical configuration” before
accepting. We will also assume that λ is a constant depending only on k. We summarize these
simplifications in the following claim.

Claim 1. Let S be a stack machine with space O(log n) that makes k passes over its random tape.
There exists a stack machine M simulating S and a collection of advice strings {ax, x ∈ {0, 1}∗}
with |ax| = poly(|x|) such that on input (x, ax), where |x| = n, M uses space O(log n), runs in time
kpoly(n), makes k passes over its random tape, the motion of the randomness tape head of M is

3It is possible to show that a halting computation takes at most 2poly(n) steps, but super-polynomial running
time seems necessary, since if for every log-space stack machine there is a log-space stack machine that works in
quasi-polynomial time then P = NC (e.g. [Ruz80, BCD+89]).
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independent of the contents of this tape, the transitions depend on the random tape symbols only at
the time steps where the random tape head moves, and whenever M(x, ax) accepts its stack and its
work tape are empty and its heads point to the last positions of the respective tapes.

For every x ∈ {0, 1}∗, we now show how to construct a nondeterministic branching program
that simulates M on input (x, ax). The canonical simulation of M(x, ax) by a branching program
is not width-bounded, as the stack may grow indefinitely. The idea is to use nondeterminism in
order to keep the portions of the stack that the branching program has to remember small. The
main challenge is doing this while preserving the number of accesses to the random tape symbols.

A surface configuration of M on input (x, ax) consists of the head positions on the tapes, the
content of the tapes, the state, the top stack symbol (or the symbol ⊥ if the stack is empty), and the
time step of the computation.4 An incomplete configuration is a surface configuration without the
contents of the randomness tape; we use c(r) to denote incomplete surface configuration c instan-
tiated with randomness r. The surface configurations of M(x, ax) can be naturally represented by
strings of size O(log n). Let start and accept denote the unique starting and accepting incomplete
surface configurations of M .

We call a pair of configurations (c0(r), c1(r)) realizable if starting from configuration c0(r) the
computation reaches c1(r) at the same stack height during which the machine never pops a symbol
below this stack height. It is easy to see that the realizable pairs can be characterized inductively
as follows: (1) For every configuration c(r), the pair (c(r), c(r)) is realizable; and (2) If (c0(r), c(r))
is realizable, (c′(r), c′1(r)) is realizable, and there exists a stack symbol σ so that c′(r) follows c(r)
by pushing σ and c1(r) follows c′1(r) by popping σ, then (c0(r), c1(r)) is realizable. In this case we
will say (c0(r), c1(r)) breaks into (c0(r), c(r)) and (c′(r), c′1(r)).

Applying this characterization recursively, we can break every realizable pair into a binary tree.
A realizable pair tree is a tree whose nodes are labeled by realizable pairs in the following way. The
leaves are labeled by pairs of the form (c(r), c(r)), and a node (c0(r), c1(r)) has children (c0(r), c(r))
and (c′(r), c′1(r)) whenever (c0(r), c1(r)) breaks into (c0(r), c(r)) and (c′(r), c′1(r)). If a computation
path of M(x, ax) reaches c1(r) from c0(r) in t steps, then the corresponding realizable pair tree
whose root is labeled by (c0(r), c1(r)) has t+ 1 nodes.

Let c0 and c1 be a pair of incomplete configurations. Consider the following nondeterministic
branching program Bc0,c1(r) that checks if (c0(r), c1(r)) is realizable: If c0 = c1, accept. Otherwise,
guess three incomplete configurations c, c′, c′1 such that (c0(r), c1(r)) breaks into (c0(r), c(r)) and
(c′(r), c′1(r)). Accept if both Bc0,c(r) and Bc′,c′1(r) accept and reject otherwise.

