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Abstract

A principal wishes to induce an action from agents that belong to a
social network. Agents’ social benefit from taking the action increases with
any additional friend who acts. On top of the social benefits, the principal
offers external rewards in order to sustain a unique Nash equilibrium where
everyone acts. We first show that in the influence mechanism that minimizes
the principal’s expenses, popular agents receive a preferential treatment
from the principal. Using this observation, we identify networks that are
most favorable for the principal to induce action. Such networks, “galaxies”,
partition nodes into stars and periphery, with every star being linked to all
nodes, and every periphery node being linked only to stars. We discuss the
relevance of this finding to social media platforms (such as Facebook and
Twitter) in terms of manipulating the network, as well as to regulators who
would attempt to prevent such manipulations.
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1 Introduction

The economics literature on social influence in networks has thrived during the past
few decades with both theoretical and empirical works. To an extent, the growing
interest in these topics has been triggered by the proliferation of online social net-
works. Theory papers have provided important models for the process of network
formation and the spread of influence within networks (Jackson and Wolinsky,
1996; Kempe et al., 2003; Ballester et al., 2006; Jackson, 2011). Empirical pa-
pers used existing data as well as field experiments to study how behavior diffuses
within network (Ichino and Maggi, 2000; Sacerdote, 2001; Mas and Moretti, 2009;
Banerjee et al., 2013).

However, less has been written on the mechanisms that enhance social influ-
ence and on how external forces to the network can utilize such mechanism to
affect individuals’ behavior. We also note that the literature is thin in addressing
the question of which network structures are more susceptive to developing social
influence – or put differently, which network structures are more suitable for ex-
ternal forces to utilize social influence in trying to affect individuals’ behavior. In
this paper we attempt to precisely answer these questions.

The role of external forces to the network in utilizing social influence has be-
come salient following the Cambridge Analytica scandal that exposed ways in
which Trump’s 2016 election campaigners engineered their activities on Facebook
to manipulate social influence using big data. It is also reasonable to assume that
companies such as Facebook and LinkedIn gain by having more control over the
flow of social influence through their platforms, as social influence can be utilized
to make commercial ads more effective, and hence increase their market price and
consequently also the revenues of the social network company. To the extent that
the public and its regulators should be concerned about companies’ excessive con-
trol over social influence, it is important to understand how such control can be
optimally established and what sort of network structures are more vulnerable to
such manipulation. Finally, our results are also relevant to benevolent authorities
that seek to use social influence to increase social welfare without implementing
legal measures. Social distancing and self-quarantine would be the relevant actions
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in the context of COVID-19 pandemic. Online public campaigns against smoking
or alcohol consumption to improve public health also come to mind.

We use a simple model of social influence based on graphs, where nodes repre-
sent individuals/agents, and edges represent links/friendships. An external force
or a principal desires to induce as many people as possible to take a certain action
(i.e., vote for a certain candidate, buy a specific product, commit to a certain
behavior that protects the environment, or self-isolate during an epidemic, etc.).
Our main behavioral assumption is that by taking the action, each agent induces
positive externality on each of his/her friends who took the action as well. We
interpret this positive externality to be driven by psychological or social factors
such as conformism but it can also take the form of consumption benefits when
the underlying action involves purchasing a certain network product. In addition
to this social payoff and the cost of taking the action, the principal contracts
with each agent to promise a certain reward if the agent takes the action. These
transfers should primarily be interpreted as resources invested by the principal to
convince the agent to take the action or reduce the (mental) cost of taking the
action. Each set of transfers induces a game between all members of the network
with each player having two strategies: either taking the action or refraining from
doing it. We will be interested in the scheme that minimizes the principal’s total
transfer to the agents subject to inducing all agents to take the action in a unique
Nash equilibrium. The requirement of uniqueness is driven by the assumption that
the principal cannot coordinate his/her agents to play a specific equilibrium and
we shall discuss this assumption later.

Our first result characterizes the optimal mechanisms for utilizing social in-
fluence. In all mechanisms the equilibrium is obtained by iterative elimination of
dominated strategies. But more importantly our result highlights the importance
of degree centrality in networks, as it shows that those who enjoy higher centrality
receive preferential treatment from the principal. Players of high-degree central-
ity receive higher-powered incentives than the rest and take the role of network
leaders, allowing the principal to utilize his/her social influence on others. As pe-
riphery players expect leaders to take the action, a lower-powered incentive would
suffice to induce them to act as well. Put differently, players with low-degree cen-
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trality face smaller (strategic) risk when taking the actions and hence receive lower
premiums to compensate for this risk than high-centrality players.

Perhaps the most novel aspect of our paper is the objective of characterizing the
network structures that are most vulnerable to the spread of social influence. Put
differently, we are interested in those network architectures that allow the principal
to induce all agents to take the action at the lowest possible overall cost. Our
results here are informative not only for bodies that seek to utilize social influence
online, but also those that seek to diminish it (such as internet regulators). We
believe these results to be highly important because major internet players (such
as Facebook, Google, and other social media platforms) have enormous power
not only over the design of incentives to undertake specific actions for a given
network, but also over the design of the network’s structure itself. Facebook’s
algorithms that determine friend suggestions and whose post appears on whose
feed are constantly restructuring the network. If these algorithms can be alerted
when the network architecture approaches a certain critical level of vulnerability to
the rapid spread of social influence, these companies may choose to take preventive
measures or, if not, be forced to do so by regulators.

Our finding regarding the principal’s optimal network structure is that un-
der mild and intuitive conditions networks possessing the hub-and-spoke type of
architecture allow for the most effective exploitation of social influence. These
graphs, that we call “galaxies”, have the following simple structure: the set of
nodes (agents) is partitioned into two subsets, “stars” and “periphery”. Every star
is connected to all other nodes, while periphery nodes are connected only to stars.1

A novel feature of our model that allows us to study optimal networks in a greater
generality is the degree-dependent network effects. Specifically, we assume that
while the influence of friends is linear in the number of friends taking the action,
the degree of influence of a specific friend is declining with one’s number of friends.

1The hub-and-spoke network structures related to our galaxies arise in several other contexts.
König et al. (2014) derive nested split graphs as limits of a certain stochastic network formation
process, whereas Goyal and Joshi (2003) and Goyal et al. (2006) uncover the role of inter-
linked stars in, respectively, oligopoly collaboration networks and co-authorship network among
economists. While galaxy satisfies most of the properties of the structures described in this
literature, it remains a special case of hub-and-spoke network.
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To the best of our knowledge it is the first paper to explore this idea.
Finally, we consider two modifications of the benchmark model. First, we note

that social influence is not always symmetric. This asymmetry is exemplified by
online social networks such as Twitter and Instagram, where one can follow and
be influenced by other users without necessarily exerting influence on them. We
present a simple extension of our model, based on directed graphs, that accounts
for asymmetric social influence. It turns out that the principal’s optimal directed
networks are acyclic tournaments: agents are arranged in an arbitrary sequence,
and are influenced by all the agents in front of them. Second, at the end of the
paper we investigate a model where agents who take the action actively influence
their friends to follow suit. We show that many insights from the original model
continue to hold, and, in particular, galaxy networks are still optimal.

1.1 Literature review

This paper contributes to a vast literature on peer effects and social networks. The
literature studies how social interactions affect the adoption and spread of behav-
iors, technologies, and ideas. Methodologically, the existing papers follow one of
the two avenues. The first strand of theoretical literature examines how locally in-
teracting individuals coordinate their actions (Ellison, 1993; Morris, 2000; Jackson
and Yariv, 2007; Jackson and Rogers, 2007). These papers consider games where
players face a simple choice whether to adopt some behavior or not. Researchers
study how adoption levels and dynamics of diffusion relate to characteristics of so-
cial interaction networks. Often in these papers a network is not perfectly known
and is described solely by its degree distribution (Jackson and Rogers, 2007; Jack-
son and Yariv, 2007), whereas players repeatedly revise their actions according to
a best response dynamics. The other strand of theoretical literature studies how
the intensity of agents’ actions, such as the effort they invest in production of a
local public good, depends on their position in a network. This literature con-
siders continuous-action models with linear best replies where equilibrium actions
depend on a player’s Bonacich centrality (Ballester et al., 2006; Bramoullé and
Kranton, 2007; Ghiglino and Goyal, 2010; Bramoullé et al., 2014). We adopt the
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binary action framework of the former literature to raise and answer two novel
questions: what are the optimal mechanisms for exploiting social influence and
which networks are most susceptive to the external influence?

