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A PCA Approach for Fast Retrieval of Structural Patterns
in Attributed Graphs

Lei Xu and Irwin King

Abstract—Attributed graph(AG) is a useful data structure for repre-
senting complex patterns in a wide range of applications such as computer
vision, image database retrieval, and other knowledge representation tasks
where similar or exact corresponding structural patterns must be found.
Existing methods for attributed graph matching (AGM) often suffer from
the combinatorial problem whereby the execution cost for finding an exact
or similar match is exponentially related to the number of nodes the AG
contains. In this paper, the square matching error of two AGs subject to
permutations is approximately relaxed to a square matching error of two
AGs subject to orthogonal transformations. Hence, theprincipal compo-
nent analysis(PCA) algorithm can be used for the fast computation of the
approximate matching error, with a considerably reduced execution com-
plexity. Experiments demonstrate that this method works well and is robust
against noise and other simple types of transformations.

Index Terms—Attributed graph (AG), graph matching, principal com-
ponent analysis (PCA).

I. INTRODUCTION

In common information retrieval tasks when a large data set is in-
volved, i.e., image database and data mining applications, a speedy and
accurate way to locate objects of similar structures is essential for ef-
ficient and robust data access.

Attributed graph (AG)is a useful tool for representing structural
knowledge since it is more expressive, flexible, and powerful than the
typical vector representation, e.g., feature vectors. Thus, AG has been
widely used in many image processing and computer vision tasks, e.g.,
road extraction [2], medical image databases [9], Chinese character
recognition [11], and computer vision [6].

The key problem for information retrieval in databases with AG data
structure is to match two AGs, calledattributed graph matching (AGM)
[3]. In the literature, different methods have been devised to implement
an exact or similar match, e.g., the graduated assignment algorithm
for subgraph isomorphism [5] and others [11]. However, for existing
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matching methods the computation of the matching error is highly cou-
pled with the search of the one-to-one correspondence between each
node and edge of two AGs. Thus, they usually suffer from the combi-
natorial problem whereby the computing matching error for finding an
exact or similar match is exponentially related to the number of nodes
in the AG. This makes the use of AGM impractical in many situations.

In practical applications, we often encounter a tradeoff between ac-
curacy and speed during the retrieval process. In this paper, we attempt
to separate the computation of the matching error from the search of
the one-to-one correspondence between each node and edge of two
AGs. We introduce a method to speed up the retrieval process by a
two-stage approximate matching process. In the first stage, the exact
square matching error of two AGMs is replaced by an approximation
so that principal component analysis (PCA) [8], [13], [14], can be used
to quickly calculate this approximate matching error. We prune away
most of the AGs with large matching errors and keep a small subset
of AGs for the second stage where a further processing can be made
either interactively with human’s help or by a more accurate matching
method.

This paper focuses on the process which is being performed in the
first stage. In the next section, we present the theoretical formulation
of the PCA approach for a fast approximate AG matching. We then
performed a number of experiments in Section III demonstrating the
success of this approach. Finally, we conclude with some discussions
in Section IV.

II. A TTRIBUTED GRAPH MATCHING AND ITS APPROXIMATE STABLE

POINTS BY THE PCA APPROACH

We consider an AGG = [(V; Va); (E; Ea)], where V =

fv1; . . . ; vng, Va = fav1; . . . ; avng is the set of nodes and their
attributes, respectively, andE = feij j eij = e(vi; vj)g where
e(vi; vj) is the edge from nodevi to vj , 8 i; j; i 6= j, Ea = faeijg

whereaeij is the attribute ofeij , 8 eij 2 E with avi andaeij being
real numbers. When there is no edge fromvi to vj , we let aeij be
zero. Moreover, we also assume thataeij = aeji. Specifically, an AG
with n nodes reduces into an adjacency matrix for an ordinary graph
whenavi andaeij are binary with “1” denoting the presence of the
node or edge and “0” the absence.

