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Abstract—Heat-diffusion models have been successfully applied
to various domains such as classification and dimensionality-
reduction tasks in manifold learning. One critical local approx-
imation technique is employed to weigh the edges in the graph
constructed from data points. This approximation technique is
based on an implicit assumption that the data are distributed
evenly. However, this assumption is not valid in most cases, so
the approximation is not accurate in these cases. To solve this
challenging problem, we propose a volume-based heat-diffusion
model (VHDM). In VHDM, the volume is theoretically justified
by handling the input data that are unevenly distributed on an
unknown manifold. We also propose a novel volume-based heat-
diffusion classifier (VHDC) based on VHDM. One of the advan-
tages of VHDC is that the computational complexity is linear
on the number of edges given a constructed graph. Moreover,
we give an analysis on the stability of VHDC with respect to
its three free parameters, and we demonstrate the connection
between VHDC and some other classifiers. Experiments show that
VHDC performs better than Parzen window approach, K nearest
neighbor, and the HDC without volumes in prediction accuracy
and outperforms some recently proposed transductive-learning
algorithms. The enhanced performance of VHDC shows the va-
lidity of introducing the volume. The experiments also confirm the
stability of VHDC with respect to its three free parameters.

Index Terms—Heat diffusion, integral approximation, manifold
learning, transductive learning.

1. INTRODUCTION

ECENTLY, manifold learning has become a popular

approach to nonlinear dimensionality reduction [1]-[4],
density estimation [5], classification [6]-[10], regression [11],
and ranking [12], [13]. Manifold learning is specially designed
for the case that the data points are distributed on a low-
dimensional nonlinear manifold, which is embedded into a
high-dimensional Euclidean space. In such a case, the straight-
line Euclidean distance may not be accurate because of the
nonlinearity of the manifold. For example, on the surface of
a sphere, the distance between two points is better measured
by the geodesic path. Much recent work has captured the
nonlinearity of the curved manifold. One common idea is
that the local information in a nonlinear manifold is relatively
accurate and can be used to construct the global information.
This idea is reasonable because, in a manifold, every small area
is equivalent to a Euclidean space and can be mapped to it
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by a smooth transformation. The local information appears in
various types: local distance used in [2] and [4], local linearity
used in [1], local covariance matrix used in [5], and local
Laplacian approximation used in [3] and [11].

As an important technique in manifold learning, heat kernels
have been successfully applied to various domains recently.
In [3], a nonlinear dimensionality-reduction algorithm was
proposed based on the graph Laplacian whose elements were
induced by a local heat-kernel approximation. In [7], a discrete
diffusion kernel on graphs and other discrete input spaces was
proposed. When it was applied to a large-margin classifier,
good performance for categorical data was demonstrated by
employing the simple diffusion kernel on the hypercube. In
[14], a general framework was proposed. The key idea was
to begin with a statistical family that was natural for the data
being analyzed and to represent data as points on the statis-
tical manifold associated with the Fisher information metric
of this family. When applied to the text classification, where
the natural statistical family was multinomial, a closed-form
approximation to the heat kernel for a multinomial family was
proposed, which yielded significant improvements over the use
of Gaussian or linear kernels. In [8], the solution of the heat-
diffusion equation on a graph was employed to construct a
classifier. In [13], heat-diffusion models were established on the
Web graph, which was considered to lie on a manifold.

Despite the success of these heat-kernel applications, there
are limitations. For example, when the manifold is unknown,
the heat-kernel approximation method employed in [14] will
not work. Although it is possible to extend the kernel-
construction method employed in [7] to a data cloud, the
proposed method is limited to a kernel-based algorithm. In [3],
there is an implicit assumption in the local heat-kernel approxi-
mation: The data are distributed evenly. This assumption results
in some errors when the data are not evenly distributed. Conse-
quently, there exist errors in the heat-diffusion classifier (HDC)
in [8], which adopted the same local heat-kernel approximation
as that in [3].

When facing unevenly distributed data, we should use a more
accurate approximation. Moreover, we also face the following
problems where we cannot employ the traditional methods.

1) The density of data varies, which also results in unevenly
distributed data.

2) The manifold is unknown.

3) The differential-equation expression is unknown even if
the manifold is known.

We propose a volume-based heat-diffusion model (VHDM)
on a graph by considering the earlier problems. In fact, we try to
establish the heat-diffusion model on a graph by going back to
the Fourier law, on which the original differential heat-diffusion
equation is established. The novel heat-diffusion model on the
graph is expected to incorporate the characteristics of the data.

1083-4419/$25.00 © 2008 IEEE

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 6, 2009 at 10:56 from IEEE Xplore. Restrictions apply.



418 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 39, NO. 2, APRIL 2009

In turn, it is expected to lead to an effective classifier called
Volume-based HDC (VHDC).

The rest of this paper is organized as follows. In Section II,
we show the basic concepts of heat diffusion and some related
work about transductive learning. In Section III, we estab-
lish our VHDM model. Moreover, the VHDC is proposed in
Section IV. Then, in Section V, we demonstrate the experimen-
tal results. Section VI provides the conclusions.

II. HEAT-DIFFUSION EQUATIONS, HEAT KERNELS,
AND TRANSDUCTIVE LEARNING

The heat equation describes the distribution of heat (or
variation in temperature) in a given region over time. A heat
kernel is a special solution to the heat equation, and it serves as
a class of kernels in machine learning (for materials in learning
with kernels, see [15] and [16]). In this section, we provide the
basic concepts of heat diffusion and review some traditional
discrete solutions. Moreover, we show some related work about
transductive learning.

A. Heat-Diffusion Equations on a Manifold

Given a manifold M, let f(x,t) denote the temperature
at location x at time ¢. Then, f(x,t) satisfies the following
differential equation on manifold M:

9 _L£f=0
{?Ex,m — folx) M

where fj(x) is an initial temperature distribution at time zero
and L is the Laplace—Beltrami operator. If fy(x) is specialized
as the delta function 6(x —y), then the solution to (1) is
specialized as the heat kernel K;(x,y) [17]. More specifically,
d(x — y) describes a unit heat source at position y while there
is no heat in other positions. In other words, §(x —y) =0
for x #y and fj;zo O(x—y)dx =1. If we let fy(x,0) =
d(x —y), then Ky(x,y) is the solution to (1). As a result, the
heat kernel Ky(x,y) means the amount of heat that point x
receives from the unit heat source at position y after a time
period ¢. In machine learning, we can consider K;(x,y) as a
similarity measure between two points.

When the underlying manifold is the well-known m-
dimensional Euclidean space, £ f is simplified as Y, 9 f /0x2,
and the heat kernel takes the Gaussian radial basis function
(RBF) form

N ES
4t

K (x,y) = (4nt)"%e 2)

It is therefore observed that, when the underlying manifold is
the Euclidean space, the Gaussian RBF kernel is a special case
of the heat kernel. Note that the point-charge model in [10] also
possesses this property.

If the manifold is the geometry of multinomial families, a
closed-form approximation to the heat kernel is found in [14]
and is applied to a kernel-based algorithm. In some situations

where it is difficult to obtain the analytical solutions, it is natural
to consider the numerical methods for differential equations.

B. Numerical Methods

Traditional numerical methods for solving differential equa-
tions are in fact established on a triangulation mesh or on a grid,
and they have been classified into three main categories: finite-
element (FE), boundary-element (BE), and finite-difference
(FD) methods [18]. For the heat-diffusion equation, the situa-
tion is similar. The FE method for the heat-diffusion equation
is used in surface smoothing (for example, see [19] and [20]).