Our work is also related to a literature on pricing and targeting in social net-
works.2 Like our paper, this literature considers an outside player who takes action
to affect agents’ behavior in a network. Typically these papers study a problem
of price-discriminating firms in the presence of consumption externalities. The ex-
amples include Candogan et al. (2012), Bloch and Querou (2013), and Fainmesser
and Galeotti (2016), who explore, albeit in different theoretical frameworks, how
optimal prices and welfare depend on network characteristics. Two related prob-
lems are the analysis of “key” players whose removal induces the greatest change
in equilibrium aggregate action (Ballester et al., 2006), and the optimal targeting
of interventions in networks by a planner who seeks to maximize the welfare (Ga-
leotti et al., 2017; Talamàs and Tamuz, 2017). On the other hand, the literature
on the intersection of economics and computer science investigates the algorithmic
aspects of optimal pricing strategies (Hartline et al., 2008; Arthur et al., 2009).
It is motivated by so called “viral marketing”, where a firm gives discounts or
free samples to influential individuals, hoping to eventually reach more customers.
Similarly, Domingos and Richardson (2001) and Kempe et al. (2003) consider a
related algorithmic problem of maximizing a spread of influence over a social net-
work.3 In fact, we adopt a variant of a linear threshold model of social influence,
a benchmark in many computer science papers, introduced in Granovetter (1978).
In this model, each agent acts if and only if some linear function of the sum of ac-
tions of her friends exceeds this agent’s individual threshold. Although our model
can be interpreted in the context of price-discriminating monopolist selling an
indivisible good, our approach is substantially different. First, our analysis of op-

2Bloch (2016) provides a comprehensive survey of this literature.
3However, the typical problem considered by this literature is different. In particular, for a

parameter k one is asked to find k nodes, such that if these nodes act, eventually the maximal
number of other nodes also choose to act. By contrast, we look for a profile of thresholds such
that everyone acts in the unique equilibrium of the induced game on a network, and the sum
of the thresholds is maximized. Whereas the former problem is NP hard, we provide a simple
solution to the latter one.
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timal influence mechanisms uses the unique implementation framework currently
unexplored in the literature.4 Second, we study a new intriguing question: which
networks are more susceptive to the manipulation by the external forces?

Our unique implementation approach is motivated by the fact that the princi-
pal cannot coordinate a large group of agents into his most preferred equilibrium.
Several experimental papers show that in the absence of such a coordination de-
vice, the principal’s desired equilibrium tends to unravel (Devetag and Ortmann,
2007). The unique implementation approach has been used in many contracting
environments in the literature. The study of unique implementation in contracting
under multilateral externalities was initiated by Segal (1999) and Segal (2003), who
develop a general contracting model, and Winter (2004), who explores incentives
provision in organizations. Babaioff et al. (2012), Bernstein and Winter (2012),
Halac et al. (2020a), and Halac et al. (2020b) are prominent papers that explore
the implications of unique implementation in different environments.5 Here we
extend their analysis to include local externalities captured by a social network.

The paper is organized as follows. We introduce the model and discuss ex-
amples in Section 2. In Section 3 we characterize optimal influence mechanisms,
while in Section 4 we present the result on networks most susceptive to the ex-
ternal influence. In Section 5 we extend the model to consider asymmetric social
influence, and in Section 6 we consider the active influence model. We present the
formal proofs in the Appendix.

4The existing models of pricing in networks typically assume unique equilibrium by restricting
the value of network effect parameter to be sufficiently small.

5Park (2004), Weyl (2010), and Aoyagi (2013) also address the coordination problem among
consumers in models of network goods. Yet, their solutions are based on adoption-contingent
prices that depend on the total number of adopters. By contrast, we study the bilateral con-
tracting where transfers of agents are not contingent on other parties’ actions.
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2 Model

2.1 Setup

A society consists of n individuals (agents) indexed by i = 1, 2, . . . , n. Each
individual i decides whether to act (xi = 1), or not (xi = 0). Individuals interact
through a social network, represented by an undirected graph with a symmetric
adjacency matrix G, where gij = 1 if and only if i and j are connected (friends) and
gij = 0 otherwise; by convention gii = 0. We let di denote the number of friends of
individual i, i.e., di =

∑
j gij. Individuals are prone to social influence that affects

their incentives to take the action: they are encouraged to act when more of their
friends do. The payoff from taking the action depends on the decisions of friends
in the following way. Given network G and action profile x = (x1, . . . , xn), the
payoff of individual i from taking the action is

Ui(x,G) = f(di)
∑
j

gijxj + ti − ci. (1)

Here the term
∑

j gijxj is the number of friends of i who choose to act, the term
f(di) captures the social influence exerted on i by each such friend, ti is an external
reward for the action, and ci > 0 is the individual cost of the action. Hence,
a payoff from acting is comprised of a social benefit an individual derives from
interacting with active friends and an external incentive. Social influence is always
positive, f(di) > 0, meaning that the payoff from acting is linearly increasing
in the number of active friends. Our central and novel assumption is that it is
also a weakly decreasing function of the number of friends of individual i, i.e.,
f(m) ≥ f(m + 1) for m = 1, 2, . . . , n. The assumption reflects the idea that
someone with more friends is swayed less by each one of them. We normalize the
payoff from abstaining, xi = 0, to zero. Hence, (1) can be viewed as the individual
incentives to act given a social network and the behaviors of others.

Consider the resulting simultaneous move game with complete information.
Because f(di) > 0, the game involves strategic complements. Therefore without
the appropriate external rewards, typically, there are multiple equilibria, in some
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of which agents may fail to coordinate on acting.

2.2 The principal’s problem

The principal wishes to induce all individuals to act by offering the rewards. An
influence mechanism is a profile of rewards paid to agents if they choose to act, i.e.,
a vector t = (t1, . . . , tn). Because the game between the agents might have multiple
equilibrium outcomes, we require that the rewards offered by the principal induce
a unique equilibrium where all agents act. Formally, an influence mechanism t

is incentive-inducing (INI) if x = (1, . . . , 1) is a unique Nash equilibrium of the
simultaneous move game induced by t. Clearly, such influence mechanisms exist
because the principal can make acting a strictly dominant strategy for each agent
i by offering ti > ci. Moreover, if t is INI, then so is each t′ > t. However, the
principal wants to induce action at the minimal total reward. Influence mechanism
t is optimal if it has the lowest total reward among all INI mechanisms, i.e.,∑
ti ≤

∑
t′i for each INI mechanism6 t′.

The total reward required to induce all agents to act depends on the existing
social network. Some networks require a lower total reward than others, and hence
are more susceptible to external influence. A network is optimal if its correspond-
ing optimal influence mechanism has the lowest total reward across all networks.
In the remainder of this section we present two examples based on specific social
influence functions f naturally arising in certain settings. We use the examples to
illustrate the construction of optimal influence mechanisms and compare different
networks in terms of their susceptibility to external influence.

Example 1. Consider the case where individuals directly care about a proportion
and/or an absolute number of friends who take the action.7 Then the social

6Note, however, that a set of INI mechanisms is not closed, so an optimal INI mechanism
may not exist. Let T ∈ Rn be a set of INI mechanisms and T̄ ∈ Rn be its closure. Formally, we
say that influence mechanism t∗ is optimal if t∗ ∈ arg mint∈T̄

∑
ti. Hence, although our optimal

mechanism t∗ may admit multiple equilibria, for every ε > 0 there exists an INI mechanisms t′
which is only ε more expensive, i.e.

∑
t∗i + ε =

∑
t′i.

7The examples of such situations studied in the literature include models of social comparison
(Ghiglino and Goyal, 2010), conformity (Patacchini and Zenou, 2012; Liu et al., 2014), and
general coordination games on network (Jackson and Zenou, 2015). For example, Ghiglino and
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Figure 1: Comparing total rewards in social networks with four agents.

influence of each such friend on agent i is given by

f(di) = α +
1

di
,

where α ≥ 0 is a constant part of the social influence from an acting friend.
When α is small an individual cares mostly about the relative proportion of acting
friends, whose number becomes important as α grows. Consider the networks in
Figure 1 with four agents who have the same cost c. We begin by illustrating
the construction of the optimal influence mechanisms for each network, and then
compare the corresponding total rewards to see which network is easier for the
principal to manipulate.

