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Abstract—With the exponential growth of Web 2.0 applications,
tags have been used extensively to describe the image contents
on the Web. Due to the noisy and sparse nature in the human
generated tags, how to understand and utilize these tags for image
retrieval tasks has become an emerging research direction. As the
low-level visual features can provide fruitful information, they are
employed to improve the image retrieval results. However, it is
challenging to bridge the semantic gap between image contents
and tags. To attack this critical problem, we propose a unified
framework in this paper which stems from a two-level data fusions
between the image contents and tags: 1) A unified graph is built
to fuse the visual feature-based image similarity graph with the
image-tag bipartite graph; 2) A novel random walk model is
then proposed, which utilizes a fusion parameter to balance the
influences between the image contents and tags. Furthermore,
the presented framework not only can naturally incorporate the
pseudo relevance feedback process, but also it can be directly
applied to applications such as content-based image retrieval,
text-based image retrieval, and image annotation. Experimental
analysis on a large Flickr dataset shows the effectiveness and
efficiency of our proposed framework.

Index Terms—Content-based image retrieval, image annotation,
random walk, text-based image retrieval.

1. INTRODUCTION

MAGE retrieval has been adopted in most of the major
I search engines, including Google, Yahoo!, Bing, etc. A
large number of image search engines mainly employ the
surrounding texts around the images and the image names to
index the images. However, this limits the capability of the
search engines in retrieving the semantically related images
using a given query. On the other hand, although the current
state-of-the-art in content-based image retrieval is progressing,
it has not yet succeeded in bridging the semantic gap between
human concepts, e.g., keyword-based queries, and low-level
visual features that are extracted from the images [22], [36].
Hence, it has become an urgent need for developing novel
and effective paradigms that go beyond these conventional
approaches or retrieval models.
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Fig. 1. Example image with its tags.

Recently, with the prevalence of Web 2.0 applications and so-
cial games, more and more users contribute numerous tags to
Web images, such as Flickr [17], ESP games [14], etc. These
tags provide the meaningful descriptors of images, which are
especially important for those images containing little or no tex-
tual context. The success of Flickr proves that users are willing
to provide this semantic context through manual annotations.
Recent user studies on this topic reveal that users do annotate
their photos with the motivation to make them better accessible
to the general public [1]. Fig. 1 shows an example image ex-
tracted from Flickr with its user-generated tags. This is a photo
taken in Hong Kong, and is described by users with the tags
Hong Kong, night, IFC (a building name, standing for Interna-
tional Finance Centre), Bank of China Tower, and skyline, which
are all semantically relevant to this image. However, it is very
difficult for the current content-based image retrieval methods
to produce such meaningful results. Hence, the tag data is an
ideal source for improving many tasks in image retrieval.

Unfortunately, tags inevitably contain the injected noise in the
manual labeling process. As shown in Fig. 1, the last tag associ-
ated with this photo is travel. To the owner who submitted this
photo, obviously, this tag is not a noisy tag since this photo prob-
ably was taken when the owner was traveling to the city. But in
terms of the image retrieval tasks, most probably the tag travel is
anoise, since it is a too general term. Other popular tags in Flickr
like nature, 2008 also belong to this category. Therefore, simply
using tags in image retrieval tasks is not a reliable and reason-
able solution; the visual information of images should also be
taken into consideration to improve the image search engines
since visual information gives the most direct correlations be-
tween images, and 80% of human cognition comes from visual
information [40].

In this paper, we investigate the research problem on how to
incorporate both image content and tag information into image
retrieval and annotation tasks. To take advantages of both the vi-
sual information and user-contributed tags for image retrieval,
we need to tackle two main challenges. The first challenge is
how to bridge the semantic gap between image contents and
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image tags. Essentially, visual features and tags are two dif-
ferent but closely related aspects of images. Although content-
based image retrieval using visual features has been extensively
studied since the 1990s, the semantic gap between low-level
image features and high-level semantic concepts is still the key
hindrance towards the effectiveness of content-based image re-
trieval systems [39]. The second challenge is how to create a
scalable and effective algorithm. There are a huge amount of im-
ages on the Web, and more and more new photos are uploaded
to photo sharing Web sites like Flickr everyday by numerous in-
dependent Web users. Hence, a scalable and effective algorithm
is necessary to analyze both the visual information and the tags
of images.