By construction, the branching program Bstart,accept(r) accepts if and only if S(x) accepts with
randomness r. Moreover, this branching program preserves the access pattern of S(x) to its random
tape (recall that we have assumed that there are ≤ k · m many configurations where the stack
machine accesses its random tape). However, there are two main issues we need to resolve. First,
the width of the branching program could be very large because the depth of the recursion, which
equals the depth of the realizable pair-tree whose root is labeled by (start(r), accept(r)), could be
very large. We resolve this by traversing the tree in a balanced way. Second, we must ensure that
each symbol of the random tape is accessed at most k times. Note that even rejecting paths of
the nondeterministic computation must obey this restriction. To resolve this, we ensure that each
time step of the stack machine computation is not simulated more than once. To that end, we
maintain a set of active time intervals. Because of the depth of the recursion and the invariants of
the simulation, we are able to update this set consistently without ever storing more than Oλ(logn)
intervals. The formal description of the simulation and the details of the analysis, as well as the
modification for unique witnesses are given in Appendix A.

4Crucially, in Cook’s work [Coo71] the surface configuration does not include the time-step.

11



Acknowledgements

We are grateful to the anonymous referee that pointed out a fundamental flaw in the proof of a
previous version of our main theorem.

References

[AB84] M. Ajtai and M. Ben-Or. A theorem on probabilistic constant depth computations. In
Proceedings of the sixteenth annual ACM symposium on Theory of computing, STOC
’84, pages 471–474, New York, NY, USA, 1984. ACM.

[AGHP90] Noga Alon, Oded Goldreich, Johan H̊astad, and René Peralta. Simple constructions
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A Omitted Details of Stack Simulation by Branching Programs

In Section 4 we described a simulation which resulted in a read-k branching program with very large
width. Here, we show how to perform the simulation with width 2Oλ(log2 n), with out increasing the
number of reads per symbol.

To reduce the width of this branching program we perform an optimization. If the realizable
pair tree has t nodes, then it has a subtree of size at least t/3 but no more than 2t/3 (see for
example Lemma 1 of [BPW11]). The branching program will guess the label at the root of this
subtree, recursively check that (c0, c1) is realizable assuming its guess was correct, and verify that
its guess was correct. This optimization breaks up the verification of a realizable pair tree of size t
into two subproblems of size at most 2t/3 each, which can be solved recursively.

To implement this recursion, the branching program will need to keep track of its realizable
pair guesses G so far. To make sure the resulting branching program performs at most k reads per
symbol, we must ensure that every time interval of the simulation is covered at most once. We now
give the implementation of this optimized branching program that represents the predicate “There
exists a realizable pair tree of size t whose root is labeled by (c0(r), c1(r)) where all the incomplete
pairs in G are assumed to be realizable on input r.”

The time interval int(c0, c1) of a configuration pair (c0, c1) is the interval [t0, t1] where t0 and
t1 are the timestamps of c0 and c1, respectively. We use |int(c0, c1)| to denote the length t1 − t0 of
the time interval.

Bc0,c1,G,t: On input r,
1 If t = 0, reject. If c0 = c1 or (c0, c1) ∈ G, accept.
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2 If G has size more than K log n, reject. Otherwise,
3 Guess five incomplete configurations c, c′, c′1, g0, g1 and a number s, 0 ≤ s < 2t/3

such that their time stamps of c0, c, c
′, c′1, c1 are increasing,

and int(g0, g1) ⊆ int(c, c′) or int(g0, g1) ⊆ int(c′, c′1),
and int(g0, g1) does not intersect the time interval of any pair in G.

4 Recursively evaluate Bc0,c,G∪{(g0,g1)},s(r). If it rejects, reject.

5 If c′(r) does not follow c(r), reject.
6 Recursively evaluate Bc′,c′1,G∪{(g0,g1)},2t/3−s−1(r). If it rejects, reject.

7 If c1(r) does not follow c′1(r), reject.
8 Recursively evaluate Bg0,g1,∅,2t/3(r) and output its answer.

In line 2, K is a constant whose meaning we explain shortly. Let Bx(r) = Bstart,accept,∅,t+1(r),
where t is an upper bound on the running time of M(x, ax) where |x| = n. It follows from our
discussion that if S accepts x on randomness r, then there exists a realizable pair tree of size t+ 1
whose root is labeled by (start(r), accept(r)). Moreover, there exists a tree of “good guesses” G
that reduce the sizes of the trees to be checked at each step by a factor of at least 2/3. Since the
size of the realizable pair tree of (start, accept) is polynomial in n, it follows that the depth of this
tree of good guesses is at most K log n for a sufficiently large constant K.

