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Abstract. We propose a two-stage framework for polygon retrieval which incorporates both qualitative and
quantitative measures of polygons in the first and second stage respectively. The first stage uses Binary Shape
Descriptor as a mean to prune the search space. The second stage uses any available polygon matching and
similarity measuring technique to compare model polygons with the target polygon. This two-stage framework
uses a combination of model-driven approach and data-driven approach. It is more efficient than model-driven
approach since it reduces the number of polygons needed to be compared. By using binary string as index, it
also avoids the difficulty and inefficiency of manipulating complex multi-dimensional index structure. This two-
stage framework can be incorporated into image database systems for providing query-by-shape facility. We also
propose two similarity measures for polygons, namely Multi-Resolution Area Matching and Minimum Circular
Error Bound, which can be used in the second stage of the two-stage framework. We compare these two techniques
with the Hausdorff Distance method and the Normalized Coordinate System method. Our experiments show that
Multi-Resolution Area Matching technique is more efficient than the two methods and Minimum Circular Error
Bound technique produces better polygon similarity measure than the two methods.
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1. Introduction

Query-by-shape is a fundamental operation in an image database system. It provides an
intuitive way to access objects by their outlines. In this paper, we concentrate on polygonal
shapes instead of arbitrary shapes. At present stage, our work only handles simple non-
degenerate polygons.

The task of a shape query is to find out the set of shapes, out of a set of model shapes, that
are similar to or match a given target shape (figure 1). Two kinds of shape queries, namely
matching queriesandsimilarity queries, are considered in this paper. The definitions of
these two kind of queries can be found in Section 2.

Background

Considerable work has been carried out on shape matching problem. Leu [9] computes
shape moments from boundary pixels of shapes and measures the similarity of shapes by
comparing their shape moments. Cox et al. [6] measure the similarity of two shapes by
computing the correspondence and relative position of the two shapes’ convex hulls such
the value of an objective function is minimized. Jagadish [8] represents shapes by rectangle
covers and similarity between covers are used as similarity between their associated shapes.
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Figure 1. Query-by-shape.

By growing grows template shapes inside a target shapes, Chuang [5] uses the template
shape with the largest growth for shape matching. Mehrotra and Gray [11, 12] normalize the
coordinates of vertices of polygonal shapes and measure similarity of polygonal shapes by
the Euclidean Distance of two coordinate lists. Moreover, the QBIC group from IBM [3, 13]
incorporate many techniques for measuring shape similarity which include area, circularity,
eccentricity, major axis orientation, algebraic moment invariants, and sketch matching.

Traditional techniques use model-driven approach in which the target shape is compared
individually against each model shape. This approach is inefficient because of its linear
searching complexity. Other techniques use data-driven approach in which features of shapes
are extracted and mapped into a multi-dimensional index structure. Matching is conducted
by performing searching in the index tree. The efficiency of data-driven approach highly
depends on the efficiency of the Point Access Method (PAM, a data structure that support
storage and retrieval of points in a multi-dimensional space) used. Roughly speaking, a
large number of dimension is required when mapping shape features into multi-dimensional
index structures and PAMs are inefficient under this situation. Moreover, when using
PAM, additional computation is required to maintain the complex multi-dimensional index
structure whenever the database is modified.

A two-stage framework

We propose a two-stage framework for the polygon matching and retrieval task using a
combination of model-driven approach and data-driven approach:

1. The first stage of this two-stage framework maps polygons into binary string using the
Binary Shape Descriptor (BSD) [4] technique and uses these binary string as an index.
Using this index as a filtering function, a subset of polygons are selected for second
stage matching.

2. The second stage of the framework then incorporates any available polygon matching
and similarity measuring technique to perform matching on the subset of polygon in a
traditional model-driven manner.
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This two-stage framework is more efficient than model-driven approach since it reduces
the number of polygons needed to be compared. It also avoids the difficulty and inefficiency
of manipulating complex multi-dimensional index structures. Instead, it uses string as index
which is well studied and efficient indexing techniques are available.

Two Polygon similarity measures

We propose two new polygon similarity measuring techniques. The Multi-Resolution
Area Matching (MRAM) is an area based matching technique incorporating Quadtree [14]
area coding. Its multi-resolution nature makes it possible to further speed up the query
processing task under the two-stage framework. We propose another polygon matching
technique using Circular Error Bound (CEB) which is based on an intuitive human concept of
polygon resemblance. This technique can only be used to determine whether two polygons
resemble each other under certain transformations and user specified tolerance. The idea of
CEB method is extended and a polygon similarity measure named Minimum Circular Error
Bound (MCEB) is developed which gives translation invariant measure on the similarity
between two polygons.

Application

The result of our work can be incorporated into image database systems for providing
query-by-shape facility. Figures 2 and 3 show an example of shape query in an sample
image database. Figure 2 shows 8 fashion images with their associated model polygons.