Aiming at the above challenges, we propose a unified frame-
work for performing tasks related to image retrieval, including
content-based image retrieval, text-based image retrieval,
and image annotation. This framework relies on a two-level
data fusion between image contents and tags. Based on the
global features extracted from every image, we first infer an
image similarity graph, and then form a hybrid graph with
the image-tag bipartite graph. In this hybrid graph, one part
of the weighted edges are connecting different images and
the weights represent the similarities between them, while the
other part of the weighted edges are bonding the images and
tags with the weights reflecting the co-occurrent frequencies.
After building the hybrid graph, we then propose a novel and
effective random walk model that employs a fusion parameter
to balance the importance between the image contents and the
tags. The fusion parameter determines whether to accelerate
the diffusion of random walks of image-tag subgraph, or to
accelerate the walks of image-image subgraph. Moreover, our
framework also provides a natural solution for including the
pseudo relevant feedback into image retrieval and annotation
tasks. The experimental results of three applications on a large
Flickr dataset show the advantage of our proposed framework.

The rest of the paper is organized as follows. We review
related work in Section II. Section III describes the proposed
unified framework, including the global feature extraction,
the hybrid graph construction, and the random walk model.
In Section IV, we demonstrate the empirical analysis of our
framework on three image retrieval applications. Finally, con-
clusions and future work are given in Section V.

II. RELATED WORK

Considerable research efforts [5], [11], [12], [19], [26],
[36] have been devoted to address attacking the semantic gap
between low-level features and high-level semantic concepts,
which is the key hindrance in content-based image retrieval
[10], [35].

Machine learning techniques have been shown as one way
to bridge the semantic gap between the image features and se-
mantic concepts. The recent research literatures have been sig-
nificantly interested in employing graphical models and dis-
tance metric learning algorithms. The work in [5] is inspired
from the natural language processing methods, in which the
process of building the relation between the visual features and
the keywords is analogous to a language translation. Similarly,
Djeraba [11] tries to learn the associations between the visual

features and the semantic descriptions via a visual dictionary.
As for the distance metric learning, it is mainly employed to
construct the semantic map [39] which learns a distance mea-
sure to approximate the similarity in the textual space. There-
fore, the learnt similarity measure can be further employed in
the image annotation task. Moreover, the semantic concept re-
lationship can be captured by the visual correlation between
concepts [40], [34], which is essential to the concept clustering,
semantic distance estimation, and image annotation. Addition-
ally, learning with relevance feedbacks, which takes advantage
of the users’ interaction to improve the retrieval performance,
has been extensively studied [35], [38]. One disadvantage for
the learning-based methods is its generalization capability. A
remedy is to raise the total number of representative training ex-
amples; however, this requires more manually labeled data and
increases the computational cost significantly.

Another approach to the semantic gap issue is to take advan-
tage of the advance in computer vision domain, which is closely
related to object recognition and image analysis. Duygulu et al.
[12] present a machine translation model which maps the key-
word annotation onto the discrete vocabulary of clustered image
segmentations. Moreover, Blei and Jordan [6] extend this ap-
proach through employing a mixture of latent factors to gen-
erate keywords and blob features. Jeon et al. [21] reformulate
the problem as cross-lingual information retrieval, and propose
a cross-media relevance model to the image annotation task.
In contrast to the image-based and region-based methods, the
image content is represented by the salient objects in [16], which
can achieve automatic image annotation at the content level.
A hierarchical classification frame is proposed in [15], which
employed salient objects to characterize the intermediate image
semantics. Those salient objects are defined as the connected
image regions that capture the dominant visual properties linked
to the corresponding physical objects in an image. However,
these methods rely on the results of image segmentation and
salience detection, which are sensitive to the illumination con-
ditions and cluttered background. In most recent, bag-of-words
representation [8], [42] of the local feature descriptors demon-
strated promising performance in calculating the image simi-
larity. To deal with the high-dimensionality of the vector fea-
ture space, the efficient hashing index methods have been in-
vestigated in [8] and [24]. These approaches did not take con-
sideration of the tag information which is very important for the
image retrieval task.

Apart from its connection with research work in content-
based image retrieval, our work is also related to the broad re-
search topic in graph-based methods. Graph-based methods are
intensively studied with the aim of reducing the gap of the vi-
sual features and semantic concept. In [23], the images are rep-
resented by the attributed relational graphs, in which each node
in the graph represents an image region and each edge represents
a relation between two regions. In [18], an image is represented
as a sequence of feature-vectors characterizing low-level visual
features, and is modeled as if it was stochastically generated
by a hidden Markov model, whose states represent concepts.
Most recently, Jing and Baluja [22] present an intuitive graph
model-based method for product image search. They directly
view images as documents and their similarities as probabilistic
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visual link. Moreover, the likelihood of images is estimated by
a random walk algorithm on the image similarity graph. The
image similarity is based on the local feature matching using
SIFT descriptor [27]; unfortunately, this incurs heavy computa-
tional cost. Recently, several random walk-based methods have
been proposed in image and video retrieval tasks [4], [9], [20].
However, the image-tag [9] and video-view graphs [4] based ap-
proaches did not take consideration of the contents of images or
videos, which lose the opportunity to retrieve more accurate re-
sults. In [20], a re-ranking scheme is developed using random
walk over the video story graph. Multiple-instance learning can
also take advantage of the graph-based representation [37] in the
image annotation task.