First, note that, in any network, the principal must induce at least one of the
agent to act even when no one else does (otherwise there will be an equilibrium in
which no one acts). Hence one of the agents must be paid at least c. In a complete
network on the left, all agents are symmetric in the network and therefore we can
let agent 1 receive t1 = c. Second, in a complete network one of the remaining
agents must be paid at least c− α− 1/3; otherwise there is an equilibrium where
only agent 1 acts. Again, by symmetry we can let t2 = c− α− 1/3. Similarly, to
induce one of the two remaining agents to act when both, 1 and 2 act, the principal
must offer a reward of at least c− 2α− 2/3. Let t3 = c− 2α− 2/3. Finally, agent
4 must be paid at least t4 = c − 3α − 1. In fact, this is an optimal influence
mechanism for a complete network with the total reward of 4c − 6α − 2. Now

Goyal (2010) discuss two models, when local aggregate consumption of friends matters and when
local average matters, and provide justification for each case. Both cases are subsumed by our
model.
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consider a network in the middle panel of Figure 1 with a severed link between 3
and 4. Here we can keep the rewards of 1 and 2 unchanged. Moreover, now to
induce agent 3 to act when only 1 and 2 do, the principal can pay her less than
before. Specifically, paying t3 = c − 2α − 1 is sufficient because all her friends
are now active. However, in order for 4 to act when everyone else does, we must
increase her reward by α because now she does not experience social influence from
3. Therefore the optimal reward mechanism in the middle network has the total
reward of 4c− 5α− 9/4. Finally, we turn to the star network in the right panel of
Figure 1. In the optimal reward mechanism 1 is paid t1 = c to act when no one
else does. Furthermore, to induce every other agent to act we must pay at least
c − α − 1. The total reward is 4c − 3α − 3. We find that incentivizing agents in
the middle network is always more expensive, while it is cheaper in the complete
network if α > 1/3, and cheaper in the star network if α < 1/3. Otherwise optimal
mechanisms in the two networks have the same total reward. In section 4 we derive
a general result for this social influence function showing that it always has a “bang
bang” solution. Namely the optimal network can be either a star or a complete
graph. For other types of utility functions this may not be the case as example 2
demonstrates.

Next we provide an example of a social influence function arising from a limited
cognitive capacity model.

Example 2. An individual has a a limited cognitive capacity to be influenced
by a fixed number of k ≥ 1 agents to whom she has links. Moreover she can be
influenced only once by the same person. In particular, suppose that an individual
is going to randomly sample with replacement k ≥ 1 of her friends. Before knowing
who is in her sample, her social incentives to act are proportional to the expected
number of different active friends in the sample. For a sample of k taken with
replacement out of di friends, the expected number of different active friends in
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the sample is8 (
1− (1− 1

di
)k
)∑

j

gijxj.

Therefore we can model this situation by setting

f(di) = 1− (1− 1

di
)k.

The case where k = 1 corresponds to the average comparison model from the
previous example where α = 0, and the case where k → ∞ corresponds to the
case where α is big and agents mostly care about the number of active friends.
Clearly, f is decreasing in the number of friends. Suppose now that k = 2 and
agents have the same cost c as before. Using the argument mentioned above we
can derive the corresponding optimal influence mechanisms for each network. For
example, in the middle network an optimal mechanism is as follows. Agent 1 is
paid to act independently of others, and hence t1 = c. Agent 2 is paid to act only
when 1 acts, i.e., t2 = c− (1− (1− 1/3)2). Agents 3 and 4 must be paid rewards
that induce them to act when 1 and 2 act, i.e., t3 = t4 = c − 2 (1− (1− 1/2)2).
Hence, the total reward in the middle network is roughly 4c− 3.56. Similarly, we
find that a total reward in the complete network is approximately 4c− 2.63 , and
that in the star network it is 4c − 3. Thus, it is now cheaper for the principal to
incentivize agents in the middle network. In a later section we introduce a general
network structure that unifies the above three networks, a galaxy, and show that
under some natural assumptions an optimal network is, indeed, a galaxy.

2.3 Discussion

Our central requirement that the design of incentives generate a unique equilib-
rium guarantees that the mechanism screens out bad equilibria, including the one

8Let X be a random variable equal to the number of active agents in a sample of k. Then
we have X = X1 + · · ·+ X∑

gijxj
, where each Xl is a random variable equal to 1 if active agent

1 is in the sample, and equal to 0 otherwise. Taking the expectation we have E(X) =
∑

E(Xl),
where the summation is over the active agents in the friendhood of i. Then for each active friend
l, E(Xl) = Prob(l is in the sample) = 1−(di−1

di
)k. And hence E(X) =

(
1− (1− 1

di
)k
)∑

j gijxj .
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where no player takes the desired action. Indeed, several experimental papers find
that subjects are often trapped in bad equilibrium outcomes in environments with
externalities (e.g., Devetag and Ortmann, 2007). Hence, unless the principal pays
the extra premium to screen out the bad equilibria, such equilibria are likely to
prevail.

We have assumed that the players take their actions simultaneously, i.e., with-
out observing the action of anyone else. However, exactly the same results can
be obtained if we impose an order of moves on the players, and assume that each
player is informed about earlier decisions made by his friends. This alternative
framework requires a stronger solution concept than subgame perfection (SPE), a
subgame dominant equilibrium (SDE) (Halac et al., 2020a). Furthermore, it will
require that the principal choose the order of moves. Unlike SPE, which requires
that the strategy profile yield a Nash equilibrium in every subgame, SDE requires
that this equilibrium also use a dominant strategy in every subgame. We elaborate
on this result in the Appendix.

Finally, we focus on situations where social influence induces complementar-
ities in agents’ actions. In some cases, however, social influence can lower the
incentives to act. In this case of strategic substitutability our problem is much
simpler. Optimal influence mechanism provides rewards sufficient to induce all
agents to act when everyone else does, thus making acting a dominant strategy.
Furthermore, empty networks are trivially optimal, because every new link makes
it more expensive for the principal to induce action.

3 Optimal influence mechanism

In this section we characterize optimal influence mechanisms for arbitrary net-
works. We shall show that these mechanisms crucially depend on agents’ degree
centrality. Central agents will receive favorable treatment to compensate them
for the strategic risk that they face. This will allow the principal to spend fewer
resources on more peripheral agents.

We now generalize the construction of the optimal influence mechanisms given
in the examples from the previous section. We say, an influence mechanism t is
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tight if it is incentive-inducing (INI) and there does not exist another INI influence
mechanism t′ such that for some i we have ti > t′i and tj = t′j for all j 6= i. In words,
if t is tight then we can not lower reward of any single agent without violating
the requirement of the uniqueness of the “all act” equilibrium. Clearly, an optimal
influence mechanism is tight. It turns out that there is surjection between a set of
permutations of agents and a set of a tight influence mechanisms.9

Lemma 1. An influence mechanism t = (t1, . . . , tn) is tight if and only if there
exists permutation π such that for all i,

ti = ci − f(di)
∑

j:π(j)<π(i)

gij, (2)

where π(i) denotes the place of agent i in permutation π.

In particular, given a permutation of agents, we can use (2) to construct a
tight influence mechanism. In this mechanism every agent i is compensated for
her individual cost of taking the action, ci, net of the social benefit she receives
from her friends that are earlier in the corresponding permutation. The term
f(di)

∑
j:π(j)<π(i) gij in (2) captures the extent to which the principal can exploit

the social influence exerted on agent i by her friends in such a mechanism. Notice
that despite the fact that in equilibrium every agent acts, in a tight influence
mechanism the principal cannot extract the entire social benefit from each agent.
For instance, in Example 1 a permutation that corresponds to the constructed
optimal influence mechanism for a complete network is (1, 2, 3, 4). Here agent 2
is compensated for her cost, c, net of the social influence exerted by agent 1, i.e.,
α+ 1/3. Note, however, that in equilibrium the social benefit that agent 2 derives
from acting is 3α + 1, and so she is left with a surplus of 2α + 2/3.

Intuitively, a permutation represents an order in which agents iteratively elimi-
nate dominated strategies. Indeed, in any incentive-inducing influence mechanism,
there must exist an agent who acts regardless of other players’ decisions. That
is, acting is her dominant strategy. This agent appears first in the permutation,
and she is paid just enough to act when no one else does. Similarly, there must

9All the proofs are deferred to the Appendix.
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exist one agent for whom acting is a dominant strategy conditional on the first
agent acting (otherwise we would have an equilibrium where all agents but the
first one stay still). This agent is placed second in the permutation, and receives
just as much as would induce her to act given that the first agent is acting, and so
on. Hence, for each incentive-inducing mechanism we can inductively construct a
corresponding permutation of agents.

Given the above lemma, finding an optimal mechanism reduces to a simpler
problem of maximizing over permutations. Call a permutation of agents π nonin-
creasing if among any two connected agents the one with a strictly higher degree
appears earlier in permutation π; i.e., for all agents i and j such that gij = 1 and
di > dj, we have π(i) < π(j), where π(i) is the place of agent i in permutation π.