If S does not accept x, then no such realizable pair tree of any size exists so Bx does not accept
r. Finally, note that by the properties of the realizable pair tree this recursion cannot access the
same random tape symbol more than k times; whereas if all of the guesses correctly correspond to
a realizable pair tree for an accepting computation then no time interval overlaps. The details of
the inductive argument are left to the reader.

It remains to analyze the width and input access of Bx. Assuming G has size Oλ(log n), the
tuple (c0, c1, G, t) can be described using Oλ((log n)2) bits. Apart from the recursive calls Bc0,c1,G,t
has poly(n) nodes; so Bc0,c1,G,t has size (and therefore width) 2Oλ((logn)2) as desired. For the input
access, notice that the symbols of r accessed in the recursive calls of Bx are all disjoint, and so if
every symbol of r in the computation M(x, ax) is accessed at most k times, the same will be true
for Bx (although the order of access may change).

Unique witnesses Assume Bc0,c1,G,t(r) accepts. We describe how to modify Bc0,c1,G,t to make
its accepting computation unique. To do so, is it sufficient to ensure that inductively, there is a
unique choice of the guesses c, c′, c′1, g0, g1, s that leads to acceptance.

Let us assume that all the guesses in G are realizable. We observe that because our stack
machines are deterministic, a realizable pair (c0, c1) admits a unique realizable pair tree. Moreover,
it can be shown inductively that this tree has exactly |int(c0, c1)|+1 nodes. Thus, without sacrificing
correctness, we may set s = |int(c, c′)|+ 1 in line 3. Then there is a unique guess of c′ and c′1 (the
unique choice so that (c0, c1) breaks into (c0, c) and (c′, c′1)) that leads to acceptance.

However, there may be multiple choices of (g0, g1) that yield accepting computations because the
realizable pair tree of c0, c1 could have several subtrees of size at most 2t/3. To remove this source
of alternatives, we will force Bc0,c1,G,t to make a canonical choice of (g0, g1): We will require that
the subtree rooted at (g0, g1) is the largest leftmost subtree of size at most 2t/3. We enforce this
requirement by checking that all subtrees encountered along accepting computations are consistent
with this condition.

To carry out these checks, we extend the definition of G to include the maximum allowed size
smax of the realizable pair tree for each of its pairs (g0, g1); now the elements of G will have the
form (g0, g1, smax) where smax is an integer. We will say G is inconsistent with the pair (c0, c1) if
for some (g0, g1, smax) in G, |int(g0, g1)| + 1 ≤ |int(c0, c1)| + 1 ≤ smax, but c1 has a smaller time
stamp than g0.
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We make the following changes to the above branching program Bc0,c1,G,t. We replace lines 1

and 3 with the following ones:

1 If t = 0, reject. If c0 = c1 or (c0, c1, s) ∈ G for some s, accept.
3 Guess five incomplete configurations c, c′, c′1, g0, g1 and set s = |int(c, c′)|+ 1

and lines 4 and 6 with

4 Recursively evaluate Bc0,c,G∪{(g0,g1,2t/3)},s(r). If it rejects, reject.

4.1 If G is inconsistent with (c0, c), reject.

6 Recursively evaluate Bc′,c′1,G∪{(g0,g1,2t/3)},2t/3−s−1(r). If it rejects, reject.

6.1 If G is inconsistent with (c′, c′1), reject.

Lines 4.1 and 6.1 ensure that all the realizable pair trees in G are the leftmost subtrees (of the
realizable pair tree of (c0, c1) with at most the proscribed size, and so the choices in G that lead to
an accepting computation are unique.