Our work is also related to recommender systems since it
aims to recommend relevant images and tags. However, dif-
ferent with traditional recommendation or collaborative filtering
algorithms [28]-[30], our work does not have user-item rating
information. Hence, in some sense, the problem we study in this
work is more difficult than some of the traditional recommen-
dation problems.

Instead of relying on the complicated models and representa-
tive training examples in the machine learning-based methods,
we propose an effective and efficient framework based on
Markov random walk [33], which can take advantage of both
image visual contents and image tags. Our method does not
need to train any functions or models, and can be easily scaled
to very large dataset.

III. UNIFIED FRAMEWORK

In this section, we detail our framework, including how to
extract global features, how to build the hybrid graph based on
visual features and tags, and how to perform a random walk on
it.

A. Global Feature Extraction

The global feature representation techniques have been ex-
tensively studied in image processing and content-based image
retrieval. In contrast to the local feature-based approaches [22],
the global feature is very efficient in computation and storage
due to its compact representation. A wide variety of global
feature extraction techniques have been proposed in the past
decade. In this paper, we extract four kinds of effective global
features.

* Grid color moment. We adopt the grid color moment to
extract color features from images. Specifically, an image
is partitioned into a 3 x 3 grids. For each grid, we extract
three kinds of color moments: color mean, color variance,
and color skewness in each color channel (R, G, and B),
respectively. Thus, an 81-dimensional grid color moment
vector is adopted for color features.

* Local binary pattern (LBP). The local binary pattern [31]
is defined as a gray-scale invariant texture measure, derived
from a general definition of texture in a local neighbor-
hood. In our experiment, a 59-dimensional LBP histogram
vector is adopted.

* Gabor wavelets texture. To extract Gabor texture fea-
tures, each image is first scaled to 64 x 64 pixels. The
Gabor wavelet transform [25], [43] is then applied on the
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scaled image with five levels and eight orientations, which
results in 40 subimages. For each subimage, three moments
are calculated: mean, variance, and skewness. Thus, a 120-
dimensional vector is used for Gabor texture features.

* Edge. An edge orientation histogram is extracted for each
image. We first convert each image into a grayscale image,
and then employ a Canny edge detector [7] to obtain the
edge map for computing the edge orientation histogram.
The edge orientation histogram is quantized into 36 bins
of 10 degrees each. An additional bin is used to count
the number of pixels without edge information. Hence, a
37-dimensional vector is used for shape features.

In total, a 297-dimensional vector is used to represent all the
global features for each image in the dataset, which is further
normalized to zero mean and unit variance. Note that this fea-
ture representation has shown the promising performance on the
duplicate image retrieval task [44], [45] which requires the ac-
curate similarity measure for the image pairs.

B. Hybrid Graph Construction

Once the visual features are extracted, we can build the
image similarity graph. Let v represent the dimensionality of
each image, and let D denote the total image set. For each
image d, € D,p € [1,|D]], let the v-dimentional vector d,
represent the image feature vector corresponding to image
d,. We employ the cosine function to measure the similarity
between two images d,, and dy:

: dp ’ dq
Sl 1) = i, ™

We then build the image similarity graph based on the cal-
culated similarities. Usually, there are several methods to con-
struct similarity graphs, including kNN graph, eNN graph, exp-
weighted graph, etc. As reported in [46], kNN graph tends to
perform well empirically. Hence, for an image d,,, we employ
the k£ most similar images as its neighbors. More specifically,
if an image d, is in the k-nearest-neighborhood of image d,,,
then we create a directed edge from node d,, to node d,, and
the weight is the similarity Sim(d,, d,). This kNN graph is an
asymmetric graph since if node d, is in the k-nearest-neigh-
borhood of node d,,, it does not mean node d,, is also in the
k-nearest-neighborhood of node d,. Fig. 2(a) illustrates an ex-
ample kNN graph with £ = 1. Note that it is time-consuming to
find the most similar images by brute-force searching in a very
large dataset. Fortunately, we can take advantage of the nearest
neighbor searching method proposed in [2] to efficiently build
the image similarity graph.