The problem of matching two AGsG = [(V; Va), (E; Ea)] and
G0 = [(V 0; V 0

a), (E
0; E0

a)] with node setsV = fv1; . . . ; vng, V 0 =

fv0
1; . . . ; v

0
ngmeans setting up a one-to-one correspondences between

the nodes ofV andV 0. Generally speaking, there aren! combination
for such correspondences (simply we denote a combination byc and
the set of all then! combinations bySc). Usually, the matching error
of building a correspondence betweenv 2 V andv0 2 V 0 is defined
asd(v; v0) = (av� av0)2, and the matching error of building a corre-
spondence betweeneij 2 E ande0

kl 2 E0 is defined asd(eij; e0
kl) =

(aeij � ae0
kl)

2. Thus, for each combinationc, we can sum up all the
d(v; v0) andd(eij; e0

kl) to get a total matching error

Dc(G; G
0) =

n

i=1

d vi; v
0
�(i) +

n

r=1

n

q=1; q 6=r

d e(vr; vq); e
0
v

0
�(r); v

0
�(q) (1)

where�(1; 2; . . . ; n) produces(i1; i2; . . . ; in)—a permutation of
1; 2; . . . ; n, and�(j) = ij . A specific permutation corresponds to
a specific combination.

1083–4419/01$10.00 © 2001 IEEE
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Fig. 1. Diagram illustrating the AG permutation process.

The goal of matchingG toG0 is to choose one that has the minimum
value of

D(G; G0) = min
c2S

Dc(G; G
0)

and then to use thisD(G; G0) as the matching error ofG andG0

to classify G according to the computed valuesD(G; G1); . . . ;

D(G; Gm).
From the definition ofD(G; G0), we know that its computation is

a combinatorial search of correspondences between nodes and edges.
This is a common feature that is shared by most existing matching
methods. Hence, one of the ways to reduce this costly computation of
searching is to modify the definition ofD(G; G0) into an approxima-
tion to avoid a detailed and accurate calculation.

As shown in Fig. 1, givenA as ann � n matrix with its diagonal
elementsaii = avi, i = 1; . . . ; n and off-diagonal elementsaij =

aeij , i = 1; . . . ; n, j = 1; . . . ; i � 1, i + 1; . . . ; n andB as an
n � n matrix with its diagonal elementsbii = av0i, i = 1; . . . ; n and
off-diagonal elementsbij = ae0ij , i = 1; . . . ; n, j = 1; . . . ; i � 1,
i+ 1; . . . ; n, we rewrite (1) into the following matrix form:

Dc(G; G
0) =DP (G; G

0)

= tr PAP
T �B PAP

T �B
T

(2)

whereP is a permutation matrix of� (and thus the combinationc)
andtr is the trace function which sums up the diagonal elements of
the square matrix. In this case, bothA andB are symmetric matrices.
Usually,A andB are called the associate matrices ofG andG0, re-
spectively.

With (2), the matching ofG andG0 can be expressed as a minimiza-
tion problem as

D(G; G0) =DP (G; G0)

� argmin
P

DP (G; G
0)

= argmin
P

tr PAP
T�B PAP

T�B
T

: (3)

The resultingD(G; G0) is called the matching error ofG andG0. Es-
pecially,G andG0 are isomorphic whenD(G; G0) = 0. Here, the
computation ofD(G; G0) still interweaves implicitly with the combi-
natorial search of correspondences between nodes and edges, since the
searching ofP over all the permutation matrices is still a combinatorial
problem.

The permutation matrix is a special type of orthogonal matrix. As
an approximation to theD(G; G0) defined by (3), we relax the mini-
mization of (3) with respect to an orthogonal matrix�

Do(G; G
0) =D� (G; G0)

� argmin
�

D�(G; G
0)

= argmin
�

tr �A�
T�B �A�

T�B
T

: (4)

The main characteristics of the matching error function in (4) are
described by the following theorem.

Theorem 1:

1) WhenG andG0 are isomorphic, i.e.,PAP T = B with P being
a permutation matrix, we haveDo(G; G

0) = 0 if and only if
� = P .

2) For any two AGs with the same number of nodes, we have
Do(G; G

0) = Do(G
0; G).