Proposition 1. An influence mechanism t = (t1, . . . , tn) is optimal if and only
if it is induced by a nonincreasing permutation, i.e., there exists a nonincreasing
permutation π such that t is given by (2).

To understand why the mechanisms corresponding to nonincreasing permu-
tations are optimal consider two agents i and j. We say i influences j in an
incentive-inducing mechanism if i and j are connected and i precedes j in the cor-
responding permutation. When should i influence j, or vice versa? If i influences
j, then the principal can extract f(dj) from j because when deciding to act j can
count on i acting, as i is provided with sufficient incentives to do so. On the other
hand, if j influences i, then the principal can extract f(di) from player i. Since
f is a nonincreasing function, in order to maximally lower the total reward the
principal designs the mechanism so that an agent with a higher degree influences
one with a lower degree, i.e., one who appears earlier in the permutation. Note,
however, that reward is not monotone in an agent’s degree: it is decreasing in the
number of friends with a higher degree than hers. Agents with relatively more
connections than their friends get higher rewards, whereas agents with relatively
fewer connections get lower rewards.
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4 Optimal networks

Which social networks are the easiest to manipulate? In this section we fully
characterize such optimal networks. While the results here are of interest in them-
selves, they also help us to understand when an interested party will prefer one
network to another. Indeed, in some circumstances the principal not only controls
the external rewards, but also has a certain influence on the network architecture,
which is arguably the case with online platforms such as Facebook and LinkedIn.

First, we introduce three assumptions about the function f , which captures
how the social influence exerted on an agent by an active friend depends on the
total number of friends the agent has. Acquiring a new active friend has two
countervailing effects on an agent’s incentives to act. On the one hand an agent
experiences the dilution of the social influence from his existing active friends.
Specifically, because f is decreasing in an agent’s degree, each active friend now
exerts lower social influence on an agent. On the other hand, the agent obtains
one more active friend who influences her to take the action. Our first assumption
is that the overall effect of introducing a new active friend is nonnegative. Put
differently, adding a link to an active agent can only increase the incentives of
other agents to take the action. Formally, consider an agent with m friends and
k ≤ m active friends. Suppose that this agent forms a friendship with another
agent who takes the action. We assume that the corresponding change in social
benefit she derives from acting is nonnegative:

(k + 1)f(m+ 1)− kf(m) ≥ 0, (3)

for all m ≥ 1 and k ≤ m. Rewriting the above as

k (f(m+ 1)− f(m)) + f(m+ 1) ≥ 0,

and noting that f is weakly decreasing in degree, we find that the left-hand side
of (3) is also weakly decreasing in k. Therefore, if (3) holds for k = m, it must
hold for all k ≤ m. Let f(m) − f(m + 1) = ∆(m). We obtain the following
assumption.
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Assumption B (Benefit). For each m ≥ 1, we have ∆(m) ≤ 1
m
f(m+ 1).

Intuitively, the assumption is satisfied when f falls slower than the reciprocal
function x 7→ 1/x. Hence, the extreme case where the above condition holds
with equality is the case of the average comparison model from Example 1 where
f(m) = 1/m. Then individuals care only about a fraction of their friends taking
an action. So, adding a new friend who acts when all of the existing friends also
act does not affect the incentives of an agent.

Since the influence of each existing friend declines with the addition of a new
friend, it is natural to think that marginal dilution is smaller for someone with
more connections. Our second assumption formalizes the idea, requiring f to be
convex.

Assumption C (Convexity). For each m ≥ 1, we have ∆(m) ≥ ∆(m+ 1).

Although convexity alone allows us to considerably narrow down a list of networks,
we will use a stronger assumption in order to pin down a precise structure of
optimal networks.

Assumption SC (Strong Convexity). For each m ≥ 1, we have

∆(m) ≥ ∆(m+ 1)
n+ 2

n
.

Strong convexity requires that the absolute values of forward differences of f be
decreasing at multiple n/(n + 2) or lower, where n is a total number of agents.
One can check that the above examples satisfy both the B and SC assumptions.
Furthermore, note that in a large network our strong convexity condition converges
to a standard notion of convexity.

We call a network galaxy if its nodes can be partitioned into two subsets, S
(stars) and P (periphery), such that nodes in S are connected to all the nodes
in the graph, and nodes in P are connected only to the nodes in10 S. A star

10These graphs are known in the literature as complete core-periphery graphs or complete
split graphs or inter-linked stars. In a complete split graph on n vertices there is a clique of s
vertices, 1 ≤ s ≤ n, and and an independent set on the remaining n− s vertices such that each
vertex of the clique is adjacent to each vertex of the independent set.
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Figure 2: A galaxy with 2 stars and 6 periphery nodes.

network and a complete network are the special cases of a galaxy, and so is the
network in the middle panel of Figure 1, as well as the network with two stars
and six periphery nodes in Figure 2. In general, on n nodes there are only n − 1

different galaxies (up to a permutation of nodes). Finally, we can state our first
characterization of optimal networks.

Proposition 2. Suppose assumptions B and SC hold. Then an optimal network
is a galaxy.

It appears that the easiest networks to manipulate are also the most unequal
in terms of their degree distributions among all similarly dense networks.11 The
presence of highly connected stars allows for the most efficient exploitation of their
social influence on periphery agents. However, the principal does not necessarily
strive to achieve the maximal absolute inequality like in a simple star network:
more connected networks may require lower total rewards because they allow for
more opportunities for social influence. Specifically, an optimal number of stars in
a galaxy depends on the shape of function f . For example, it is clear that if f(di) =

1/di, then a star network is optimal, and if f(di) = k for some positive constant
k, then a complete network is optimal. Similarly, in Example 2 we considered a
function f which makes a galaxy with two stars and two periphery nodes optimal.

11We can make this statement precise using a notion of majorization. For any network, let
d = (d1, . . . , dn) denote a sequences of degrees of its nodes arranged in a non-increasing order.
Then d majorizes d′ if for each k = 1, 2 . . . , n we have

∑k
i=1 di ≥

∑k
i=1 d

′
i, with equality if k = n.

Then a sequence of degrees of nodes in a galaxy majorizes a sequence of degrees of nodes in
every network with the same number of edges.
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We now briefly return to example 1 where agents care about some combination
of local average and aggregate action. Our next result completely characterizes
optimal networks for a specific social influence function in this example.

Corollary. Suppose f(di) = α + 1/di, where α ≥ 0. We have:
(i) if α < 1

n−1 , then an optimal network is a star,
(ii) if α > 1

n−1 , then an optimal network is a complete network,
(iii) if α = 1

n−1 , then each galaxy is optimal.

To better understand Proposition 2 consider an optimal influence mechanism
for a galaxy. In any nonincreasing permutation stars must be followed by pe-
riphery nodes. Hence, the stars receive high differentiated rewards, whereas the
periphery nodes receive the lower identical rewards (because periphery nodes are
not connected between themselves). This situation corresponds to a dominance
cascade, starting with the stars who act one after another and rely only on the
other stars ahead of them, and finishing with the periphery agents relying only on
the stars. That is, the principal provides high-powered incentives to the stars, and
then exploits their social influence on the remaining agents. The formal proof of
the proposition is rather long and we defer it to the Appendix. Instead, we now
give some intuition for the result.

Consider an effect of a new link on a total reward in an optimal influence
mechanism. From the principal’s perspective connecting two agents has a cost and
a benefit due to the induced change in an optimal influence mechanism. When the
principal connects two agents, the one who appears earlier in the permutation will
exert social influence on the other. Therefore the principal will have to increase the
payoff of the influencing agent (due to the dilution), but can reduce the payoff of the
influenced agent. Specifically, fix a network and an optimal influence mechanism,
and consider connecting agents i and j, such that i precedes j in the corresponding
nonincreasing permutation. Then i would suppose that she has one more inactive
friend, and hence experiences the dilution of the social influence exerted by friends
who appear earlier in the cascade (and who, she supposes, take the action). Thus
in order to be induced to act, i must be paid more by the principal. On the other
hand, now j gets to be influenced by i, and hence can be paid less (this follows from
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assumption B). Because convexity implies that, other things being equal, a cost of a
link is lower for an agent with a higher degree, intuition suggests that an optimal
distribution of links must be unequal: some individuals with many connections
must influence less-connected friends. And, indeed, for a given a number of links
a galaxy is the most unequal network in terms of its degree distribution.