Beside the image similarity graph, we also build the
image-tag bipartite graph. However, we cannot simply incorpo-
rate the image-tag bipartite graph into our framework. This is
because the bipartite graph is an undirected graph, which cannot
accurately interpret the relationships between images and tags.
To tackle this problem, we need to convert it into a directed
graph. As shown in Fig. 2(b), the left part of the bipartite graph
represents the image nodes, while the right part denotes the
tag nodes. In the converted graph, every undirected edge in the
original bipartite graph is converted into two directed edges.
The weight on a new directed image-tag edge is normalized by
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Fig. 2. Hybrid graph construction.

the total number of times that the image is tagged, while the
weight on a directed tag-image edge is normalized by the total
number of times that this tag has been assigned.

After building the image similarity graph and the image-tag
directed graph, we consolidate these two graphs, and create a
directed hybrid graph, as shown in Fig. 2(c). This directed hy-
brid graph forms the foundation of our random walk model that
will be introduced in the next section.

C. Random Walk Model

Markov random walk model has been extensively studied in
many Web applications. In this section, we introduce a novel
random walk model on our hybrid graph that can smoothly em-
ploy the visual and the textual information into several image
retrieval tasks.

Let G = {V, &} denote a directed hybrid graph, where V =
DUT is the vertex set, and D represents the set of image nodes
while 7 denotes the set of tag nodes. £ = £ U £* is the edge
set which consists of two types of edges. If the edge &;; is in the
edge set T, then i € D and j € D. If the edge &;; is in the
edge set £*,theni € D,j € T,ori € T,j € D.

For all the edges in the edge set £*, we define the tran-
sition probability P/, ,(j|¢) from node V; to node V; as
CU/ ZPGD C,L'p or 01]/ ZPGT Clp If: € ’D/J € T,then 01]
is the number of times that the tag node V; has been assigned to
the image node V;, while ) peT Cp is the total number of times
that the image node V; hasbeen tagged. Ifi € 7, j € D, then C;
is the number of times that the tag node V; has been assigned to
the image node V;, while 3 1, Ciy, is the total number of times
that the tag node V; has been assigned to all the images. Actually,
this consideration denoises the popular tags with little meanings
like “nature” and “travel” since the weights on the edges starting
from these nodes will be very small. The notation Py, ,,(j[7)
denotes the transition probability from node V; at time step ¢ to
node V; at time step ¢ 4+ 1. While the counts C;; are symmetric,
the transition probabilities P/, ; ,(j i) generally are not, because
the normalization varies across different nodes.

For other edges in the edge set £+, we define the tran-
sition probability P, ,(j|¢) from node V; to node V; as
Slm(V”VJ)/ Zp;éi S1m(V7 Vp), where Slm(vq, VJ) is the

image visual similarity between the image nodes V; and V;
defined in (1). This is slightly different from the example we
show in Fig. 2, since we normalize the similarities here.

In general, the transition probability is

Cij
= Eij€EieED
ZpeT Cip !
" Cij .
Pt/jrl\t(ﬂ") = Z—Jc E;e&ieT (2
peD P’
Sinl(v’hvj) gij c &t

ZP Sim(Vi,V,),

The random walk can only diffuse through the links that con-
nect nodes in a given graph; in fact, there are random relations
among different nodes even if these nodes are not connected.
For example, in the similarity relations on the image similarity
graph, we explicitly calculate the similarities between images
based on (1). Actually, there are some implicit hidden simi-
larity relations among these images that cannot be observed or
captured. Hence, to capture these relations, without any prior
knowledge, we propose to add a uniform random relation among
different nodes. More specifically, let v denote the probability
that such phenomena happen, and (1 — ~y) is the probability of
taking a “random jump”. Without any prior knowledge, we set
g = (1/n)1, where g is a uniform stochastic distribution vector,
1 is the vector of all ones, and n is the number of nodes. Based
on the above consideration, we modify our model to use the fol-
lowing transition probability matrix:

P =+P" + (1 —~)g1” 3)

where matrix P’ is the transition probability matrix with the
entry of the ¢th row and the jth column defined in (2). Following
the setting of v in PageRank [13], [32], we set v = 0.85 in all
of our experiments conducted in Section IV.