3) We callG a regular AG if there are no repeated eigenvalues in
its associate matrixA. GivenG andG0 with the eigenvalues of
A are�1 > �2 > � � � > �n, and the eigenvalues ofB are
�1 > �2 > � � � > �n, we haveDo(G; G

0) = n

i=1
(�i��i)

2.
4) GivenG, G0, andG00 with the same number of nodes, we have

Do(G; G
00) � Do(G; G

0) +Do(G
0; G00).

Proof 1:

1) It follows directly from (3) and (4) thatDo(G; G
0) =

D(G; G0) = 0.
2) It follows that

min
�

tr �A�
T �B �A�

T �B
T

= min
�

tr �vB�
T
v � A �vB�

T
v � A

T

with �v = �T being also an orthogonal matrix due to�Tv �v
= �v�

T
v = I .

3) It follows that

tr �A�
T �B �A�

T �B
T

= tr A2 + tr B2 � 2 tr �A�
T
B

=

n

i=1

�
2

i +

n

i=1

�
2

i � 2 tr �A�
T
B :

Furthermore, when the eigenvalues ofA are�1 > �2 > � � � >

�n, and the eigenvalues ofB are�1 > �2 > � � � > �n,
it follows from Brockett [1, Theorem 4] that the maximal
value of tr(�A�TB) is n

i=1
�i�i, which is reached when

� = UTDPV . WhereU andV are orthogonal matrices such
thatUBUT andV AV T are diagonal andP is a permutation
matrix,D = diag(�1; . . . ; �n)with�i 2 f1; �1g. Therefore,
we see that the minimal value oftr((�A�T�B)(�A�T�B)T )

is n

i=1
(�i � �i)

2, which is reached at the orthogonal matrix
� = UTDPV since�T� = V TP TDUUTDPV = I . Hence,
Do(G; G

0) = n

i=1
(�i � �i)

2.
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4) LetC be the matrix corresponding toG00 with eigenvalues�1 >
�2 � � � > �n. We have

n

i=1

(�i � �i)
2 =

n

i=1

(�i � �i + �i � �i)
2

�

n

i=1

(�i � �i)
2 +

n

i=1

(�i � �i)
2
:

ThusDo(G; G
00) � Do(G; G

0) +Do(G
0; G00).

Remarks:

1) The first point shows thatDo(G; G
0) = 0 reaches zero if and

only if G andG0 are isomorphic, i.e.,� = P . However, if there
is noise, we havemin�Do(G; G

0) > 0 and the corresponding
solution� is not guaranteed to be a permutation matrix and also
may not be unique.

2) The first two points show thatDo(G; G
0) is at least a pseudodis-

tance measure on the space of orthogonaln � n matrices.
3) The third point shows thatDo(G; G

0) can be calculated by
finding the eigenvalues ofA andB. The computation of eigen-
values has a time complexity on the order ofO(n3) (e.g., by
the Jacobi method). Thus, this matching error can be computed
in polynomial time in comparison with the computational
complexity that is exponential withn in the case of computing
D(G; G0) by (3).

4) The first, second, and fourth points together indicate that the
matching error function given by (4) is actually a distance mea-
sure on the set of regular AGs ofn nodes.

We present three ways to computeDo(G; G
0). First, a direct way

is to perform an eigen-analysis onA andB by Jacobi or one of other
conventional methods and then to computeDo(G; G

0) = n

i=1
(�i�

�i)
2 by ordering their eigenvalues.

Second, an analog computation onDo(G; G
0) can be made by the

following differential equation:

Q =�A�
T
B

d�

dt
=�Q�+B�A

Do(G; G
0) = tr A2 + tr B2 � 2 tr(Q) (5)

which is more plausibly to be performed by real world applications.
Finally, the above equations in the discrete form are given as

Q(t) =�(t)A�T (t)B

�(t+ 1) =�(t) + 
t[B�(t)A�Q(t)�(t)]

Do(G; G
0)(t) = tr A2 + tr B2 � 2 tr(Q(t)) (6)

where0 < 
t � 1 is the learning step size.
The reason for (5) and (6) comes from Brockett’s maximization of

tr(�A�TB) [1] by

d�

dt
= ��A�TB�+B�A (7)

in the space ofn � n orthogonal matrices. Suppose thatUBUT =

DB = diag(�1; . . . ; �n) andV AV T = DA = diag(�1; . . . ; �n)

with U andV being orthogonal. Assuming that�1 > �2 > � � � > �n

and�1 > �2 > � � � > �n, the stable point of (7) must be of the
form � = UTDPV , whereP is an arbitrary permutation matrix and