Figure 2. Sample image database.
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Figure 3. Sample shape query and its results.

Figure 3(a) shows the target polygon of the shape query while figure 3(b) and (c) are the
two images that contain model polygons most similar to the target polygon.

While robust automatic segmentation technique and shape similarity measure are still
difficult to achieve, it is possible to write applications using practical approaches. As
illustrated by previous examples, we show an application that: (1) segments the desired
object semi-automatically which requires user intervention in defining shapes contained in
images, and (2) represents and matches shape by polygonal approximation. Our two-stage
framework fits well for such applications.

The two-stage framework we proposed is implemented in theMontageimage database
system [10] which is currently under development at the Chinese University of Hong Kong.
TheMontagesystem is an image database system designed and implemented for the fashion,
textile, and clothing industry in Hong Kong. It supports feature based retrieval by color
histogram, color sketch, shape, and texture.

Paper organization

This paper is organized as follows. Several basic definitions for our discussion are presented
in Section 2. We describe the idea of BSD and the computation of Standardized Binary
Shape Descriptor (SBSD) in Section 3, which provides a basis for the discussion of the two-
stage framework presented in Section 4.2. MRAM and MCEB are described in Section 5
and Section 6 respectively. We present and discuss the experimental result in Section 7.
Discussion and possible extension to the two-stage framework are presented in Section 8.
Conclusion is made in Section 9.

2. Definitions

Definition 1. A polygon is represented by an ordered list of verticesP = {V1,V2, . . . ,Vn},
wheren is the number of vertices of the polygon andVi ∈ R2.

Definition 2. A polygon is simple if no two edges of the polygon cross each other.

Definition 3. A polygon is non-degenerate if/∃1 ≤ i ≤ n such thatVi ,Vi+1,Vi+2 are
collinear, whereVn+1 = V1 andVn+2 = V2.
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Definition 4. A matching queryis

R={Pi | Pi ∈ P∧ MATCH(Pi , T)}

whereR is the result of the query,P is the set of model polygons,T is the target polygon,
andMATCH(·) denotes a polygon matching technique.

Definition 5. A similarity queryis

R={Pi | Pi ∈ P ∧ 1≤ i ≤ n ∧ P1 ≤ P2 ≤ · · · ≤ Pm}

whereR is the result of the query,P is the set of model polygons,n is the number of polygons
to be included inR, m is the number of polygons inP, n ≤ m, andP1 ≤ P2 ≤ · · · ≤ Pm is
the ranking produced by a polygon similarity measuring technique based on the degree of
similarity between the model polygons and the target polygon.

3. Binary shape descriptor

We start by introducing the idea of BSD technique, which serves as a polygon classification
method in our two-stage framework.

3.1. Basic idea

BSD is a binary string recording the convexities and concavities of the vertices of a polygon.
Let ‘0’ denote a convex vertex (interior angle less thanπ ) and ‘1’ denote a concave vertex
(interior angle larger thanπ ).

Definition 6. A Binary String Descriptor (BSD) is a string{0, 1}n, wheren is the number
of vertices of the polygon the descriptor is associated with.

BSD is scale and orientation invariant since the measurement of convexity and concavity
of a vertex is independent of these properties. However, the specific instance of the BSD of
a polygon depends on the selection of theanchor vertex(the vertex of the polygon at which
we start recording the BSD).

3.2. Standardized binary string descriptor

A polygon can be represented by more than one BSD depending on the sequence of vertices
being recorded. For example, a polygon represented by BSD ‘0010’ can also be represented
by ‘0100’, ‘1000’ or ‘0001’, depending on the anchor vertex. The idea of standardized BSD
is introduced in [4] in order to obtain a unique BSD for a given polygon.

Given a BSDB = {0, 1}n, a rotated BSDBi , for 1 ≤ i ≤ n, is another BSD generated
by rotating the bits ofB such that thei th Most Significant Bit (MSB) ofB becomes the
MSB of Bi . Let M(Bi ) denotes the magnitude ofBi regarding it as a binary integer.
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Table 1. n-gons and number of their equivalent classes.

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E 1 2 4 9 15 30 54 101 181 343 624 1173 2183 4106

Definition 7. The Standardized Binary String Descriptor (SBSD) ofB is Bj such that
M(Bj ) = mini M(Bi ), 1≤ i ≤ n.

SBSD inherits the scale and orientation invariant properties from BSD and it is indepen-
dent of the selection of anchor vertex.