Our graph is a hybrid graph which consists of two totally dif-
ferent subgraphs: image similarity graph and image-tag bipar-
tite graph. Intuitively, the contributions of these two graphs are
not likely the same. This indicates that in some applications,
the image-tag subgraph is more important than the image simi-
larity subgraph, while in other applications, the image similarity
subgraph should contribute more. Hence, in order to endow
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more flexibility to our random walk model, we employ a fu-
sion parameter A to the transition matrix P’ introduced in 3).
We define the transition probability matrix P with the entry
Py 41)¢(j]i) from node V; to node V; as

o AP, Eij €E
Pt+1|t(]|z) — { t+1)t , J

4
(1 — /\)Pt+1|t(j|i)7 51']' et @)

The parameter A plays as a very important role in our random
walk model, which defines how fast the random walk diffuses on
the two subgraphs. Following a physical intuition, when A = 1,
the random walk only performs on the image-tag subgraph. On
the other hand, in the extreme case when A = 0, no random
walk will diffuse on the image-tag subgraph, and it only diffuses
on the image similarity graph. In the intermediate case, when A
is relatively large, the diffusion on the image-tag subgraph is
faster than the diffusion on the image similarity subgraph. As
a result, the random walk will depend more on the image-tag
information. If A is relatively small, the results will depend more
on the image visual information. In Section IV, we will give a
detailed analysis on the impact of parameter .

With the transition probabilistic matrix P defined in (4), we
can now perform the random walk on the hybrid graph: we cal-
culate the probability of transition from node V; to node V; as

Pyo(jli) = [Pi;." Q)

The random walk sums the probabilities of all paths of length
t between the two nodes. It gives a measure of the volume of
paths between these two nodes; if there are many paths, the
transition probability will be higher [9]. The larger the transition
probability Py o(jli) is, the more the node V; is similar to the
node V.

Since the image dataset is very large, computing the matrix
multiplication P? is infeasible. Hence, we compute the random
walk in an efficient way as follows. If we want to start a random
walk at node V;, we employ a row vector v; with a unit entry at
node V;, and then calculate the transition probability to node V;
as

Pryo(ili) = [(((viP)P) .. .)P]; (6)

where ¢ controls the number of walk steps. This is very efficient
since the matrix operations are quite sparse.

With the hybrid graph and the random walk model, similar
to [9], we can then apply our framework to several application
areas, including the following.

* Image-to-image retrieval. Given an image, find relevant
images based on visual information and tags. The relevant
documents should be ranked highly regardless of whether
they are adjacent to the original image in the hybrid graph.

* Image-to-tag suggestion. This is also called image anno-
tation. Given an image, find related tags that have semantic
relations to the contents of this image.

» Tag-to-image retrieval. Given a tag, find a ranked list of
images related to this tag. This is more like the text-based
image retrieval.

IBefore the start of any random walks, we will normalize the probability
Pii1):(jli) by 30, Pryaj:(j]i) to make sure that P is the transition proba-
bilistic matrix.
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* Tag-to-tag suggestion. Given a tag, suggest some other
relevant tags to this tag. This is also known as tag recom-
mendation problem.

In Section IV, we will show the performance of our model on
the first three applications. We will not show the experiments of
the tag recommendation application since it is beyond the scope
of this paper.

D. Pseudo Relevance Feedback

Relevance feedback is an effective scheme to bridge the gap
between high-level semantics and low-level features in content-
based image retrieval. However, it involves the user interaction
in the retrieval processes, which is infeasible in some retrieval
applications. Pseudo relevance feedback provides an effective
method for automatic local analysis. It automates the manual
part of relevance feedback, so that users would obtain improved
retrieval performance without an extended interaction.

Taking advantage of the proposed random work algorithm, our
proposed framework can be naturally extended to pseudo rele-
vance feedback. Consider the image-to-image retrieval example:
Given an image, we first conduct a round of random walk, as-
suming that the top ranked images are relevant; then conduct an-
other round of random walk, using the original image and the top
ranked images. Actually, the top ranked images are used to make
an expansion of the original image. We then re-rank all the im-
ages based on the expanded image set. The detailed algorithm
for pseudo relevance feedback is summarized in Algorithm 1.

Algorithm 1: Pseudo Relevance Feedback Algorithm

1) Given the query node V;, form a 1 x n vector v (n is
the total number of nodes), with the <th entry equal to
1 while other entries equal to 0.

2) Perform a t-step random walk and get a new vector
v* = vPt,

3) Get the top-L nodes with the highest values in vector
v* (notice that, in the image-to-image retrieval task,
the top-L nodes are in the image node set D while in
the image-to-tag task or image annotation task, the
top-L nodes are in the tag node set 7).

4) Form anew 1 X n vector v’ with the ith entry equal to
1, the entries represent the top-L nodes being equal to
1, and other entries being equal to 0.

5) Conduct a new t-step random walk and get the results

v* = ov'P*. Rank the vector v* as the retrieval results.

In the above algorithm, we only conduct 1-round feedback.
Actually, this algorithm can also run multiple feedback rounds.