D = diag(�1; . . . ; �n) with �i 2 f1; �1g. Moreover,tr(�TA�B)

has2n �n! stationary points, exactly2n of which are local maxima and
are of the form� = UTDV , at which pointstr(�TA�B) takes on the
value n

i=1
�i�i. These points are the stable points of (7) while the

other stationary points are all saddle points.
Now let

Jo =tr �A�
T �B �A�

T �B
T

=

n

i=1

�
2

i +

n

i=1

�
2

i � 2 tr �A�
T
B :

The maximization oftr(�A�TB) provides the same solution to the
minimization ofJo. This suggests that (5) performs a constrained gra-
dient descent search forJo. Starting from any initial�(0) that is or-
thogonal [e.g., simply�(0) = I ], the rule will move downhill on
the landscape ofJo. This landscape has many stationary points and
2n local minima points. Theoretically, the search given by (5) may get
stuck in one of these stationary points. However, some random fluctua-
tions (e.g., caused by quantizing errors in digital computing) will make
the search eventually descent from the stationary points until it finally
reaches one of the2n local minimum point at whichJo reaches its min-
imal value n

i=1
(�i � �i)

2 which is the matching errorDo(G; G
0).

III. EXPERIMENTS AND DISCUSSION

We demonstrate the proposed PCA approach for fast AGM in a
number of experiments. The first set of experiments shows that how
the PCA approach works. The second set of experiments compares the
PCA approach with three other methods in terms of the computational
requirement.

A. Symmetrical Attributed Graph Matching

Experiment I: We have used four randomly generated templates,
represented in AGs with the associated matrices listed here.

G1 =

1:5 1:0 3:0 0:4 2:0

1:0 2:0 �0:3 1:0 0:0

3:0 �0:3 1:0 2:0 �0:5

0:4 1:0 2:0 4:0 0:2

2:0 0:0 �0:5 0:2 1:0

and

G2 =

2:5 2:0 0:3 0:4 1:0

2:0 2:0 �0:3 1:0 0:1

0:3 �0:3 1:0 2:0 0:5

0:4 1:0 2:0 1:0 �0:2

1:0 0:1 0:5 �0:2 2:0

:

G3 =

�2:5 �2:0 0:3 0:4 1:0

�2:0 0:5 �0:3 0:2 0:1

0:3 �0:3 3:0 2:0 �1:5

0:4 0:2 2:0 �1:0 �1:2

1:0 0:1 �1:5 �1:2 1:0

and

G4 =

1:5 0:1 3:0 0:4 �2:0

0:1 2:0 1:3 1:0 �0:4

3:0 1:3 1:0 1:1 �0:5

0:4 1:0 1:1 4:0 0:2

�2:0 �0:4 �0:5 0:2 1:0

:
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Now, a query represented byG comes, which was obtained fromG1

by a permutationP

G =PG1P
T =

2:0 1:0 �0:3 0:0 1:0

1:0 4:0 2:0 0:2 0:4

�0:3 2:0 1:0 �0:5 3:0

0 0:2 �0:5 1:0 2:0

1:0 0:4 3:0 2:0 1:5

P =

0 1 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 0 0 1

1 0 0 0 0

:

Using (4), we haveDo(G; G1) = 0, Do(G; G2) = 5:4429,
Do(G; G3) = 16:4321, Do(G; G4) = 1:5032. HereG is correctly
matched into its isomorphic AGG1.