First, we describe the FE method. If a simplicial surface S
with vertex set V' can be constructed from the data cloud, then,
by the results in [21], the discrete Laplace—Beltrami operator £
of the simplicial surface S can be established as follows.

Definition 1: Forafunction f : V' — R™ on the vertices, the
valueof Lf : V — R™atx; € V is

>

z;€V:i(z;,x;)€ED

Lf(xi) = p(xi,x;) (f(xs) — f(zz))  3)

where Ep is the edge set of a Delaunay triangulation of .S, and
the weights are given by

L(cot o +cot ajy)
plansay)={ 3 oot eoran)
v 5 cot ayj,

for interior edges @)
for boundary edges

where «a;; (and «a; for interior edges) are the angels opposite
the edge (z;,z;) in the adjacent triangles of the Delaunay
triangulation. (]

However, it is difficult to construct the mentioned simplicial
surface S when facing a cloud of data points in an unknown
geometry. For the same reason, we cannot construct the triangle
mesh directly in our model. It is true that meshing algorithms
exist and are widely employed in scientific computation, for
example, see [22] and [23]. They are highly refined for low-
dimensional point clouds. However, in situations where the data
are quite high-dimensional and sparse, we are unaware of any
effective meshing algorithm, and therefore, we cannot use the
FE and BE methods.

Secondly, in the following, we illustrate the FD method
for the heat-diffusion equation by considering the special case
when the manifold is a 2-D Euclidean space. In such a case, the
heat-diffusion equation in (1) becomes

of _op o _
)
{ |

The FD method begins with the discretization of space and
time. For simplicity, we assume equal spacing among the points
x; in one dimension with interval Az = x;41 — x;, equal spac-
ing among the points y; in another dimension with interval
Ay = yj+1 —y; (assume Ay = Az = d for simplicity), and
equal time of At = tgy1 — tx. f(4,7, k) is the heat at position
(x;,y;) at time t;. The grid on the plane is shown in Fig. 1(a).
The grid creates a natural graph: The set of nodes is {(7,7)},
and node (i, j) is connected to node (7',j') if, and only if,
|i —4#|+|j — 7| = 1. Note that each node (i,j) has four
neighbors: (i — 1,7), (i +1,5), (¢,7 — 1), and (4,5 + 1).

Based on this discretization and approximation of the
function, we then write the following approximations of its
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Fig. 1. (a) Grid on the 2-D space. (b) Eight irregularly positioned points. (c) Small patches around the irregular points. (d) Square approximations of the small
patches.

derivatives in space and time:

o flgkt1) = [ R)

Ot (i j.1) At
*f A =15 k) = 2f( 5, k) + fli+ 1,5, k)
Ox? (i F) (Az)?
*f LS5 — 1 k) —2f(i, 5, k) + f(i, 5+ 1, k)
‘973/2 (i,5,k) - (Ay)? .

These approximations lead to a difference form of the heat
equation as follows:

f(i7j7k+ 1) _f(i7j7k)

At
_ f(l — 17j7k) — Qf(i7j7 k) —+ f(l + 17j7k)
(Az)?
+ f(%] — 17k) — Qf(i’j?k) + f(Z’] + 1ak)
(Ay)?
_ (f(i_17j7 k’)—f(i,j7 k))+(f(7’+17.77 k)-f(’hj, k))
d2
+(f(la.j_lak)_f(l,.jak))+(f(laj+1vk)_f(l7j7k))

d2
(6)

The earlier two discretization methods are successful when
the underlying triangulation mesh or the grid can be constructed
successfully. However, in the real data analysis, the graph
constructed from the data points is irregular, i.e., it is neither
a triangulation mesh nor a grid. Even worse, in some situations,
data points are distributed on an unknown manifold. For these
cases, the heat equation on a graph is a good choice.

C. Heat Equations on a Graph

Consider an undirected unweighted graph G = (V) E),
where V = {v1,vs,...,v,} and E is the set of all edges. Let
d; denote the degree of vertex ¢ (number of edges emanating
from vertex 7). Heat kernels on G are defined as e, where

HU:{]7 (j?Z)EE (7)
0, otherwise

is called the Laplacian of G. A heat kernel on a graph can be
considered as a similarity measure between two nodes on the
graph. Let f(0) be the vector describing the initial tempera-
ture distribution on G and f(¢) be the vector describing the
temperature distribution at time ¢. Then, the heat equation on
Gis (d/dt) f(t) = aH, and its solution is f(t) = e f(0) =
e’ £(0), where v = at (for a theoretical analysis of heat
kernels on graphs, see [24]).

Heat kernels on graphs are applied to a large-margin clas-
sifier in [7] and [25]. Different from these work, the solution
f(t) = "8 £(0) to heat-diffusion equation (not the heat kernel)
is employed directly to construct an HDC in [8].

D. Related Work in Transductive Learning

HDC is built on a graph, and it is actually a semisuper-
vised algorithm: It needs access to the unlabeled data (for a
systematic investigation on a semisupervised learning, refer to
[26]). For transductive learning, the kernel matrix is important
(for the kernel matrix learning, refer to [27]). Along the line
of transductive learning, our method is related to [6], [28],
and [29]. The models in [28] and [29] are mainly concerned
with directed graphs such as the Web link, on which the
cocitation is meaningful. This cocitation calculation, however,
is not being considered in our model; hence, a comparison with
[28] and [29] is inappropriate and is not provided empirically.
We are interested in comparing with consistency method (CM)
proposed in [6], which is most closely related to our proposed
VHDC. CM consists of the following four steps.

Step 1) Form the affinity matrix W. Define W;; =
e xi=xilI*/B if j £ j and W;; = 0.

Step 2) Construct the matrix S. S = D~Y/2WD~1/2 in
which D is a diagonal matrix with its (¢,¢) element
equal to the sum of the ¢th row of W.

Iterate. F(t+1)=aSF(t)+ (1 — @)Y until it
converges to F'*, where « is a parameter in (0, 1)
and Y is an x cmatrix with Y;; = 1if x; is labeled
as y; = j and Y;; = 0, otherwise. Note that ™ =
(1—-a)(I —aS)7tY.

Label the unlabeled data. Label each point x; as a

label y; = arg max;<. Fz*g

Along the line of SVM, transductive SVM algorithms
(UniverSVM (USVM) [30] and SVMLight [31]) are popular.
Employed as baselines, the recent one, USVM, will be com-
pared to our method in the experimental section.

Step 3)

Step 4)
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E. Connections Between the Heat-Diffusion Model on Graphs
and That on Manifolds

Since we approximate the unknown manifold by a neighbor-
hood graph, it is interesting to show the similarity between heat
diffusion on a manifold and that on a neighborhood graph. In
the following, we list some correspondences between the heat-
diffusion model on graphs and that on manifolds.

1) The heat-diffusion equation on a graph is (d/dt)f(t) =

aH f(t); the heat-diffusion equation on a manifold is,

from (1)
f(%,0) = fo(x).

2) The solution to the heat-diffusion equation on a graph
is f(t) = e f(0) = e £(0); the solution to the
heat-diffusion equation on a manifold is f(x,t) =
S Ki(x,5) fo(y)dy

3) The delta function §(x — y) is used to represent a unit
heat source at position y; the vector e;, whose jth el-
ement is one while other elements are zero, is used to
represent a unit heat source at node j.

F. Problem in the Integral Approximation

In [3], an integral approximation to the heat-diffusion equa-
tion is employed to weigh the edges of the graph constructed
from data points. Then, the Laplacian of the weighted graph is
applied to a nonlinear dimensionality-reduction algorithm. This
weighing method is also used in [6], [11], [12], and [25].