Our proof involves two stages. We first show that if in an optimal mechanism
two agents i and j influence, respectively, x and y who follow them in a corre-
sponding nonincreasing permutation, then by convexity at least one of them must
influence both x and y; otherwise it would be profitable to let i influence y in-
stead of j, or j influence x instead of i. We show that this implies that there is
a nonincreasing permutation such that if i influences j, then it must be that each
agent preceding i in the permutation also influences j. We use this observation
along with some symmetry arguments to show that there in an independent set12

of symmetric “periphery” agents who are influenced by everyone else.
In the second stage of the proof we show that each pair of non-periphery agents

is connected. Consider the two cases. First, suppose that more than half of agents
are periphery agents. Then we show that the benefit assumption implies that all
non-periphery agents must be connected between themselves, and hence are stars.
Second, suppose that less than half of the agents are periphery agents. Then using
the strong convexity assumption we show that the benefit of influencing a periphery
agent is less than the benefit of influencing a non-periphery agent, and hence again
it is optimal to connect all non-periphery agents between themselves.13 Therefore,
the entire population is partitioned into stars and periphery as in a galaxy.

4.1 Optimal number of stars in a galaxy

Fix two functions f and h, such that Benefit and Strong convexity assumptions
are satisfied. Moreover, without loss of generality let f(1) = h(1) = 114. We say

12A set of nodes N is called independent if there is no link between any two nodes in N ; a
set of nodes N is called a clique if every two nodes in N are connected.

13Hence, the term of n/2 in the convexity assumption.
14This is a normalization which is without loss of generality when we would like to compare

optimal number of stars in galaxies. One can always appropriately scale the functions in order
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Figure 3: A 2-cluster galaxy with 4 stars.

that function f is flatter than function h if

h(k)− h(k + 1) ≥ f(k)− f(k + 1),

for all k = 1, 2, . . . , n − 1. Intuitively, f admits a uniformly lower dilution effect
than h. Given function f , let s∗(f) denote the optimal number of stars in a galaxy.

Proposition. If f is flatter than h, then s∗(f) ≥ s∗(h).

Proof. For function f , let a total reward required in a galaxy with s stars be Gs
f ,

given by

Gs
f =

∑
ci −

s(s− 1)

2
f(n− 1)− (n− s)sf(s).

Suppose f is flatter than h. For s = 1, 2, . . . , n−1, consider the difference between
the corresponding rewards required in galaxies with s stars,

Gs
f −Gs

h =
s(s− 1)

2
[h(n− 1)− f(n− 1)] + (n− s)s [h(s)− f(s)] .

Note that the above must be weakly negative, meaning that under f total required
reward is lower for all galaxies. Define h(s) − f(s) = δs. For k = 2, 3, . . . , n − 1,

for this condition to hold.
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we can rewrite f(k) in terms of it’s consecutive differences as

f(k) = 1−
k−1∑
i=1

∆f (i),

where ∆f (i) = f(i)− f(i+ 1), for i = 1, 2, . . . , n− 2. Hence, we have

δs =
s−1∑
i=1

∆f (i)−
s−1∑
i=1

∆h(i),

=
s−1∑
i=1

[∆f (i)−∆h(i)] .

Because f is flatter than h, we have ∆f (i) ≤ ∆h(i) for each i = 1, 2, . . . , n − 2.
Hence, δs ≤ 0 and is weakly decreasing in s, for s = 1, 2, . . . , n− 1. Next we show
that

Gs
f −Gs

h ≥ Gs+1
f −Gs+1

h , (4)

for each s = 1, 2, . . . , n−1. That is as one moves from h to f , the required rewards
decrease more in galaxies with more stars. Consider the difference:

Gs
f −Gs

h −
(
Gs+1
f −Gs+1

h

)
=
s(s− 1)

2
δn−1 + (n− s)sδs −

(s+ 1)s

2
δn−1 − (n− s− 1)(s+ 1)δs+1,

= −sδn−1 + (n− s)sδs − (n− s− 1)(s+ 1)δs+1,

≥ −sδn−1 + (n− s)sδs − (n− s− 1)(s+ 1)δs,

= −sδn−1 + (2s− n+ 1)δs,

≥ −sδs + (2s− n+ 1)δs,

= (s− n+ 1)δs,

≥ 0.

Where the first two inequalities follow from δn−1 ≤ δs+1 ≤ δs ≤ 0.
Finally, fix s∗(h), and consider moving from h to f . From (4) it follows that

reward required in s∗(h)-galaxy decreases weakly more than in any galaxy with
fewer stars. Hence, any galaxy with fewer stars cannot be optimal under f .
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4.2 k-cluster galaxies

Relaxing the assumption of strong convexity leads us to generalize the notion of a
galaxy. We call a network a k-cluster galaxy if its nodes can be partitioned into a
clique C0 and k independent sets C1, . . . , Ck such that each node in each of these
sets is connected to every other node in a network. More formally, a network G is a
k-cluster galaxy if there exists a partition of its nodes into k+1 subsets C0, . . . , Ck

satisfying the following three properties:
(i) if i ∈ C0 and j ∈ C0 then gij = 1;
(ii) if i ∈ Cl and j ∈ Cl then gij = 0 for each l ≥ 1;
(iii) if l < h and i ∈ Cl and j ∈ Ch, then gij = 1.

Thus a galaxy is a 1-cluster galaxy. Figure 3 provides an example of a 2-cluster
galaxy. Here each node inside any grey circle is connected to each node in the other
two grey circles. We call nodes in the upper circle stars. Each star is connected
to all 8 other nodes in the network. At the same time, nodes in the left circle are
connected to 7 other nodes each, and nodes in the right circle are connected to 6
other nodes each.

Proposition 3. Suppose assumptions B and C hold. Then an optimal network is
a k-cluster galaxy.

5 Directed networks

In some situations the social influence flows only in one direction. For instance, on
Twitter or Instagram one can follow other users and be influenced by their posts
without necessarily being followed by them in return. In this section we extend
our model to capture this one-directional social influence.

We represent a directed social network by a directed graph with, possibly, an
asymmetric adjacency matrix G, where gij = 1 if and only if i can influence j and
gij = 0 otherwise; by convention gii = 0. We let dini denote the in-degree of node i
in G, i.e., dini =

∑
j gji. It represents the number of individuals who can influence

i. Given network G and action profile x = (x1, . . . , xn), the payoff of individual i
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Figure 4: A directed social network.

from acting is given by

Ui(x,G) = f(dini )
∑
j

gijxj + ti − ci.

We still assume that f(dini ) > 0 and that it is a weakly decreasing function of the
number of individuals who can influence i, i.e., f(m) ≥ f(m+1) form = 1, 2, . . . , n.
Note, however, that the social influence exerted on agent i does not depend on
how many other agents i influences herself. As before, the payoff from abstaining
is zero.

Optimal influence mechanisms for directed networks are more involved. In
particular, ordering agents according to their in-degrees no longer induces optimal
influence mechanisms.

Example 3. Consider a directed network in Figure 4. Here agents 1, 2, and 3
are all influenced by agent 4, who is in turn is influenced only by agents 5 and
6. Although agent 4 has the highest in-degree, in a permutation corresponding to
an optimal influence mechanism she must be placed after agents 5 and 6. In the
corresponding reward profile ti = ci − f(1) for i = 1, 2, 3, t4 = c4 − 2f(2), and
ti = ci for i = 5, 6.

Although there is no simple structure for optimal influence mechanisms in
directed networks, it is clear that optimal directed networks must be easier to
manipulate than optimal undirected ones. Indeed, in an optimal influence mecha-
nism for an undirected network, the principal exploits only the social influence of
agents who are earlier in a nonincreasing permutation on agents who are later in
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the permutation. Now, for a given undirected network we can construct a directed
network by directing links toward agents who are later in the nonincreasing per-
mutation. This, clearly, can only decrease the total reward in an optimal influence
mechanism because each directed link now has positive benefit at no cost. In par-
ticular, we do not need to give higher-powered incentives to earlier players in the
permutation to compensate them for the strategic uncertainty from the possibility
that subsequent agents in the order may avoid taking the action. Consider the
example below.

Example 4. There are four agents who have the same cost c and f(di) = α+1/di.
Suppose first that the social influence is undirected. As we have seen in Example 1,
if α > 5/12, then the complete network on the left in Figure 1 is more susceptible to
external influence than the other two networks. Because these are all the galaxies
with four agents, Proposition 2 implies the complete network is also optimal with
the total reward 4c− 6α− 2. Now consider a directed network obtained from the
complete one by directing each link toward a later agent in permutation (1, 2, 3, 4).
In an optimal influence mechanism, t1 = c, t2 = c − α − 1, t3 = c − 2α − 1,
t4 = c − 3α − 1. Hence, the total reward is 4c − 6α − 3, which is strictly lower
than in an undirected network.