Experiment II: For practical use, the input pattern is usually con-
taminated by noise. ThusG will not be exactly isomorphic to its tem-
plateG1. To observe the influence of noise, we added uniformly dis-
tributed random noise to each node and edge ofG to obtain a noise-con-
taminated inputG0 as

G
0 =G+N1

=

2:4615 1:1865 �0:1811 0:4866 1:3754

1:1865 4:2779 2:1437 0:4709 0:6113

�0:1811 2:1437 1:2206 �0:2250 3:1381

0:4866 0:4709 �0:2250 1:6436 2:4122

1:3754 0:6113 3:1381 2:4122 1:8446

N1 =

0:4615 0:1865 0:1189 0:4866 0:3754

0:1865 0:2779 0:1437 0:2709 0:2113

0:1189 0:1437 0:2206 0:2750 0:1381

0:4866 0:2709 0:2750 0:6436 0:4122

0:3754 0:2113 0:1381 0:4122 0:3446

:

ComparingN1 with G, we can see that the noise added is not small
in magnitude when compared toG. We haveDo(G

0; G1) = 1:4102,
Do(G

0; G2) = 9:7695,Do(G
0; G3) = 23:9471, andDo(G

0; G4) =

3:1846. Here,Do(G
0; G1) = 1:4102 is still the minimum one. Its

value is still less thanDo(G
0; G4) = 3:1846 of the competing tem-

plateG4.
Experiment III: This experiment tries to demonstrate the PCA

approach in a large controlled data set. We randomly generated
10 000 AGs of size 5. The value in each attribute was generated with
U(�1; 1). A randomly chosen AG was selected as the target among
all AGs. To make the problem more difficult, we performed two
operations on each of the AGs. First we added noise with a uniform
distribution ofU(�0:05; 0:05) to each AG in the data set. Second, we
also permuted each AG in the data set to make certain that there is no
straight forward match for the chosen AG. We then performed this test
over 500 trials with random initial condition in each trial. The ranking
of the AG matching result is shown in Table I. The result demonstrates
that the PCA approach is robust against noise as shown previously.

We also tried in the case when the noise is skewed to the positive re-
gion, i.e.,U(0; 0:5). The results are shown in Table II. Fig. 2 illustrates
the ranking distribution of the result.

In this particular experiment, the PCA approach did not perform sat-
isfactorily. Nonetheless, the worst result was ranked at 105th place oc-
curring only once in 500 trials. Moreover, this worst case still placed
the target at around the top 1% (105 out of 10 000) of the nodes. Hence,

TABLE I
FREQUENCYDISTRIBUTION OF THETOP THREE RANKING FOR CORRECTLY

MATCHED ATTRIBUTED GRAPH OFSIZE 5 WITH NOISE ADDED

TABLE II
FREQUENCYDISTRIBUTION OF THETOP TEN RANKING FOR CORRECTLY

MATCHED ATTRIBUTED GRAPH OFSIZE 5 WITH ONLY POSITIVE NOISEADDED

Fig. 2. Ranking frequency distribution chart.

the experiment still illustrated the robustness of the proposed PCA ap-
proach’s approximation power.

B. Comparison With Other Algorithms

In this section, we compared our proposed PCA algorithm for similar
shape matching with two other algorithms: 1) brute-force method and
2) eigendecomposition method [12]. We varied the sides of the polygon
asf4; 6; 8g and the number of polygons asf100; 400; 900g to test the
three algorithms. These experiments were all conducted on Sun’s Ultra
1 workstation using Matlab 5.3 under the Solaris 2.6 environment.

The most obvious AGM solution is the brute-force method where
each permuted graph is tested to locate the one having the smallest
matching error. Although this method finds the optimal answer by enu-
merating all the possible permutations of the graph, this type of solu-
tion has a computational complexity ofO(n!), wheren is the number
of nodes in each graph. This is impractical and also unacceptable for
large and arbitrary pairs of graphs.

The eigendecomposition approach seeks an approximate solution to
the weighted graph matching problem for undirected graphs [12]. It
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(a) (b)

Fig. 3. (a) Execution time versus number of polygons plot illustrates the computational time required for each of the four algorithms to perform for various
polygons with six sides. (b) Execution time versus number of sides plot illustrates the computational time required for each of the four algorithms toperform for
various sides of 100 polygons.

is an analytic approach based on the eigendecompositions of the adja-
cency matrices. The main difference between our proposed approach
and the eigendecomposition’s is that our method calculates the score
directly from the eigenvalues while their method tries to find additional
information to approximate the best permutation matrix for the best
match.