We will inherit the integral-approximation technique in [3],
but our focus in this paper is not the dimensionality-reduction
problem. In [3], there is an implicit assumption in the local
heat-kernel approximation The data are distributed evenly. For
example, the integral fo x)dx can be approximated by

1
/f d:cNZf&Axt ®)
0

where Ax; is a partition of the interval [0, 1] and &; € Ax;.
If Az; = Ax; for any pair of ¢ and 7, i.e., when the data are
evenly distributed, then

1
[ @
0

The integral approximation in [3] uses (9) and, thus, implic-
itly uses the assumption of evenly distributed data. This results
in some errors when the data are not evenly distributed, and
consequently, there exist errors in the HDC in [8], which adopts
the same local heat-kernel approximation as that in [3].

We consider to introduce the concept of volumes to solve the
problem of the unevenly distributed data. In this example, the
volume of point i is Az;. In a manifold setting, the volume of
point ¢ is the surrounding hypervolume. In Section III-B1, we
will provide more mathematical justifications.

In the next section, we will propose a VHDM on a graph

by preserving the common features in (3) and (6) such that
the neighbor z; of x; affects x; in proportion to the difference

f(z;) — I ().

> f(). )

1

III. VHDM ON A GRAPH

First, we give our notation for the heat-diffusion model. Con-
sider a directed weighted graph G = (V, E, W), where V =
{v1,v2,..., 05}, E = {(v;,v;)|there is an edge from v; to v, }
is the set of all edges, and W = (w;;) is the weight matrix.
In contrast to the normal undirected weighed graph, the edge
(vs,v;) is considered as a pipe that connects nodes 7 and 5, and
the weight w;; is considered as the length of the pipe (v;, v;).
The value f;(t) describes the temperature of node ¢ at time ¢,
beginning with an initial distribution of temperature given by
£i(0) at time zero.

Next, we consider the representation ability of each node.
In a manifold, there are infinite nodes on it, but only a finite
number n of nodes are known and form the graph. We can
assume that there is a small patch P(j) of space containing
node j and many other nodes around node j; node j is seen
by the observer, but the small patch is unseen to the observer.
The volume of the small patch P(j) is V' (j).

A. Establishment of VHDM

In this section, we try to establish the heat-diffusion model
by employing Fourier’s law, which states that the rate of heat
flow through a homogenous solid is directly proportional to
the area of the section at right angles to the direction of heat
flow and proportional to the temperature difference along the
path of heat flow. Heat always conducts from warmer objects to
cooler objects. If there is no temperature difference, no heat
will diffuse. The larger the temperature difference, the more
quickly the heat diffuses. The relation between the rate of heat
conduction and the contact area is the same as that between
the rate of heat conduction and the temperature difference.
According to Fourier’s law, both the temperature difference and
the contact area affect the conduction rate linearly.

Suppose, at time ¢, the unit volume containing ¢ receives an
amount HM (i, j,t, At) of heat from its neighbor j during a
period of At. Then, according to Fourier’s law, we assume that
we have the following conditions: 1) The heat H M (i, j, t, At)
should be proportional to the time period At and the temper-
ature difference f;(t) — fi(t); and 2) the amount of heat that
patch P(j) diffuses to the unit volume containing 4 is propor-
tional to the surface area S(i) of the unit volume. Moreover,
the heat flows from node j to node i through the pipe that
connects nodes, and therefore, the heat diffuses in the pipe in
the same way as it does in the 1-D Euclidean space, as described
in (2). Consequently, we further assume that H M (i, j, ¢, At) is

proportional to e v , the amount of heat that a unit heat source
at node j transferred to node 4, which is a fact in 1-D Euclidean
space. In addition, the temperature in the small patch P(j) at
time ¢ is almost equal to f;(¢) because every unseen node in
the small patch is near to node j, and so, the amount of heat in
patch P(j) is proportional to V(). As a result

HM(i, j,t, At) = aS(i)e "5/ (f;(t) -

fi() V(5)AL.

The amount of heat in the unit volume containing ¢ is equal
to f; - 1. The heat difference in this unit volume should be
fi(t + At) — fi(t), which is caused by the sum of the heat that
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it receives from all its neighbors and the small patches around
these neighbors. This is formulated as

fit+ A~ fit)=a Y7 S 5Af(0)— f:(0)VU) At
5:(4)EE

(10)

which can be further expressed as aAt(A — B), where A =

> iGi)eE S(i)e /P £;(H)V(j) and B = f;(t) 2 jiGieE ¥

S(i)efw?j /BV/ (). To find a closed-form solution to (10), we ex-

press it as a matrix form: (f(t + At) — f(t)/At) = aH f(t),

where f(t) is the vector (f1(t), fo(t), ..., faran ()T, f(t+
At) is the vector (fi(t+ At), fo(t+ At),..., faran(t+
At)T, H = (H;;), and

= D ki(hi)eE S(i)e r/PV (k), j=1i
S(i)e 5PV (5), (j,i)e B (D
0, otherwise.

Hij =

In the limit At — 0, we have (d/dt) f(t) = aH f(t). Solving
it, we obtain a closed-form expression

f(t) = e (0) = e £(0) (12)
where v = at, and €7 is defined as
o 7 v\ ¢
O = It qH+ L H + LH o~ (I—i-gH) . (13)

The matrix e is called the diffusion kernel in the sense
that the heat diffusion between nodes from time zero to ¢ is
completely described by the elements in the matrix. For the sake
of computational considerations, ¢ f(0) can be approximated
as (I +v/sH)® f(0), where s is a large integer. The latter can
be calculated by iteratively applying the operator (I + v/sH)
to f(0).

In the model, V(i) is used to estimate the volume of the
small patch around node i. Intuitively, if the data density is
high around node ¢, the nodes around node 7 will have a high
probability of being selected, and thus, there are fewer unseen
nodes around node ¢. In this paper, we define V'(4) to be mean
value of 1/n and the normalized volume of the hypercube
whose side length is the distance between node ¢ and its nearest
neighbor. Formally

V(i) =n min w/2+1/2n (14)
J:(G:1)eE
where v is the dimension of the space in which graph G lies and
7 is a normalized parameter such that )., V(i) = 1.

In the earlier discussions, we established VHDM by physical
intuitions. Next, we will show a mathematical justification for
the introduction of volumes, and as a by-product, we find a way
to calculate the contact area S(7).

B. Why Introducing Volumes: Mathematical Foundation

In this section, we show that it is necessary to introduce the
concept of volumes from three aspects.

1) Justification by Integral Approximations: In this section,
except for volumes, we follow the approximation techniques

employed in [3]. Note that, when all the volumes are equal, the
last approximation in (16) becomes the case in [3].

It turns out that in an appropriate coordinate system K;(x,y)
on a manifold is approximately the Gaussian

Ky(x,y) = (4mt) e Y4 (5(x,y) + O(F)  (15)

where ¢(x,y) is a smooth function with ¢(x,x) =1 and,
when ¢ is small, O(t) can be neglected. Therefore, when
x and y are close and ¢ is small, we have K;(x,y) =~
(4t)~m/2e~Ix=¥I*/4t (for more details, see [3] and [17]).