The above example suggests the following intuition. Consider adding a directed
link from one agent to another. By the benefit assumption the incentives of an
influenced agent (the one to whom the link is directed) to take the action increase
if an influencer (the one from whom the link is directed) takes the action. On the
other hand, the incentives of the influencer are not affected, which is in contrast
to the situation with undirected links where both agents experience the dilution
of influence from others. Hence, adding a directed link from the perspective of
the principal has only the benefit without the cost. Thus in an optimal directed
network each pair of agents must be connected by a one-directional link.

We can now describe the architecture of optimal directed networks. A tourna-
ment is a directed network obtained by assigning a direction for each edge in an
undirected complete network. A tournament is acyclic if there are no cycles.

Proposition 4. Suppose that assumption B holds. Then an optimal directed net-
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work is an acyclic tournament.

Proof. Fix an optimal directed network G and let t be the corresponding optimal
influence mechanism. From the proof of Proposition 1 we know that there is a
permutation of agents π, such that t = t(π). We shall show that network G must
be an acyclic tournament such that each node points only to nodes after it in π; i.e.,
for each i and j, gij = 1 if and only if π(i) < π(j). For the sake of contradiction
suppose that there exist i and j such that π(i) < π(j) and gij = 0. Consider
introducing a link from i to j. Then, keeping the permutation of agents unchanged,
the corresponding change in the total reward is negative: ti is unchanged and tj
decreases by the Benefit assumption (j is influenced by one more active agent).
Therefore the total reward in an optimal permutation after the introduction of
a link from i to j must also decrease, a contradiction. Assume now by way of
contradiction that there are i and j such that gij = 1 and π(i) > π(j). Fix
permutation π, and note that removing the link from i to j does not affect ti, and
can only decrease tj because the in-degree of j decreases by one. Therefore there
must exist an optimal directed network that is an acyclic tournament.

We conclude with a couple of simple observations about distinctions between
optimal directed and undirected networks and corresponding influence mecha-
nisms. First, when social influence is asymmetric, dense tournament networks,
where every agent either influences or is influenced by every other agent, are opti-
mal. By contrast, galaxies with only a few links can be optimal if the influence is
symmetric. Second, in the model of undirected social influence the optimal num-
ber of stars in a galaxy is tied to the shape of function f , whereas in the directed
model there is a unique optimal network (up to a permutation of agents). Hence,
an optimal topology of a directed network is more “robust” to the specification of
the model: the principal does not need to know neither the exact function f , nor
whether it is convex or not.
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6 Active social influence

In our benchmark model a social influence exerted by an agent varies across her
friends: more-connected friends are influenced less than the less-connected ones.
One way to think about this model is that social influence is passive and hence
its strength depends only on the characteristics of the influenced agents. It is
not difficult to think of the opposite situation where social influence is active. A
familiar case is when someone who recently became a vegan is actively persuading
her friends to adopt this new lifestyle. In a reduced form model that describes this
situation a strength of social influence naturally depends on the characteristics of
the influencing agent, and hence the same agent will be influenced differently by
every friend. Here we investigate this alternative view of the mechanics of social
influence, and show that many insights from the original model continue to hold.15

Given network G and action profile x = (x1, . . . , xn), we let the payoff of
individual i from taking an action be given by

Ui(x,G) =
∑
j

gijxjf(dj) + ti − ci. (5)

The difference between the above expression and (1) in the original model is the
term

∑
j gijxjf(dj). Here f(dj) captures the social influence that an agent j exerts

on each of her friends, and in particular on agent i, whereas everything else is as
before. Hence, the social benefit of i from taking the action is comprised of the
sum of heterogeneous influences from her friends. As before, social influence is
positive, f(m) > 0, and is a weakly decreasing function of the number of friends
of individual i, i.e., f(m) ≥ f(m + 1) for m = 1, 2, . . . , n. However, now the
interpretation is that an agent splits her attention between influencing each of her
friends, and hence someone with more friends will influence each of them less. We
call models with payoff functions given by (1) and (5) models of passive and active
social influence.

15In fact, one can consider a more general model that incorporates both, passive and active,
influence. In such a model a payoff function of an individual i will be given by Ui(x,G) =
f(di)

∑
j gijxjh(dj) + ti − ci, where f and h are two nonincreasing functions. However, for the

sake of clarity we do not introduce such a general model in this paper.
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It is straightforward to confirm that the result analogous to Lemma 1 carries
over to the model of active social influence, respectively.

Lemma 2. In a model of active social influence an influence mechanism t =

(t1, . . . , tn) is tight if and only if there exists permutation π such that for all i,

ti = ci −
∑

j:π(j)<π(i)

gijf(dj), (6)

where π(i) denotes the place of agent i in permutation π.

It appears that there is a simple relation between tight mechanisms in both
models. Consider a value that a link between agents i and j contributes to the
total reward in a tight mechanism in a passive influence model. As pointed out
in Section 3, if i precedes j in the corresponding permutation, then this link adds
f(dj) to the total reward. Otherwise it adds f(di). By contrast, from (6) it
follows that in the active influence model the same link instead contributes f(di)

and f(dj), respectively. Therefore, given a tight influence mechanism t in the
passive influence model, we can obtain a tight influence mechanism t̂ in the active
influence model with the same total reward, i.e.,

∑
ti =

∑
t̂i. Specifically, let π be

a permutation corresponding to t, and π̂ be a permutation with the reverse order,
i.e. π(i) < π(j) if and only if π̂(i) > π̂(j). Then t̂ is the influence mechanism
obtained from π̂ by (6).

The conclusion is that, for any network, optimal mechanisms in the active in-
fluence model are obtained from nondecreasing permutations of agents, and have
exactly the same total reward as the optimal mechanisms in the passive influence
model (given the same function f). Hence, our optimal network result carries over
from the benchmark model without modification. We summarize these observa-
tions in the next proposition.

Proposition 5. Consider the active influence model. Then:
(i) An influence mechanism t = (t1, . . . , tn) is optimal if and only if it is induced

by a nondecreasing permutation, i.e., there exists a nondecreasing permutation π

such that t is given by (6).
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(ii) Suppose that assumptions B and SC (C) hold. Then an optimal network
is a galaxy (k-cluster galaxy).

In the active influence model the role of the degree centrality in the determi-
nation of agents’ rewards is flipped. Now agents with a lower number of friends
tend to be favored by the principal. It may help to spell out why this result is
not that surprising. The principal wishes to exploit the social influence exerted
by agents. Between the two friends one must influence the other. In the passive
influence model the principal lets an agent with fewer friends be influenced by the
other because her attention is less diluted and she is swayed more by each friend.
By contrast, in the active influence model the principal lets an agent with fewer
friends actively influence the other because her influence is less diluted.
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7 Appendix

Proof of Lemma 1

Proof. For a permutation π, let t(π) = (t1, . . . , tn) be an influence mechanism
assigned to π by (2). First, we show that t(π) is INI. If not, then there must exist
an equilibrium where there is a nonempty subset of agents S such that agents in
S do not act and agents outside of S do, i.e., xi = 0 if and only if i ∈ S. Note that
ti specified by (2) is sufficient to induce i to act, given that all agents preceding i
in π act, no matter what the other agents do. Thus π(1) /∈ S because agent π(1)

weakly prefers to act no matter what the other agents do. By induction suppose
that for k = 1, . . . , n− 1 it must be that agents π(1), . . . , π(k) are not in S. Then
π(k + 1) weakly prefers to act, and hence is also not in S. It follows that S must
be empty. Hence, t(π) is INI.

Now we show that we cannot lower a reward of any single agent without violat-
ing the uniqueness condition. Note, that we cannot lower the reward of π(n) given
by (2) because otherwise agent π(n) would strictly prefer not to act. Moreover
given tπ(n), agent π(n) strictly prefers not to act if any of the agents connected to
π(n) and preceding her in π do not act. For agent j, let

Fj = {i|π(i) > π(j),∃j1, . . . , jm
s.t. gjj1 = gj1j2 = · · · = gjmi = 1 and π(j) < π(jk) < π(i) for all k}.

Now suppose that for k = 1, . . . , n − 1, it must be that each agent from π(k +

1), . . . , π(n) strictly prefers not to act if all the agents connected and following her
in π and at least one of the agents connected and preceding her in π does not act.
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Then we cannot lower the reward of agent π(k) given by (2). Indeed, if we lower
the reward then there exists an equilibrium where agent π(k) and all agents in
Fπ(k) do not act, while everyone else does. Hence, this establishes that we cannot
lower a reward of any single agent. Therefore t(π) is tight.