B Partition Lemmas

In this section, we give a proof of Lemma 2 and show that it is nearly tight.

Proof. The collection C can be constructed randomly by including each i ∈ [t] into C independently
with probability 1/2. On average, every “variable” j ∈ [n] appears in at most k of the sets Si; in
fact, we will argue that this is the worst case. Let Xj be the indicator random variable which takes
value 1 if the index j ∈ [n] belongs to some Si with i ∈ C. We will bound the expectation and
variance of

∑n
j=1Xj , the number of variables covered by C.

If index j appears in `j subsets, we have E[Xj ] = 1−2−`j (the probability they are all excluded
is exactly 2−`j ). By the arithmetic-geometric mean inequality, we have that

E[
n∑
j=1

Xj ] =
n∑
j=1

E[Xj ] = n−
n∑
j=1

2−`j ≤ n− n · 2−(1/n)
∑n
j=1 `j = (1− 2−k)n.

We proceed to bound the variance so that we may apply Chebyshev’s inequality:

σ2 = Var[

n∑
j=1

Xj ] =

n∑
j=1

Var[Xj ] +
∑
j 6=`

Cov[Xj , X`]

=
n∑
j=1

Var[Xj ] +
∑
j 6=`

E[XjX`]−
∑
j 6=`

E[Xj ]E[X`]

≤
n∑
j=1

Var[Xj ] + t(nk/t)2

≤ n+ t(nk/t)2

The last inequality is a trivial upper bound on the sum of the variances; the second to last inequality
holds because E[XjX`] = E[Xj ]E[X`] unless indices j and ` occur in the same bucket, and there
are at most t(kn/t)2 such pairs (since each bucket has size at most kn/t). Now we have σ ≤
(nk/

√
t) +
√
n, so Chebyshev’s inequality yields

1/4 ≥ Pr[

n∑
j=1

Xj > 2σ + µ] ≥ Pr[

n∑
j=1

Xj > n(
2k√
t

+
2√
n

+ 1− 2−k)] = Pr[

n∑
j=1

Xj > α · n].
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The argument can be repeated for C; a union bound gives that over half of the partitions will satisfy∣∣⋃
i∈C Si

∣∣ ≤ α · n and
∣∣⋃

i∈C Si
∣∣ ≤ α · n . �

Here we argue that the partition (C, C) in Lemma 2 in Section 3.1 provides a cover of essentially
optimal size. We view this as evidence that the analysis from this work is unlikely to extend to
formulas of significantly superlinear size.

Lemma 5. Suppose k(1−α) > H(α)+t/n+O(1/n). There exists a collection of sets S1, . . . , St ⊆ [n]
such that (1) Every j ∈ [n] appears in at most k of the Si and (2) For every partition (C, C), either
| ∪i∈C Si| ≥ αn or | ∪i/∈C Si| ≥ αn (or both).

Thus if the conclusion of the lemma is violated, we must have k(1−α) ≤ H(α) + t/n+O(1/n).
For t � n and α, k constant in n, k ≤ H(α)/(1 − α) + o(1) ≤ − log(1 − α) + 1 + o(1), so
α ≥ 1− 2−k+1+o(1).

Proof. Make k copies of every variable j ∈ [n] and place each of these copies independently and
equiprobably into a set Si. Fix any partition (C, C) of [t]. Without loss of generality, assume
|C| ≥ t/2, for otherwise we may work with its complement. The probability that there exists a set
U ⊆ [n] of size (1−α)n that is disjoint from ∪i∈CSi is at most

(
n
αn

)
2−k(1−α)n ≤ 2−k(1−α)n+H(α)n+O(1).

Taking a union bound over all partitions, we obtain that the probability there exists a partition
(C, C) condition (2) is at most 2t−k(1−α)n+H(α)n+O(1), so conditions (1) and (2) can be satisfied as
long as k(1− α) > H(α) + t/n+O(1/n). �

16