It is well known that the solution to (1) can be expressed as
fx,t) = [y Ke(x,y) foly). From Lf(x,t) = —0f(x,1)/0t,

we have

Lf(xist) = (f(xi,t) = f(xist + AL)) /At

~ f(Xi,t)—/KAt(xhy)f(yat) /At
M
~ (f(xi,t) — (4nAt)~ %

« e_xi_y2/4Atf(y7t)>/At
/

1
t

~
~

(f(xi, t) — (4wAt)~ %

J:(4,1)eE

(16)

where volumes are considered as the partition of M and the last
approximation is based on the definition of the integral, which
will become an equality if Uy yepy P(J) = M, P(j)N
P(k) = 0,and max V (j) — 0. To satisfy the earlier conditions,
the volume of a patch should occupy the manifold as much
as possible while every two patches are not intersected. When
the number of data is large enough, max V'(j) will be small
enough. This motivates us to define the volume in (14). Note
that, when data points are evenly distributed, V(i) will be a
constant, and thus, the effect of volumes will disappear.

However, in practice, the earlier three conditions cannot be
satisfied, so errors may arise in the last approximation. For
example, (16) may not possess the property that a constant
temperature distribution at time ¢ will also result in a constant
temperature distribution at time ¢ + At. To satisfy such a prop-
erty, we change the constant (47rAt)~™/2 to a variable S(i).
This idea is similar to the constant adaptation method in solving
some ordinary differential equations. From the knowledge that
a constant temperature distribution at time ¢ will also result
in a constant temperature distribution at time ¢ + At, we have
La (i) 3.5 ep € P77/ 181V (), and so

S(i)zl/

Z e*sz’*XjHQ/‘lAtv(j) a7

J:(J,i)eR
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This is the definition of the surface area of node ¢. The
intuition is that the larger the volumes of its neighbors, the less
the surface that is left to ¢. This intuition comes from the
observation that, in Fig. 1(d), larger volumes of squares A, B, C,
D, and E force the surface of O to be smaller.

2) Justification by the Definition of a Manifold: Volumes
are theoretically important because heat diffuses throughout the
whole space of any given volume in a physical system, and
the concept of the volume is crucial in its ability to represent
the whole space, including both known points and other points
between them. Moreover, the idea of volume can be explained
further by the definition of local charts in a differential manifold
as shown in [14].

Definition 2: An m-dimensional differential manifold M is
a set of points that is locally equivalent to the m-dimensional
Euclidean space R™ by smooth transformations, supporting
operations such as differentiation. Formally, a differentiable
manifold is a set M together with a collection of local charts
{(U;, ¢:)}, where U; € M with U;U; = M, and ¢; : U; C
M —R ™ is a bijection from U; to ¢;(U;). For each pair of
local charts (U;, ¢;) and (Uj, ¢;), it is required that ¢;(U; N
U,) is open and ¢;; = ¢; o ¢>;1 is a diffeomorphism. O

The small patch around each point ¢ can be considered as
a local charts U;, and the volume of i is the volume of Uj;.
Consequently, the whole manifold M is formed by joining the
small patches together.

3) Justification by Practice Considerations: In VHDM, if
[ — o0, the graph is in the form as shown in Fig. 1(a), which
means that each node has four neighbors, and if the volume
of each node is set to one, then (10) becomes (6). Therefore,
we can say that VHDM generalizes the FD method from a
Euclidean space to an unknown space. The generalization is
interesting for its ability to solve the following problems.

1) Irregularity of the graph. By setting 3 to be finite, we
actually soften the neighborhood relation between the
data points, and thus, we avoid the difficulty in handling
the irregularity of the graph constructed by the data
points. For example, in Fig. 1(b), the central data point
has four neighbors, which are not regularly positioned
on nodes in the grid. The FD method has difficulty in
handling such a case. Even worse, in real data sets, each
data point has many neighbors, which are positioned in a
space with an unknown dimension.

2) Variation of density. The data points are not drawn
uniformly, and we use the volume of the hypercube
around a node to perform the local density estimation
around the node. In Fig. 1(c), the whole space is covered
by small patches, and in Fig. 1(d), each small patch is
approximated by a small square. In this way, we actually
consider the unseen points so that the concept of heat
diffusion on a graph can be treated as an approximation of
heat diffusion in a space. There is no such consideration
in the FD method.

3) Unknown manifold and wunknown differential-
equation expression. In most cases, we do not know the
true manifold that the data points lie in, or we cannot
find the exact expression for the Laplace—Beltrami
operator; therefore, we cannot employ the FD method. In
contrast, our model has the advantage of not depending
on the manifold expression and the differential-equation

expression. Moreover, volumes serve as patches that
are connected together to form the underlying unknown
manifold, while each volume is a local Euclidean space.
The idea of volume fits the definition of local charts in
differential manifold.

C. Determining v Using Existing Methods

In the definition of volumes, we introduce the parameter v
describing the dimension of the space in which graph G lies.
From the definition of a differential manifold, v corresponds
to the unknown dimension m of the local Euclidean space. In
the following, we consider how to determine the value of this
parameter.

PCA is a traditional method for dimension estimation. In this
method, the intrinsic dimension is determined by the number
of eigenvalues greater than a given threshold. Both global
and local PCAs have the disadvantage of introducing another
parameter—the threshold. To avoid such a new parameter, we
choose the maximum-likelihood estimation method proposed
in [32].

In our proposed classifier, the graph is constructed by
K nearest neighbors (KNNs), which will be described in
Section IV. This parameter K is the same as the one employed
in dimension estimation by the maximum-likelihood estima-
tion. Thus, we avoid in introducing another new parameter.
In addition, this method helps to reduce the complexity of
searching the parameter K in that we can discard those K’s
by which the estimated dimensions are greater than the number
of attributes or are less than one.

Although the parameter K could be selected automatically
in the proposed method, it is still a parameter. We note that the
selection used in this paper could be suboptimal.

1) Maximum-Likelihood Estimation of Intrinsic Dimension:
If Tj(x) is the Euclidean distance from a fixed point z to its
jth nearest neighbor in the sample, then the local dimension
M (x) at point = can be estimated by a maximum-likelihood
estimation, as described in [32], as follows:

-1

1 —, T
() = X_1 Zl log TI;((;)) (18)
=

To avoid overflowing during calculations when T () is very
small, we slightly change (18) to the following:
-1
K-1 () + ¢
+e€

1 T
() = | g D longj(T (19)
j=1

€ is set to be 0.0000001 in this paper. To obtain a unique
dimension v as required by Definition 2, we need to av-
erage all these estimated dimensions. Then, we have v =
1/n " g (x;). In fact, we observe that an arbitrary selec-
tion of the parameter ¢ in the interval [0.0000001, 0.001] cannot
produce much difference on the estimation of the dimension,
and so, we need not pay much care on the selection of e.

IV. VHDC

In the case that the underlying geometry is unknown or its
heat kernel cannot be approximated in the same way as used
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Fig. 2.
1000 data points on the spiral manifold.

by [14], it is natural to approximate the unseen manifold by
the graph created by the KNNs in our model and to establish
a heat-diffusion model on the neighborhood graph rather than
on the underlying geometry. The graph embodies the discrete
structure of the nonlinear manifold. By doing so, we can imitate
the way that heat flows through a nonlinear manifold. In this
section, we first establish the algorithm based on the closed-
form solution in (12), then we discuss the free parameters, and
finally we justify the necessity of introducing the heat-diffusion
model in the field of classification.

A. Establishment of the Algorithm

We assume that there are c classes, namely, 1,2,... c.
Let the labeled data set contain M samples, (x;,k;)(i =
1,2,..., M), which means that the data point x; belongs to
class k;. Suppose the labeled data set contains M}, points in
class k so that y_, M) = M. Moreover, the unlabeled data
set containing N unlabeled samples is represented by x;(i =
M+1,M+2,...,M+N).