For each tight t, we show that there exists a permutation π such that t = t(π).
Note, that there must exist an agent a1 who weakly prefers to act even when no
one else does. If not, then there would exist an equilibrium where no one acts,
contradicting that t is INI. Hence we must have

ta1 ≥ ca1 . (7)

Clearly, (7) implies that a1 weakly prefers to act no matter what the other agents
do. We let π(1) = a1. Now we proceed to define a permutation corresponding to t
by induction. Suppose that for k = 1, . . . , n− 1, there is an agent ak who weakly
prefers to act if agents before her, a1, . . . , ak−1, act regardless of what others do.
Then there exists an agent ak+1 who weakly prefers to act when agents a1, . . . , ak
act and others do not. Otherwise there would exist an equilibrium where a1, . . . , ak
act and others do not, contradicting that t is INI. Hence, we must have

tak+1
≥ cak+1

− f(dak+1
)

k∑
i=1

gak+1ai . (8)

Clearly, (8) implies that ak+1 weakly prefers to act when a1, . . . , ak also act, no
matter what the other agents do. Let π(k + 1) = ak+1. If at any step of the
induction argument there are several such agents, then pick the one with the
lowest index. Moreover, suppose that for k = 1, . . . , n and some agent ak we have
that (8) holds with a strict inequality. But then t cannot be tight because by
slightly lowering tak , we can reduce the total reward while keeping t INI. Thus we
have established a surjection from a set of permutations to a set of tight influence
mechanisms.
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Proof of Proposition 1

Proof. Given any permutation π, the total reward in the corresponding tight in-
fluence mechanism is ∑

i

ti =
∑
i

ci −
∑
i

∑
j:π(j)<π(i)

gijf(di). (9)

Hence, each pair i and j, such that gij = 1, contributes to (9) either −f(di) if
π(j) < π(i), and −f(dj) otherwise. Therefore, because f is weakly decreasing, to
maximize (9) for each pair i and j such that gij = 1 and di > dj we must have
π(i) < π(j), and hence π corresponding to an optimal influence mechanism must
be nonincreasing.

Proof of Proposition 2

We prove the result with help of four lemmas. Fix an optimal network G. Without
loss of generality assume that if gij = 1 and di > dj, then i < j, and hence identity
permutation, id, is nonincreasing and induces an optimal influence mechanism. Let
Ni denote a set of friends of agent i, i.e., Ni = {j|gij = 1}. For a permutation π and
agent i, let Nπ,−

i ⊆ Ni denote a subset of i’s friends who follow i in permutation
π, i.e., Nπ,−

i = {j|π(j) > π(i)}. We say that agents in Nπ,−
i are influenced by i.

Let dπ,−i = |Nπ,−
i | and d

π,+
i = |Ni \Nπ,−

i |.

Lemma 3. Fix four different agents i, j, x, and y such that max{i, j} < min{x, y}.
If gix = gjy = 1, then either giy = 1, or gjx = 1, or both.

Proof. For the sake of contradiction suppose that giy = gjx = 0. Consider replacing
a link between j and y by a link between i and y. Then a total reward in an optimal
influence mechanism changes by

did,+i (f(di)− f(di + 1))− did,+j (f(dj − 1)− f(dj)) .

Similarly, consider replacing a link between i and x by a link between j and x.

35



The corresponding change in total reward is

did,+j (f(dj)− f(dj + 1))− did,+i (f(di − 1)− f(di)) .

Because G is optimal, each of the above replacements must weakly increase a total
reward:

did,+i (f(di)− f(di + 1))− did,+j (f(dj − 1)− f(dj)) ≥ 0,

did,+j (f(dj)− f(dj + 1))− did,+i (f(di − 1)− f(di)) ≥ 0.

Combining the inequalities we get

f(dj − 1)− f(dj)

f(di)− f(di + 1)
≤ did,+i

did,+j

≤ f(dj)− f(dj + 1)

f(di − 1)− f(di)
. (10)

By convexity we have

f(dj)− f(dj + 1) ≤ f(dj − 1)− f(dj),

f(di)− f(di + 1) ≤ f(di − 1)− f(di),

with equality only when the RHSs are zero. Clearly, if at least one RHS is not
zero, then (10) is inconsistent. Hence, one of the two replacements must strictly
decrease total reward. On the other hand, if both RHSs are zero, then the cost of
adding a link between i and y and a link between j and x on top of the existing
links is zero, and hence it strictly decreases total reward.

Lemma 4. There exists a nonincreasing permutation π of agents such that

Nπ,−
π−1(1) ⊇ Nπ,−

π−1(2) ⊇ · · · ⊇ Nπ,−
π−1(n). (11)

Proof. Let π−1(k) = sk for k = 1, . . . , n. To construct (s1, s2, . . . , sk) we begin
from a nonincreasing identity permutation id. Clearly, N id,−

1 ⊇ N id,−
2 because 1

has zero cost of a link and thus must be connected to each node. Let, s1 = 1 and
s2 = 2. For the induction argument suppose that for k ≤ n there is a nonincreasing
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permutation πk such that (i) Nπk,−
π−1
k (1)

⊇ Nπk,−
π−1
k (2)

⊇ · · · ⊇ Nπk,−
π−1
k (k)

, (ii) π−1k (l) = l

for l > k. Now we construct nonincreasing permutation πk+1 satisfying the two
conditions above. Suppose that π−1k (k) = x. We show that either Nπk,−

x ⊇ Nπk,−
k+1

or Nπk,−
x ⊆ Nπk,−

k+1 . For the sake of contradiction suppose there exist i and j such
that i ∈ Nπk,−

x , i /∈ Nπk,−
k+1 and j ∈ Nπk,−

k+1 , j /∈ Nπk,−
x . First, if i 6= k + 1, then

by Lemma 1 we have either gxj = 1, or g(k+1)i = 1, or both, a contradiction.
Second, suppose that i = k + 1. By the induction assumption, Nπk,out

x ⊆ Nπk,out

π−1
k (l)

for each l < k and hence each node that follows and is connected to x is also
connected to each node before x in πk. Hence, k + 1 must have strictly more
friends preceding it in πk than x, i.e., dπk,+k+1 > dπk,+x . Moreover, it has a weakly
lower degree than x because πk is nonincreasing. Now consider replacing a link
between k + 1 and j by a link between x and j. It follows that the corresponding
change in total reward must be strictly negative because the benefit accrued to
j is the same but the cost of a link is lower for x than for k + 1. Therefore,
if i = k + 1, then Nπk,−

x ⊇ Nπk,−
k+1 , a contradiction. Thus we have established

that either Nπk,−
x ⊇ Nπk,−

k+1 or Nπk,−
x ⊆ Nπk,−

k+1 . Now if Nπk,−
x ⊇ Nπk,−

k+1 , then
let πk+1 = πk. Clearly, such πk+1 satisfies (i) and (ii). On the other hand, if
Nπk,−
x ⊂ Nπk,−

k+1 , define πk+1 in the following way. Move x one position up in the
permutation; i.e., let π−1k+1(k + 1) = x. Then, by the same argument as above
either Nπk,−

π−1
k (k−1) ⊇ Nπk,−

k+1 or Nπk,−
π−1
k (k−1) ⊆ Nπk,−

k+1 . If Nπk,−
π−1
k (k−1) ⊇ Nπk,−

k+1 , then let

π−1k+1(k) = k+ 1, and π−1k+1(l) = π−1k (l) for l 6= k, k+ 1. On the other hand, suppose
that Nπk,−

π−1
k (k−1) ⊂ Nπk,−

k+1 and π−1k (k−1) = z. Then, by the same argument as above,

z is not connected to k+1. Now let π−1k+1(k) = z, and if Nπk,−
π−1
k (k−2) ⊇ Nπk,−

k+1 , then let

π−1k+1(k− 1) = k+ 1, and π−1k+1(l) = π−1k (l) for l 6= k− 1, k, k+ 1. Continue moving
k + 1 to the top of the permutation in this way until a set of agents influenced by
it is nested in the set of agents influenced by an agent preceding it in πk. Each
step of the above procedure is well defined and, clearly, in the end it produces a
permutation πk+1 satisfying (i) and (ii). Iterating the procedure yields πn, and
finally letting π = πn we obtain the required permutation.

Lemma 5. If k ≤ m, then (k + 1)f(m+ 1)− kf(m) is:
(i) weakly decreasing in k, given m, and
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(ii) increasing in m, given k ≥ n/2.