Computational Complexity Experiment:Fig. 3 illustrates the run-
ning time of the three algorithms by varying the number of sides
and the number of polygons in shape similarity matching tasks. Both
(a) and (b) clearly demonstrate the fast execution speed of the pro-
posed PCA method. Furthermore, Tables III and IV show the speed
up factor for the tested algorithms using the proposed PCA algorithm
as the baseline when we varied the number of sides of the polygon
and also the number of polygons processed, respectively. Using the
proposed PCA algorithm as the reference, the brute-force and the
eigendecomposition algorithms, on the average, took approximately
1089 and 2.80 times more, respectively, as a function of the number
of polygons processed.

Matching Accuracy Experiment:Fig. 4 shows the result of a typical
accuracy experiment over many trials comparing the eigendecomposi-
tion algorithm and the PCA algorithm with the permutation matching
result as the reference. The matching task set up in this experiment is
similar to the previous experiment. However, this experiment focuses
on the accuracy of the ranking result. Fig. 4(a)–(c) show the normalized
and unweighted histogram 4-, 6-, and 8-sided 100 polygon ranking his-
togram results, respectively. Fig. 4(d)–(f) and (g)–(i) show the 400 and
900 polygon matching experimental results, respectively. On the other
hand, the three columns show the 4-, 6-, and 8-sided polygon matching,
respectively.

Given that the matching returns a reference ranking from the
Brute-force method asR1 = (r1; r2; . . . ; rn) andR2, R3, represent
the ranking returned by the eigendecomposition and the PCA method,
respectively. This set of experiments measures the accuracy of the
algorithms by examining the histogram of the shifted position with
respect to the reference ranking, i.e., the histogram ofjR2 � R1j,
jR3 �R1j. For example, letR1 = (1; 2; 3; 4; 5; 6; 7; 8; 9; 10) and
R2 = (4; 2; 1; 5; 3; 6; 7; 8; 9; 10), then the position shift for the
list is jR1 � R2j = (3; 0; 2; 1; 2; 0; 0; 0; 0) and the bin values in

TABLE III
SPEED UPFACTOR AMONG TESTED ALGORITHMS BY VARYING THE

SIDES WITH 100 POLYGONS

TABLE IV
SPEED UPFACTOR AMONG TESTEDALGORITHMS BY VARYING THE NUMBER

OF POLYGONS PROCESSEDWITH 100 POLYGONS

the histogram will contain(50; 10; 20; 10; 0; 0; 0; 0; 0; 0; 0). We
treat the individual ranking of the element equally so their relative
position is important when they are near the front or near the end of
the ranking.

The brute-force method proved to be the most accurate, but it also
took the longest time to find the optimal match since it enumerates all
possible combinations of the match. Hence it is chosen as the reference
for the accuracy ranking experiment. The accuracy of the eigendecom-
position method is inferior to the PCA method as shown in Fig. 4(b),
(c), (d), (e), (f), (h), and (i). The eigendecomposition method’s accu-
racy dropped when the number of sides and the number polygons were
increased. Not only the PCA method is faster than the eigendecom-
position method since there is on need to approximate the permuta-
tion matrix, but also provides more the accurate results than that by the
eigendecomposition method.

IV. FINAL REMARKS

There are many algorithms for solving the graph matching or iso-
morphic problems. Usually, these algorithms have a computing com-
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Fig. 4. Polygon matching accuracy result.

plexity of an exponential order ofn [4]. Our proposed approach does
not seek for exact isomorphic match of two graphs. Rather, we use a
more relaxed constraint to find plausible candidates through the fast
computable but approximate matching error in help of AG’s eigen-
values. There are several ways to compute the eigenvalues of a square
symmetric matrix. Many good algorithms can be found in [10]. Typ-
ical examples are the Householder transformation method and the QL
method [7]. These algorithms are polynomial in nature, usuallyO(n2)

and no more thanO(n3), which is a considerable reduction in the ex-
ecution cost.

As demonstrated by the previous experiments, the proposed PCA ap-
proach has a promising potential as a fast retrieval technique in large
scale databases which processes images or other structural patterns ef-
ficiently. Moreover, it also has a favorable feature that it follows from
(4) that any rotation of the matrixA will not affect the matching error
and thus the approach is planar rotationally invariant.
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