We first employ the neighborhood-construction algorithm
commonly used in the literatures, for example, in [1]-[4], and
[33], to form a graph for all the data. Then, we apply the heat-
diffusion kernel to the graphs. For the purpose of classification,
for each class k£ in turn, we set the initial heat at the labeled
data point in class k to be one and all other data points to be
zero, then calculate the amount of heat that each unlabeled data
point receives from the labeled data points in class k. Finally,
we assign the unlabeled data point to the class from which it
receives most heat. More specifically, we describe the resulting
VHDC as follows.

Step 1) Construct neighborhood graph. Define graph G
over all data points both in the training data set and
in the unlabeled data set by connecting points x; and
x; from x; to x; if x; is one of the KNNs of x;,
measured by the Euclidean distance. Let d(4, j) be
the Euclidean distance between point x; and point
x;. Set edge weight w;; to be equal to d(3, j) if x; is
one of the KNNs of x;, and set n = M + N.

Compute the Heat Distribution. Using (13),
we obtain ¢ results for f(t), namely, f*(t)=
eH fR(0), k=1,2,...,c, where f*(0) = (2V, 25,
conxk 00,001, k=1,2,...,c, k=1 if

Step 2)
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Illustration of the spiral manifold and its graph approximation. (a) Two thousand data points on a spiral manifold. (b) Neighborhood graph of the

ki =k, and =¥ = 0, otherwise. Here, f¥(0) means
that all the data points in class £ have unit heat at
the initial time, while other data points have no heat,
and the corresponding result f*() means that the
heat distribution at time ¢ is caused by the initial
temperature distribution £%*(0).
Classify the data. For [ =1,2,..., N, compare
the pth (p= M + 1) component of f1(¢), f%(t),
.., f¢(t), and choose class k such that fF(t) =
maxg_; fi(t), i.e., choose the class that distributes
the most heat to the unlabeled point x,,, then classify
the unlabeled point x,, to class k.

Step 3)

As an example of step 1), in Fig. 2(a), we show 2000 points
on a 2-D spiral manifold which is embedded into 3-D space.
In Fig. 2(b), we show the neighborhood-graph approximation
of the spiral manifold, which contains 1000 points drawn from
the 2000 ones in Fig. 2(a) and in which each node has three
neighbors. In step 2), the heat diffuses from the labeled data to
the unlabeled data along the graph, and consequently, the heat
flows along the spiral manifold. In step 3), if the unlabeled data
point is closer to one class in the sense that it receives more heat
in total from this class of data, then the unlabeled data point
is classified into this class; otherwise, it is classified into the
other class.

The outside appearance of e"H is the same as that in [7] and
[25]; however, the numerical value of e”¥ in our paper is quite
different from [7] and [25] [refer to (11)]. The heat kernel in [7],
[14], and [25] is applied to a large-margin classifier; in contrast,
the heat kernel is employed directly to construct a classifier in
our model.

Here, we analyze the computational complexity of VHDC
given a constructed KNN graph (or another kind of graph). In
VHDC, for each class, we need to compute the multiplication
between a vector and a sparse matrix I + 7/sH s times. Since
I +~/sH has Kn nonzero elements (n = N + M), we need
s multiplications in total. Usually, ¢ < n, and s is set to
be 100 in practice. Therefore, the complexity of VHDC is
O(Kn), given a constructed KNN graph. Similarly, it is linear
on the number of edges in other constructed graphs. Con-
sidering the straightforward KNN graph-construction method,
which needs O(Kn?) comparisons, the overall complexity of
VHDC is O(Kn?) if the KNN graph needs to be constructed
in VHDC.
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B. Roles of the Parameters

It is easy to find out that K is used to control the manifold
approximation, and v is used to model the true dimensionality
of the manifold that the data lie in.

1) Local Heat Diffusion Controlled by 3: In Section III-A,
we assumed that the heat diffuses along the pipe in the same
way as it does in the 1-D Euclidean space. Next, we will justify
this assumption. In VHDM in Section III, heat flows in a small
time period At, and the pipe length between node 7 and node
j is small (recall that we create an edge from j to ¢ only when
7 is one of the KNNs). Therefore, the approximation in (15)
can be used in our model, and we rewrite it as Ka.(i,7) ~

(4w At) /2~ W5/ 48t | According to the mean-value theorem
and the fact that K(i,7) = 0, we have Ka:(%,)) = Kae(s,
§) = Koli, ) = dK as(i, §)JdAt ar—pAt = - e 5/ P AL,
where [ is a parameter that depends on At¢, and o =1/
4wfj6’2’m/2 —1/2mB~1""/2. To make our model concise,
« and (§ simply serve as free parameters because the relation
between At and ( is unknown. This explains the statement
that (8 controls the local heat diffusion from time ¢ to ¢ + At
and the reason why we assume that, at time ¢, the amount of
heat that node 7 receives from its neighbor j is proportional
to e Wi/,

2) Global Heat Diffusion Controlled by ~: From v = at,
we can see that « controls the global heat diffusion from
time zero to t. Another interesting finding is that + can be
explained as a regularization parameter: When v = 0, we have
e"H £(0) = If(0) = £(0), resulting in a classifier which has
zero error on the training set. When v — 4-o0, the system will
stop diffusing heat, and the heat at each node are equal. This
means that the function on the graph becomes smoothest in the
sense that the variance between values on neighbors is smallest.
The best v is a tradeoff between the training error and the
smoothness and should not be zero or infinity.

Finally, we investigate the singular behavior of VHDC in the
limit v — 0. If we simply let v = 0 in the equation 7 £(0),
then we only get a trivial classifier as shown earlier. From
a different viewpoint, we observe the following interesting
phenomenon.

Subtracting I from e then dividing by 7 changes the
values of the testing data in the same scale, and so, it does not
change the performance of the classifier, i.e., (e?# — I)/vf(0)
behaves the same as e7 f(0) as a classifier. Then, we can take
the limit over (e” — I)/~f(0) and obtain

C(eH-1y,  T+yH+LH 4
%13(1) ff(o) —%12% 27 f(0)
: v
:}Y%(H+§H+-~-)f(0)

=Hf(0).

We consider H f(0) as the singular behavior of VHDC in the
limit v — 0.

3) Stability of VHDC With Respect to Parameters: There are
three free parameters in VHDC. If the parameters in the model
is not stable, then a small deviation from the best value of a
parameter may result in a totally different performance. This
instability of the parameters is not desirable. In this section,

we will show that the classifier VHDC is not sensitive to the
parameters 3, 7y, and K.

Since ¢?¥ is continuous on 3 and 7 in the sense that small
changes in these parameters result in a small change in €%,
VHDC is not sensitive to these three parameters if they change
slightly.

For easy analysis, in the following, we ignore the volumes
and surfaces. The existence of the derivatives of ¢?# with
respect to 3 and y can be seen in the following:

yH
= 0)
y
vH g
e qend A _ ([, @1)
dg g dp dp
w2 _ ..
dH; _Zk:(k,i)eEe ”“/ﬁw?kﬁ 2 J=1
ap e els, (i) e B @2

0, otherwise.

It is well known that Af =~ df /dtAt. Since there exist deriv-
atives of 71 with respect to 3 and v, we can say that e is
stable with respect to these parameters and so is e £(0).