Proof. Part (i) follows from f being a weakly decreasing function.
To prove (ii) recall that by strong convexity, for each m ≥ 1, we have ∆(m) ≥

∆(m + 1)(1 + 1
n/2

). Hence, for each m ≥ 1 and k ≥ n/2 we have ∆(m) ≥
∆(m+ 1)(1 + 1

k
). Rewriting this we get:

kf(m+ 1)− kf(m) ≤ (f(m+ 2)− f(m+ 1))(k + 1),

(k + 1)f(m+ 1)− kf(m) ≤ (k + 1)f(m+ 2)− kf(m+ 1).

Lemma 6. Fix i and j such that di = dj = m , d+i = d+j = k. If 2k < m, then
gij = 1.

Proof. For the sake of contradiction suppose that gij = 0. Consider the change in
the total reward due to adding a link between i and j:

kf(m+ 1) + (k + 1)f(m+ 1)︸ ︷︷ ︸
After adding a link

− 2kf(m)︸ ︷︷ ︸
Before adding a link

.

Rewriting, we find that a new link to weakly decreases a total reward if:

f(m+ 1)− 2k (f(m+ 1)− f(m)) > 0.

By the Benefit assumption we have

f(m+ 1)− 2k (f(m)− f(m+ 1)) ≥ f(m+ 1)− 2k

m
f(m+ 1),

and hence the condition holds for 2k < m, a contradiction to the optimality of
G.

Now we are ready to prove the main result.

Proof of Proposition 2. Take a nonincreasing permutation π satisfying (11), and
let π−1(k) = sk for k = 1, . . . , n. Call agent si a sink if Nπ,−

si
= ∅. First, we show
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that each non-sink is connected to each sink. Note that each sink must have the
same degree. For the sake of contradiction suppose that sinks x and y are such
that dx > dy. Then by construction of π it follows that each agent connected to y
also connects to x. Then take all agents connected to x and not to y. Removing
the links from these agents to x must increase the principal’s expenses. But then
adding the links from these agents to y creates the same benefit as adding them
to x, but has a lower cost by convexity. Hence, each agent connected to x must
also connect to y, a contradiction. Now suppose that x and y are two sinks and
non-sink sj connects to x but not to y. Then by Lemma 2 each sk, k ≤ j connects
to x and each sl , l ≥ j does not connect to y. Hence, there are strictly fewer
agents connected to y than to x, a contradiction to the fact that x and y must
have the same degree.

Second, we show that all non-sinks are connected. Let sk be the last non-sink
in sequence (s1, s2, . . . , sn). First, we show that sk−1 connects to sk. For the sake
of contradiction suppose not. Then Nπ,−

sk−1
= Nπ,−

sk
and x ∈ Nπ,−

sk−1
if and only if x is

a sink. Suppose, first, that dsk−1
< dsk . Then by an argument similar to the above

there exists sj, j < k − 1, such that sk−1 /∈ Nπ,−
sj

and sk ∈ Nπ,−
sj

. Take all such
agents. By symmetry adding links between these agents and sk−1 reduces the total
reward, because the costs are lower and the benefit is the same as when adding
links between these nodes and sk. It follows that sk−1 and sk are symmetric. Now
by Lemma 4 sk−1 must be connected to sk if dπ,+sk < dπ,−sk , where dπ,−sk is also the
number of sinks. Therefore instead suppose that dπ,+sk−1

= dπ,+sk ≥ dπ,−sk−1
= dπ,−sk .

Then

dπ,+sk + dπ,−sk ≤ n− 2,

2dπ,−sk ≤ n− 2,

dπ,−sk ≤ n/2− 1,

where the second inequality follows from dπ,+sk ≥ dπ,−sk . Hence, there are weakly
fewer sinks than n/2− 1, and therefore the in-degree of each sink must be strictly
greater than n/2 because it is connected to each non-sink. Take any sink x,
and consider the benefit created by a link between sk−1 and x. It is given by
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d+x f(dx) − (d+x − 1)f(dx − 1). We compare this benefit to the one created by
instead connecting sk−1 to sk, given by (d+sk + 1)f(dsk + 1)− d+skf(dsh). We have:

(d+sk + 1)f(dsk + 1)− d+skf(dsh) > (d+x + 1)f(dsk + 1)− d+x f(dsh),

> (d+x + 1)f(dx + 1)− d+x f(dx),

where the first inequality follows because x connects to each non-sink, and sk is at
least not connected with sk−1, and so we have d+sk < d+x , and the second inequality
follows from Lemma 3 because d+x > n/2 and dsk ≥ dx. Therefore it is profitable
to add a link between sk−1 and sk instead of a link between sk−1 and x, and thus
sk−1 and sk must be connected. Finally, suppose that non-sink sj and sj+1 are
not connected, and all non-sinks after j connect to the subsequent non-sinks. The
argument above applies and hence the two non-sinks must be connected.

Proof of Corollary

Proof. First, note that assumption SC is satisfied. Then by Proposition 2 an
optimal network is a galaxy, and hence we need to maximize over n − 1 possible
galaxies. Given a galaxy with s stars, 1 ≤ s ≤ n, the total social benefit extracted
by the principal is

s(s− 1)

2
f(n− 1) + (n− s)sf(s).

Substituting the expression for f , we get a quadratic

As2 +Bs+ n,

where A = 1
2(n−1) −

α
2
, B = α(n − 1

2
) − 2n−1

2(n−1) . If α < 1
n−1 , then the function is

concave and the maximum is achieved either when s = 1 or s = n. Substituting
the values we find that s = 1, in other words a star, is optimal. If α > 1

n−1 , then
the function is convex and is maximized at s∗ = − B

2A
. Some algebra reveals that

optimal value s∗ is constant in α and equal to n− 1
2
, and hence the maximum in

integer values is achieved when s = n or s = n− 1, both cases corresponding to a
complete network.
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Proof of Proposition 3

The proof of the result is a straightforward consequence of Lemma 4, which we
used in the proof of Proposition 2 above.

Proof of Proposition 3. Fix an optimal network G. Take a nonincreasing permuta-
tion π satisfying (11), and let π−1(k) = sk for k = 1, . . . , n. Let l1 be the smallest k
such that {sk, . . . , sn} is an independent set. Then using the arguments similar to
those in the proof of Proposition 2, we find that each node outside of {sl, . . . , sn}
must be connected to each node in {sl, . . . , sn}. Let C1 = {sl, . . . , sn}. Let l2
be the smallest k such that {sk, . . . , sl1−1} is an independent set. Similarly, we
find that each node outside of {sl2 , . . . , sl1−1} must be connected to each node in
{sl2 , . . . , sl1−1} . Let C2 = {sl2 , . . . , sl1−1}. Continue the process to get a sequence
C1, . . . , Ck+1. Note that Ck+1 must be a clique because node s1 must connect to
all nodes. Hence, we have shown that G must be a k-cluster galaxy.

Subgame dominant equilibrium

In this section, we introduce a sequential move version of the model. Consider a
perfect information extensive form game with n stages. At every stage each agent i
observes the actions of all the agents who moved at the previous stages, and decides
in turn whether to take the action or refrain from doing so. The payoffs of the
agents are given by (1), as before. Notice that for any sequence in which the agents
decide to take the action, when ti = ci − dif(di) for each i, there is a SPE where
each agent acts. However, this equilibrium is fragile, as it requires agents to believe
that everyone else will also act.16 We can strengthen the equilibrium condition
requiring that each agent choose a (weakly) dominant strategy. Specifically, a
profile of strategies is a subgame dominant equilibrium (SDE) if a strategy of each
player induces a weakly dominant strategy of this player in every subgame (Halac
et al., 2020a). An extensive form mechanism consists of an order of moves of
agents, and the rewards t. An extensive form mechanism is optimal if all agents

16Note also that there is an equivalent equilibrium in the simultaneous move game. However,
this equilibrium is not unique.
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choose to take an action in SDE of the induced extensive form game, and the sum
of rewards is minimized. The following result effectively establishes an equivalence
between the sequential and the simultaneous game approaches.

Proposition 6. An extensive form mechanism is optimal if and only if the order
of moves of agents is given by a nonincreasing permutation, and the rewards are
determined by equation (2).

Below we sketch the proof of the result as it is very similar to the one for
Proposition 1.

Proof. Fix any order of moves π. It is clear that the rewards that induce SDE
where each agent acts must be given by (2). Indeed, consider the last agent to move
and assume that everyone else acts. Then this agent must be paid at least (2), and
so on. But then for any order π the rewards are given by (9), as before. Hence,
the same argument as that in the proof of Proposition 1 yields the result.
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