IV. EXPERIMENTAL ANALYSIS

In this section, we evaluate our proposed framework using
the Flickr? dataset on content-based image retrieval, text-based
image retrieval and image annotation problems.

A. Data Description

Flickr is an image hosting Web site and online community
platform. It creates a popular platform for users to share per-

Zhitp://www.flickr.com.
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Fig. 3. Examples for CBIR. (a) Query Image 1. (b) Rank 1. (c) Rank 2. (d) Rank 3. (e) Rank 4. (f) Rank 5. (g) Query Image 2. (h) Rank 1. (i) Rank 2. (j) Rank
3. (k) Rank 4. (1) Rank 5. (m) Query Image 3. (n) Rank 1. (0) Rank 2. (p) Rank 3. (q) Rank 4. (r) Rank 5. (s) Query Image 4. (t) Rank 1. (u) Rank 2. (v) Rank 3.

(w) Rank 4. (x) Rank 5.

sonal photographs, tag photographs, and communicate with
other users. As of November 2007, it claims to host more than
2 billion images [3]. Hence, Flickr is an ideal source for the
investigation of image-related research.

In this paper, we randomly sample 597 332 images which
span from January 1, 2007 to December 31, 2007. For each
image, we record the image files and the associated tags. To-
tally, we find 566 293 unique tags and 4 929 093 edges (tag as-
signments) between images and tags, which indicates that on
average, each image has been associated with 8.25 tags.

B. Parameter Discussions

In addition to the fusion parameter )\, we need to set another
two parameters: the parameter k for building ANN image simi-
larity graph and the parameter ¢ for the random walk steps.

For the parameter k, as suggested in [46], normally a small
value of k performs well in practice. In this paper, we set k = 40
empirically in all of the experiments, which indicates that in
the image similarity subgraph, every image has 40 most similar
neighbors. Hence, the outdegree for every image node in the
image similarity subgraph is 40.

The parameter ¢ determines the resolution of the Markov
random walk. If we choose a large enough ¢, the random walk
will turn into the stationary distribution, where the final results
depend more on the graph structure with little information
about the query node preserved. On the other hand, a short walk

preserves information about the starting node at a fine scale.
Since we wish to preserve the information about the query
node, a relatively small ¢ is chosen in order to be far away from
the stationary distribution. In this paper, we set £ = 10 in all of
our experiments.

For the parameter A € [0, 1], it smoothly fuses the image-tag
information with the image visual information, and directly con-
trols how much the image-tag information should be trusted
other than the image visual information. We will discuss the im-
pact of this parameter in the three different applications consid-
ered in this research.

C. Content-Based Image Retrieval

In the content-based image retrieval (CBIR) tasks, we start
the random walk at an image node. After a ¢-step random walk,
we retrieve the top-ranked images as the retrieval results.

In Fig. 3, we perform four image retrievals with parameter
A = 0.7. (This is the best setting based on our empirical anal-
ysis, and we will discuss the impact of A later in this section.)
The first retrieval is based on the image plotted in Fig. 3(a),
which is a picture depicting a baseball player. Fig. 3(b)—(f)
shows the top-5 images returned by our method. We can observe
that these results are all semantically related to the original
picture. Fig. 3(g), (m), and (s) are another three examples,
with Fig. 3(h)—(I), (n)—(r), and (t)—(x) as the retrieval results,
respectively. The results show the excellent performance of our
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Fig. 4. Examples for RWIT method. (a) Query Image 1. (b) Rank 1. (c) Rank 2. (d) Rank 3. (e) Rank 4. (f) Rank 5. (g) Query Image 4. (h) Rank 1. (i) Rank 2.

(j) Rank 3. (k) Rank 4. (1) Rank 5.

Fig. 5. Two failed examples for our method in CBIR. (a) Query Image 1. (b) Rank 1. (c) Rank 2. (d) Rank 3. (¢) Rank 4. (f) Rank 5. (g) Query Image 2. (h) Rank

1. (i) Rank 2. (j) Rank 3. (k) Rank 4. () Rank 5.