If H is symmetric, then we can estimate an upper bound for
these derivatives. First of all, we claim that the ¢-row and j-
column elements in ¢ mean the amount of heat that i receives
from a unit heat source at 7. Therefore, physically, we claim
that €77 is a nonnegative matrix. Next, we show that the sum
of each row in e?# is equal to one. Let 1 and 0 be the vector of
all ones and the vector of all zeros, respectively. Then, H1 = 0.
According to (13), we have
~2

2'H21+...:1

1 =114 yH1+
which means that the sum of each row in ¢’ is equal to
one. Consequently, we can assume that each row in e’ is
a vector (aq,as,...,ay) satisfying a; >0 and ), a; = 1.
Let (by,ba,...,b,)T be a column in H. Then, each ele-
ment in de?H /dy is of the form (a1, as,...,a,) (b1, b, ...,
b,)T by (20). By Hélder’s inequality (p =1,q = 00), we
have (a1,as,...,a,)(b1,ba, ... ,by)T < (32, Ja;|) max; |b;| =

. . H .
max; |b;| < K, which means that each element in df;v is not

greater than K. Similarly, if ’ye*w?j/ A wfj (372 < 1 for all 4 and
j, then each element in de” /d}3 is not greater than K.

For the parameter K, it has an unstable effect on the con-
structed neighborhood graph. Increasing K by one will result
in a structural change in the underlying KNN graph. However,
the numerical values in the matrices H do not change much. We
analyze this here. Let 7; denote the jth nearest neighbor of 4. If
we increase K by one, then only the iif 1 1th element Hy;, |
in the ith row of H in (11) is changed from zero to nonzero.
More specifically

—w?, /B .
—w2, ety
— S(i)e 127’K+1/ﬂV(iK+1) _e +1 (ZK+1)_

Hi K+1 w2 /8 .
Zl e iV (iy)
j:

TR 41

If volumes are ignored, then H;,,, is less than 1/K + 1,
since Wii; < Wiy, forj=1,2,..., K + 1.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 6, 2009 at 10:56 from IEEE Xplore. Restrictions apply.



YANG et al.: VOLUME-BASED HEAT-DIFFUSION CLASSIFIER

For j < K, if we increase K by one, then the 7i;th element
H;; in the sth row of H in (11) is changed from a nonzero
number to another. The difference is

—w? /B .
V(i)
1

—wfi /B .
i7" V(i)

+lo

K

L (A I SR

™M= 4
Il

i
—w?, . —w?, .
OV G) e e PV i)
—w? B,y IR —w? /B
e V(i) zi% e V(i)
=

] =

<
I
—

which is less than 1/K +1 if volumes are ignored. In
any case, the elements in H do not change much if K is
increased by one. So do the elements in e, since €7 is con-
tinuous on H.

C. Need for Heat-Diffusion Model in Classification

It is not absolutely necessary to have a physical model behind
a learning algorithm. However, the situation is different for the
heat-diffusion model, since many learning algorithms can be
interpreted by the heat-diffusion model theoretically, although
not empirically.

We first show that KNN can be considered as a special case
of VHDC (when 3 — +o0o, N =1, and ~ is small and when
volumes are constant and thus the contact surfaces are constant,
VHDC becomes KNN); and when the window function is
a multivariate normal kernel, the Parzen window approach
(PWA) [34] can be considered as a special case of HDC (when
K =n—1 and ~y is small and when volumes are constant,
VHDC becomes the PWA).

When the parameter + is small, we can approximate ¢ in
(13) by its first two items, i.e., eH ~ T4 ~H, then, in VHDC,
fE@t) = 7 £%(0) ~ f*(0) +vH f*(0). As the constant
and the first item £¥(0) have no effect on the classifier, VHDC
possesses a similar classification ability to that determined by
the equation f*(t) = H f*(0). As a classifier, H f*(0) will not
be affected by an arbitrary scaling on each row of H, and so,
the surface factor can be ignored in H f*(0). This result will be
used in the next two sections.

1) VHDC and PWA: First, we review the Parzen window
nonparametric method for density estimation using Gaussian
kernels. When the kernel function H () is a multivariate nor-
mal kernel, a common choice for the window function, by the
estimate of the class-conditional densities for class C}, and
Bayes’s theorem, we have [34] as follows: The density at the
point x is

e

1
p(x) = M ; (27Th2)d/26 2

(23)

When applying it for classification, we need to construct the
classifier through the use of Bayes’s theorem. This involves
modeling the class-conditional densities for each class sepa-
rately and then combining them with priors to give models for
the posterior probabilities which can then be engaged to make

425

classification decisions [34]. The class-conditional densities for
class C, can be obtained by extending (23)

2
_llxe=x4l

_ 1 1 JE
PIC) =30 DL et ™ @4
1:C, =Ck
where the priors can be estimated by p(Ci) = My /M. By
Bayes’s theorem, we get
S —c, € xxill?/2h2
1:C, =Ch

ﬁ(Ck|X) = Mp(X)(Qﬂ'hQ)d/Q

(25)

Without considering the volume, if we set K =n — 1 and
if ~ is small, then the graph constructed in step 1) will be a
complete graph, and the matrix H in (11) becomes

=D ki e Wi/, j=i
Hij = —w?. /3 . .
e Vil J# i

Then, in VHDC, the heat f¥(t) that unlabeled data x,
receives from the data points in class C will be equal to
Zizck,:ck e’”xf”x’?|‘2/ﬁ, which is the same as (25) if we let

v = 1/Mp(x)(27h?)?2, and 3 = 2h2. This means that, when
the window function is a multivariate normal kernel, the PWA
can be considered as a special case of VHDC.

2) VHDC and KNN: If (3 tends to infinity and, again, the
volume is not considered, then —wizj /3 will tend to zero, and
the matrix H in (11) becomes '

(26)

Hy = { 1, x; is one neighbor of x; (27
0, otherwise

where O; is the outdegree of the point x; (note that the indegree
of the point x; is K). Then, in VHDC when + is small, the
heat f;l(t) that unlabeled data x,, receives from the data points
in class Cy will be equal to f(t) = >, _¢, 1 = Kq, where
K, is the number of the labeled data points from class Cl,
which are the KNNs of the unlabeled data point x,,. Note that
when N = 1, i.e., when the number of unlabeled data is equal
to one, 22:1 K, = K. According to step 3), we will classify

the unlabeled data x,, to the class Cy such that fF(t) = K
is the maximal among all fZ(t) = K,. This is exactly what
KNN does, and so, KNN can be considered as a special case
of VHDC.

We show one advantage of the generalization of KNN. It
is well known that expected error rate of KNN is between P
and 2P when N tends to infinity, where P is the Bayes error
rate. Therefore, the upper bound of the expected error rate of
VHDC is less than 2P if (3 is infinity and volumes are constant.
It should be tighter if appropriate parameters for VHDC are
found.

3) VHDC and CM: Although our model VHDC adopts a
different approach to CM in [6], there is an overlap between
our solution and CM. The overlap happens when the volume is
not considered and -y is small in our model, while « is small
and the normalization is not performed in [6]. This can be
perceived from the approximation (I — a.S)~! ~ I + .S when
« is small. Subtracting I from (I — «S)~! then dividing by «
changes the values of the testing data in the same scale, and
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80, it does not change the performance of the classifier CM. As
a result, (I — aS)~1Y has similar performance to SY when
« is small. Similarly, by the approximation e’ =~ I +~vH
when ~ is small, e"™Y has the similar performance as HY .
Consequently, when the normalization in CM is not performed
and when the volume is not considered in VHDC, S and H are
equal except for the diagonal elements, which have no effect
on the classifiers SY and HY. Another interesting point is
that the classifier (I — a.S) 1Y is supported by a regularization
framework. It is true that, currently, we cannot find a similar
regularization approach that can output the proposed classifier
eYY , but we can interpret it in another way: + plays a role like
the regularization parameter as shown in Section IV-B2.

4) VHDC and Some Other Popular Algorithms: As ex-
plained in [35] and [36], a number of popular algorithms
such as SVM, Ridge regression, and splines may be broadly
interpreted as regularization algorithms with different empirical
cost functions and complexity measures in an appropriately
chosen reproducing kernel Hilbert space (RKHS). For a Mercer
kernel K : X x X — R, there is an associated RKHS H g of
functions X — R with the corresponding norm || || k. Given
a set of labeled examples (x;;y;), ¢ = 1,...,[, the standard
framework estimates an unknown function by minimizing

!
* 3 1
= arg min - ;V(mei,f) +allfll%

where V' is some loss function, such as squared loss (y; —
f(x;))? for regularized least square or the hinge loss func-
tion max[0,1 — y;f(x;)] for SVM. Penalizing the RKHS
norm imposes smoothness conditions on possible solutions.
The classical representer theorem states that the solution to
this minimization problem exists in H x and can be written as

!
ff(x) = ZaiK(x,xi). (28)
i=1

If K takes the Gaussian RBF e I*¥I°/° then f*(x) in
(28) is the solution of the following heat-diffusion equation on
a m—dimensional Euclidean space:

{g{ ~Lf=0
f(x,0) = fo(x)

where fo(x) = (4t)™/2 3| a;6(x — x;) and 4t = 2. This
amounts to the solution in (28) can be obtained by solving
a heat-diffusion equation with a special initial temperature
setting.

It is interesting to mention that the representer theorems for
the Laplacian regularized least squares and the Laplacian SVM
(manifold regularization) are similar

(29)

I+u

ff(x) = Z a; K (x,%;) (30)
i=1

where {x; }é?j ', denotes the u unlabeled examples. This also

means that the solution for Gaussian RBF kernel can be ob-
tained by solving a heat-diffusion equation with a special initial
temperature setting.

Therefore, we can say that many learning algorithms can
be interpreted by the heat-diffusion model theoretically. This
shows the necessity of introducing the heat-diffusion model.
However, the problem is where and how we set the initial
conditions in the heat-diffusion equation in what kind of space.
This paper shows what we can achieve by a simple setting
of the initial conditions—set the temperature to be one at the
training data points (before we can find an optimization method
to find the best initial setting, we have to adopt this “simple
and stupid” setting). Although such an attempt may not achieve
much accuracy improvement, it inspires a broad research space
for future investigations on the heat-diffusion equation, since
we feel we have still not fully fulfilled its potential for its
applications in classification tasks.

V. EXPERIMENTS

The PWA, KNN, USVM, CM, and VHDC and HDC (the
special version of VHDC when all volumes are one) are applied
here to 3 synthetic data sets and 16 data sets from the UCI
Repository [37]. Since discrete attributes and the problem of
missing values are out of the scope of this paper, we simply
remove all the discrete attributes and all the cases that contain
missing values. The first four columns in Table I describe the
corresponding data sets we use. Note that the data set Zoo
is a special example, by which we want to show a problem
of VHDC. There are 17 features in the original data. Here,
we remove the feature “animal name” that is no use for the
classification task, and all the Boolean values are considered
as numeric values. We preprocess the data set Zoo with PCA
such that the dimensionality is reduced from the original 16 to
8, which is shown in the last row.

We employ the Gaussian RBF kernel for USVM. We obtain
the free parameters in PWA, KNN, USVM, CM, HDC, and
VHDC via ninefold crossvalidations on the training data set
including the testing data without labels. The figures shown in
the last six columns in Table I are the mean accuracy of ten runs
by dividing the data into 10% for training and 90% for testing
and their variances. Note that the results are quite different if we
choose the best values in each run in hindsight, i.e., the testing
data with label are given when we choose the parameters.
However, such a setting has a bias against algorithms with
less parameters. If this setting is employed, then VHDC will
perform, at least, equally well as either of PWA and KNN does
on every data set since VHDC generalizes them.

There are three synthetic data sets with manifold structures.
Spiral-1000 is a synthetic data set, which is shown in Fig. 2(b).
In the spiral data set, the data points in one class are distributed
on a spiral rotated clockwise while the data points in another
class are distributed on a spiral rotated counterclockwise. The
data set concentric circles shown in Fig. 3(a) consists of two
circles that are concentric, and the data set tangent circles
in Fig. 3(b) consists of two circles that are tangent at the
point (1, 0).

The better results of VHDC over HDC show the necessity
of introducing the volume representation of a node in a graph.
From the results, we also observe that both HDC and VHDC
outperforms PWA and KNN in accuracy, as we expected.
The better results on the synthetic data sets show that VHDC
fits problems with a manifold structure particularly well. The
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TABLE 1
DATA SETS DESCRIPTION AND MEAN ACCURACY ON THREE SYNTHETIC DATA SETS, THE 15 BENCHMARK DATA SETS, AND
DATA SET Z0O. ACHIEVED BY TEN RUNS BY DIVIDING THE DATA INTO 10% FOR TRAINING AND 90% FOR TESTING
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Dataset | Cases Classes  Features | PWA KNN USVM CM HDC VHDC
Spiral-1000 1000 2 3 812+ 0.56  78.24+0.92 66.6+£1.73 80.5£0.69 92.7£0.61 94.14+0.65
Concentric-circles 100 2 2 52.8+0.69  5334+1.32  50.0+£0.00 81.0+£0.90  100+0.00 100£0.00
Tangent-circles 100 2 2 52.440.70 52.0+£1.35 50.0£000 5244081 66.8+0.88 67.2+1.114
Anneal 898 5 6 76.24£0.00  75.8+£0.54 458£134 762£0.00 75.640.50 75.3+0.68
Auto 195 7 14 33.1+£0.00 33.2+1.92 3324019 33.1£0.00 30.4+0.94 33.7+1.01
Breast-w 683 2 9 95.3+0.26 95.7+0.12  65.1+0.06 96.3£0.15 95.7+0.21 96.01+0.15
Credit-a 666 2 6 52.34+0.96 64.4£1.00 549£0.15 55.1+£000 61.6£1.53 63.8+0.93
Diabetes 768 2 8 65.1+0.71 67.840.56  65.1£0.09 65.6+£0.32 67.1£0.88 67.240.88
Glass 214 6 9 543+1.16  51.241.12 4994379 547+1.71 55.5£1.36 56.4+1.18
Heart-c 303 2 5 55.040.59  60.5+£052 5461032 5214044 59.34+1.32 61.5£1.12
Heart-h 293 2 4 62.240.71 63.5+£0.90 64.1+£0.14 62.6£0.77 63.5£0.90 63.54+0.90
Hepati 148 2 3 79.740.00 77.1+£1.68 70.3+1.14  79.7£0.00 79.0+2.34 79.4+2.23
Iono 351 2 34 67.5+1.73 79.7+1.38  85.6+1.66 71.4+£2.02 80.3+£1.67 80.2+1.19
Iris 150 3 4 94.340.89 91.1£2.18 93.6£1.09 935+1.08 91.7+2.18 92.442.15
Sonar 208 2 60 55.54+0.92 61.3£1.53 67.4£1.74 547+053 60.0+£1.31 62.3£1.50
Vehicle 846 4 18 53.640.80 49.540.92 5414078  55.0£0.65 52.1£0.82 53.6£1.02
Waveform 300 3 21 74.7+1.31 72.0+1.52 69.0+221 764+1.18 74.4+1.23 73.9+1.17
Wine 178 3 13 61.6+2.76 66.5+2.68  66.6+0.79 63+2.70 63.6+2.05 63.44+2.40
Zoo [ 101 7 16 [ 40.61£0.00  40.6:0.00 97.2:0.00 40.6:0.97  40.6:0.00 40.610.00
Zoo+PCA | 101 7 8 | 87.0£330 90.1£298 9711144 96.0£0.70  97.1£0.81 97.1+0.81
1 O s A B 1 P 000 5 2 TABLE 1II
0.8 gt eon00ey T 0.8 & 500000 4 PAIRED LEFT-TAILED T-TEST ON THE MEAN ACCURACY ON THE THREE
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el g ey, b HDC 097 093 099 0.99 0.003 (<)
_11 -0.5 0 0.5 1 _11 -0.5 0 0.5 1 VHDC 0.99 0.96 0.99 0.995 0.997
(a) (b)
00 T T T T T T T
Fig. 3. Two toy data sets. X * X T
¢ ’ * x W
o} B i B X S
TABLE 1I $gxﬂ
PAIRED LEFT-TAILED T-TEST ON THE MEAN ACCURACY ON THE 15 : B o Heart-h
BENCHMARK DATA SETS. THE NUMBERS ARE THE P-VALUES. 80 = = %Fr@'
A MARK < IS SHOWN IF THE NULL HYPOTHESIS CAN BE e [ R [ R T —&— Sonar
REJECTED AT THE 5% LEVEL 70k =l
t t + -~ - Wine
Algorithm \ PWA  KNN USVYM CM HDC VHDC
PWA 0.09 0.09 0.08 0.05(<) 001(<)
KNN 0.91 0.93 0.84 048 0.05
USVM 0.21 0.07 0.16 0.07 0.04 (<) 50 g
CM 0.92 0.16 0.84 0.09 0.03(<)
HDC 0.95 0.52 0.93 0.91 0.01(<)
VHDC 0.99 0.95 0.96 0.97 0.99 401 1
%05 05 1 15 2 25 3 35 4
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overall results on the 15 benchmark data sets indicate that
our approach VHDC outperforms both CM and USVM on
problems without any a priori knowledge. To give a solid
support for the earlier conclusions, we perform a paired left-
tailed T-test on each pair of the six algorithms. The results about
the 15 benchmark data sets are shown in Table II. The results
including both the 15 benchmark data sets and the 3 synthetic
data sets are shown in Table III.