—+-RVF -®-RWIT -#-DiffusionRank =<FRW  —~FRWPRF

Accuracy

0.3 T T T T T
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Fig. 6. P@N comparisons in CBIR.

approach. We also list some of the results in Fig. 4 which are
generated from the RWIT method proposed in [9]. We can see
that our method can generate more reasonable results than the
RWIT method. We also notice that in some cases, our algorithm
cannot generate satisfactory results. Two such examples are
illustrated in Fig. 5. For the first example, we can see that the
query image (flower) and the recommended images have very

0.8 T T T T T T T T T

6 01 02 03 04 05 06 07 08 09 1

Values of Parameter A

Fig. 7. Impact of parameter A in CBIR.

similar color and edge distributions. This is because of that
the extracted visual features mainly take account of the global
color and edge distributions. Although the methods using local
features [22], [42], [24] can alleviate this problem, it requires
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©
Fig. 8. Examples of top images using text query. (a) Rainbow. (b) Grand Canyon. (c) Fireworks. (d) Basketball. (¢) Pyramid.

high computational power and large storage space to calculate
the local feature descriptors, especially for the Flickr photos
with relatively large size. The second example also shows the
similar problem.

In order to show the performance improvement of our ap-
proaches, we then compare our fusion by random walk (FRW)
method and fusion by random walk with pseudo relevance feed-
back (FRWPRF) method with another three methods.

1) RVF: this method is a baseline method, which is purely
based on image visual features. For every query image, we
retrieve the top-/N images using the similarity calculation
function defined in (1). We call this method retrieval by
visual feature (RVF) method.

2) RWIT: this method is based on the forward random walk
model with self-transitions on the image-tag bipartite
graph which is proposed in [9]. For every query image,
we start the random walk at the query image node on

the image-tag bipartite graph, and retrieve the top images
as the results. We call this method random walk using
image-tag (RWIT) relationships.

3) DiffusionRank: this method is a random walk method
based on heat diffusion phenomenon which is proposed
in [41]. For every query image, we start the heat diffusion
process on the image-tag bipartite graph, and retrieve the
top images with the largest heat values as the results. We
call this method DiffusionRank.

In order to evaluate these methods, we use the metrics Pre-
cisionQN. We select a set of 200 testing query images, and
ask a panel of three experts to measure the relevance between
the testing query images and the retrieved images. The Preci-
sion@N is defined as

1 R;
PQN = — — 7
o1 2 N @

i€QI
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(b)

Fig. 9. Examples of top images using text query by RWIT method. (a) Basketball. (b) Pyramid.

where the set QT contains all the testing query images, |Q1| is
the number of the testing query images, R; refers to the number
of relevant images retrieved as to the sth testing query image,
and N is the number of top images retrieved for every testing
query image.

The comparison results are shown in Fig. 6. We can observe
that our method FRW (with A = 0.7) performs much better than
the methods RVF, RWIT, and DiffusionRank. If we incorporate
the pseudo relevance feedback algorithm proposed in Algorithm
1, the performance is further improved (in FRWPREF, we use the
top-5 results as the feedback images). This shows the promising
future of our proposed framework.

Parameter A balances the information from image visual fea-
tures and image-tag information. It takes advantages of these
two types of information. If A = 1, we only utilize the infor-
mation from the image-tag bipartite graph; for A = 0, we only
mine the information from the image similarity graph. In other
cases, we fuse these two sources together for the image retrieval
tasks. To investigate the impact of parameter )\, we choose dif-
ferent values of A to evaluate our FRW method. Fig. 7 plots the
trend of the PQ50 changing with parameter \.

We can conclude that the value of \ affects the retrieval results
significantly. This indicates that fusing these two sources will
not always generate the best performance. We need to manually
choose an appropriate value to avoid overtuning the parameters.
Another interesting observation is when following the increase
of the value of ), the value of PQ50 first increases, but when
A > 0.7, the value of PQ@50 starts to drop. This phenomenon
demonstrates in most cases, low-level visual features contain
less information than textual tags (that is why the optimal value
of lambda is closer to 1 than to 0), but a combination of both
sources of information usually achieves better results than using
only one of them (that is why the optimal value of lambda is less
than 1).

D. Text-Based Image Retrieval

In the text-based image retrieval (TBIR), we start the random
walk at a tag node. After a ¢-step random walk, we select the
top-ranked images as the retrieval results.

-=-RWIT DiffusionRank —=FRW —+—FRWPRF
1
5 \\1“\?
= 0.9
g -&‘\-\_\-
3 0385
“
< _\
0.8
0.75
0.7 T T T T T
P@5 P@10 P@15 P@20 P@25 P@50
P@N

Fig. 10. PQN comparisons in TBIR.

Fig. 8 shows five TBIR examples (with A = 0.7). The queries
are “Rainbow”, “Grand Canyon”, “Fireworks”, “Basketball”,
and “Pyramid”, respectively. From the retrieved top-5 results,
we can observe that our method performs very well. We also
list some of the results generated by RWIT in Fig. 9 for com-
parison. We create a set of 200 queries, and compare our FRW
method and FRWPRF method in terms of TBIR with RWIT
and DiffusionRank methods, which only utilize the image-tag
relationships for retrieval. Fig. 10 describes the comparison re-
sults. We find that both FRW and the relevance feedback method
FRWPREF perform much better than RWIT and DiffusionRank
method. The parameter A also play an important role in TBIR.
Basically, it shares the same trend with CBIR, and the optimal
value of A is also around 0.7.

E. Image Annotation

Automated image annotation has been an active and chal-
lenging research topic in computer vision and pattern recog-
nition for years. Automated image annotation is essential to
make huge unlabeled digital photos indexable by existing text-
based indexing and search solutions. In general, an image anno-
tation task consists to assign a set of semantic tags or labels to a
novel image based on some models learned from certain training
data. Conventional image annotation approaches often attempt
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Suggested Annotations

1 airshow | 6  boeing
2 airplane | 7  air

3 aircraft | 8  aviation
4  plane 9 sky

5 jet 10 birds

Suggested Annotations

1 racing 6  usa

2  motorsport | 7 water

3 silverstone | 8  porsche
4  cars 9  car

5 race 10 beach

Suggested Annotations

1 beach 6 thailand
2 sea 7 water

3 travel 8 ocean

4 vacation | 9 boat

5 sand 10 trip

TABLE 1
P@QN IN AUTOMATED IMAGE ANNOTATION

[[P@l P@2 P@3 P@4 P@5 P@6 P@7 P@8
FRW [[0.495 0.431 0.428 0.388 0.366 0.314 0.301 0.296

to detect semantic concepts with a collection of human-labeled
training images. Due to the long-standing challenge of object
recognition, such approaches, though working reasonably well
for small-sized testbeds, often perform poorly on large dataset
in the real world. Besides, it is often expensive and time-con-
suming to collect the training data.

In addition to the success in image retrieval, our FRM frame-
work also provides a natural, effective, and efficient solution for
automated image annotation tasks. For every new image, we first
extract a 297-dimensional feature vector through the method de-
scribed in Section III-A. Then, we find the top-k similar im-
ages using (1) (kK = 40 in our experiments), and link the new
image to the top-k images in the hybrid graph. Finally, we start
the random walk at this newly built image node, and return the
top-N tags as the annotations to this image.

Fig. 11 gives six examples to demonstrate the qualitative per-
formance of the annotation results by our framework (with A =
0.2). We select a set of 50 images as the testing images for au-
tomated image annotation. The image annotation accuracy is
shown in Table I, which demonstrates a very competitive re-
sult since automated image annotation is a very challenging
problem. We also observe that the trend of accuracy changing
with parameter A is not similar to the one in CBIR and TBIR.
As shown in Fig. 12, we can observe that the optimal value of
parameter A is around 0.2. This is because at the beginning of
the random walk, the starting image does not have any links
connected to the tag nodes; hence, we need to trust more on the
image similarity subgraph. Otherwise, we cannot generate ac-
curate image annotations, and the overall precision will suffer.
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Suggested Annotations

1 sunset | 6  trip

2 beach |7  sunrise

3 clouds | 8  sky

4 sea 9  landscape
5 fog 10 mountains

Suggested Annotations

1 red 6 art

2 orange | 7  painting
3 flowers | 8 color

4 macro |9 flower

5 rose 10 pink

Suggested Annotations

1 nature 6  park

2 animals | 7  zoo

3 bird 8  wildlife
4 baby 9  canon

5 birds 10 dog

. Examples of image annotations.

0.45 T T T T T T T

0.4r 1

P@5

0.251 7

0.7 0.8

0.4 0.5 0.6
Values of Parameter A

0%.1 012 013 0.9

Fig. 12. Impact of parameter A in image annotation.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we present a novel framework for several image
retrieval tasks based on Markov random walk. The proposed
framework bridges the semantic gap existing between visual
contents and textual tags in a simple but efficient way. We do not
need to train any learning function or any training data; hence,
our method can be easily adapted to very large datasets. Finally,
the experimental results on a large Flickr dataset show the ef-
fectiveness of our approach.

In the future, we plan to incorporate more information into
our proposed framework. Specifically, we only utilize the image
contents and the image tags information in this paper. Actually,
there are lots of metadata on Flickr websites, such as the social
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network information among users and the image notes informa-
tion, which can also be employed to improve the retrieval per-
formance. Moreover, we need to design a more flexible model to
include all these information pieces. Another problem worthy of
investigation is to develop other Markov random walk models.
Instead of using the “forward” random walk mode in this paper,
we can also try the models like the “backward” model, and com-
pare their performance. Another problem worthy of investiga-
tion is that how the amount and quality of tags could affect the
performance of our method.
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