To verify the stability of VHDC with respect to its three
parameters K, (3, and -y, we perform more experiments. After
obtaining these parameters by the crossvalidation on the train-
ing data sets, we adjust one of them a little while fixing the
others; then, we observe how the resulting accuracy changes.
From Figs. 4-6, we can see that stability of VHDC with respect

Fig. 4. Variation of the mean accuracy on the 15 data sets as the parameter
K found by the crossvalidation is increased by one, two, three, and four. Mean
accuracy is achieved by ten runs by dividing the data into 10% for training and
90% for testing.

to the three parameters: The mean accuracy does not change
much when each of them is increased a little.

Despite its success, VHDC is still not perfect. Next, we
discuss it from four aspects.

1) Neighborhood Construction. Although the KNN
neighborhood-construction algorithm is commonly used
in the literature, there may exist better neighborhood-
construction methods. For example, the idea of using
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Fig. 5. Variation of the mean accuracy on the 15 data sets as the parameter 3

found by the crossvalidation is increased by 0.01, 0.02, 0.03, and 0.04. Mean
accuracy is achieved by ten runs by dividing the data into 10% for training and
90% for testing.
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Fig. 6. Variation of the mean accuracy on the 15 data sets as the parameter
found by the crossvalidation is increased by 0.01, 0.02, 0.03, and 0.04. Mean
accuracy is achieved by ten runs by dividing the data into 10% for training and
90% for testing.

mutual information to find neighborhoods [38] can
be adopted, and the method of linear neighborhood
construction [9] can be inherited.

2) Dependence on Distance Measure. The Boolean at-
tributes in the Zoo data set are considered as continuous
attributes. We observe that PWA, KNN, CM, HDC, and
VHDC achieve 40.6% mean accuracy and perform more
poorly than USVM (with 97.2% mean accuracy) on data
set Zoo; indeed, the difference is as high as 46.6%. This
can be explained by the fact that all these methods depend
heavily on the distance measure, and as a consequence,
if the direct Euclidean distance is not accurate, these
methods will perform poorly. We argue that the noises in
the Zoo data set causes inaccurate distance measurement
between data points. To find the performance of these
algorithms on data set Zoo with less noise, we preprocess
it with PCA such that the dimensionality is reduced from
the original 16 to 8. The results are encouraging: VHDC
achieves 97.1% mean accuracy, the same as what USVM

Fig. 7. Illustration showing that the equal setting of initial temperatures is not
perfect. Only two data points A and B are labeled, the equal initial temperature
setting on these two points will result in classification errors. The decision
boundary will be the bar while the dashed line should be the ideal decision
boundary.

achieves. This example shows that VHDC relies heavily
on the local distance, so a suitable feature-extraction
method may help to increase its accuracy. A possible
solution is to employ the semisupervised metric-learning
method proposed in [39].

3) Local Minimum. Note that VHDC generalizes both
PWA and KNN. However, it is observed that, on data
set Iris, VHDC performs worse than PWA, and on data
set Wine, VHDC performs worse than KNN. We argue
that there exist local minimum problems hidden in the
crossvalidation search for the best parameters in VHDC.
A possible way to solve this kind of problem is to com-
prehend the initial temperature distribution as a random
field, to estimate the covariance of the random field at
time ¢, and, then, to minimize the appropriately defined
error measure including both the fitting error and the
variance.

4) Initial Temperature Setting. According to the discus-
sions in Section IV-C4, by appropriately setting the ini-
tial temperatures, the heat-diffusion model can interpret
many learning algorithms. In this paper, the initial tem-
perature is set to be one, and this simple setting will result
in some errors. For example, in Fig. 7, a higher initial
temperature in point B than that in A is expected in order
to achieve the best decision boundary, as indicated by the
dashed line. This problem is quite open now.

VI. CONCLUSION

We have shown how to employ a thermophysical system
to achieve promising performance in accuracy in transductive
learning. The proposed VHDM has the following advantages:
It can model the effect of unseen points by introducing the
volume of a node; it avoids the difficulty of finding the explicit
expression for the unknown geometry by approximating the
manifold by a finite neighborhood graph; and it has a closed-
form solution that describes the heat diffusion on a manifold.
As an application of VHDM, a classifier VHDC is successfully
constructed. We have investigated a number of properties of
VHDC, including the computational complexity, the roles of its
free parameters, its stability with respect to these parameters,
and the connection between VHDC and other algorithms. In-
tensive experiments have demonstrated that VHDC gives more
accurate results in the classification tasks. Experimental results
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also confirmed the stability of VHDC with respect to its three
parameters.

In order to capitalize on these promising achievements, fur-
ther study is needed on the following problems: How to find
a graph that better approximates the manifold instead of the
KNN graph; how to utilize some feature-extraction methods in
order to make the local distance more accurate; how to find out
the parameters which avoid the local minimum problem; how
to design a criterion for better setting the initial temperatures;
how to construct a better volume representation of the unseen
points; and how to apply VHDC to inductive learning. We have
discussed some possible solutions to the first four problems in
the previous section. Next, we discuss the last two problems.
For the problem of applying VHDC to inductive learning, we
have to find an inductive function that is not only smooth on the
underlying space but also is smooth on the underlying graph in
the sense that the value difference between two adjacent nodes
is small. A possible way to find such an inductive function is to
inherit the idea of manifold regularization and modify the term
related to the graph Laplacian by including the volumes. For
the problem of constructing a better volume representation of
the unseen points, we point out that, ideally, the volume of a
patch should occupy the manifold as much as possible while
every two patches are not intersected. The current definition
of the volume of a node does not satisfy such a property. A
possible solution to this problem is to slightly increase the
volume to achieve a balance between space occupation and
nonintersection.
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