3.3. Number of equivalent classes for n-gons

SBSD function is a many-to-one mapping, i.e., more than one polygon may have the same
SBSD. Polygons having the same SBSD are said to be in the same equivalent class. For
polygons withn sides, there are 2n possible BSDs. However, some of them are invalid.
For example, ‘00111’ is invalid since a simple polygon should have at least three convex
vertices, thus its BSD should have at least three ‘0’s. Some BSDs are the same after
standardization, for example, ‘00011’, ‘01100’ and ‘10001’. Forn-gons, the number of
equivalent classes (E) is given in [4] as

E = 1

n

∑
m∈Dn

mXn(m)−
(⌊

n

2

⌋
+ 2

)
whereDn is the set of divisors ofn,

Xn(m) = 2n/m − (Xn(m1)+ · · · + Xn(mk))

andm1, . . . ,mk are the multiples ofm belonging toDn\{m}.
Table 1 shows the number of equivalent classes for polygons with sides from 3 to 16,

wheren is the number of polygon vertices andE is the number of equivalent classes.

4. The two-stage framework

4.1. Database population

Before we describe the two-stage matching framework, we will first describe how the model
polygons are normalized when their associated images are inserted into image databases.

1. Model polygon acquisition: Model polygons inside an image can be extracted by auto-
matic segmentation technique. However, as robust segmentation technique is still not
available, it is more practical to require user intervention in this process.

2. Orientation normalization: The model polygon is rotated such that its longest edge is
aligned with they-axis. In case there are more than one edges having the largest length,
their successive edges are recursively examined until the tie situation is broken.
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3. Scale normalization: After orientation normalization, the model polygon is scale such
that it has a unit bounding box.

After the preprocessing, the model polygons and links to their associated images are
inserted into image databases. By retrieving these model polygons through shape queries,
we can then follow the links and retrieve the images.

4.2. The two-stage framework

Our polygon retrieval framework consists of two stages. The first stage incorporates the
BSD technique as a mean to prune the search space. The main idea is to partition polygons
into groups according to their SBSDs. Instead of comparing every model polygon with
the target polygon, only those within the same equivalent class as the target polygon are
selected and compared. Since SBSDs are just binary strings, they can be easily indexed so
the filtering process in the first stage can be implemented efficiently.

The second stage of the framework incorporates any available polygon matching and
similarity measuring techniques. For handling matching queries, the technique incorporated
only needs to determine whether two given polygons match each other under user specified
tolerance. However, in order to handle similarity queries, the technique incorporated must
be able to produce a ranking on the set of model polygons according to the degree of
similarity between these polygons and the target polygons. To accomplish this task, the
polygon similarity measuring technique incorporated should be able to produce a numerical
value as the similarity measure between two polygon. The ranking can then be produced
by sorting the model polygons based on their similarity measure to the target polygon.

Putting the two stages together, the framework should look like:

1. Q={Pi | Pi ∈ P∧SBSD(Pi )=SBSD(T)} whereP is the set of model polygons in a
database,SBSD(·) denotes the SBSD function, andT is the target polygon.

2. If the query is an matching query, execute (A). If it is a similarity query, execute (B).

(A) R={Qi | Qi ∈Q∧MATCH(Qi , T)}whereMATCH(·) denotes the polygon match-
ing method selected.

(B) R = {Qi | Qi ∈ Q∧ 1 ≤ i ≤ n} wheren is the number of model polygons to be
included in the answer to a query,m is the number of model polygons in a database,
n ≤ m, Q = {Q1, Q2, . . . , Qm}, andQ1 ≤ Q2 ≤ · · · ≤ Qm, which is the ranking
produced by the polygon similarity measuring technique selected.

3. R is the set of model polygons which is the answer to the query.

5. Multi-resolution area matching

In this section, we propose a multi-resolution area based polygon similarity measuring
technique. We describe how the Multi-Resolution Area Information (MRAI) is computed
and how similarity between polygons is measured using MRAI.
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Figure 4. Computing MRAI. The maximum resolution computed in this example is 2. (a), (b), and (c) show
the frame buffer at resolution level 0, 1, and 2 respectively. The MRAI at resolution level 0 is〈 180
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5.1. Computing MRAI

After a model polygon is preprocessed as described in Section 4.1, it is scan-converted onto
a frame buffer withW×W pixels. MRAI is then computed using a Quadtree like approach:

1. MRAI is recorded starting at level 0.
2. At level 0, the whole frame buffer is regarded as a cell. The portion of area covered by

the polygon is recorded.
3. At levelk, cells are obtained by quartering every cell of levelk− 1. The portion of area

covered by the polygon in each level-k cell is recorded. There are 4k cells at levelk.

The MRAI at each level is concatenated to form a complete MRAI vector. The size of
this vector depends onK , the maximum resolution level to be recorded, and is given as
L = ∑K

i=0 4i = 4K+1−1
3 . In our implementation,W = 64 andK = 3. Figure 4 shows an

example of computing MRAI in which the maximum resolution level is 2.

5.2. Measuring similarity using MRAI

We use theL p distance to measure the similarity of two polygons at a specific level of
resolution. Given polygonA andB, with their MRAI, the similarity of these two polygons
at resolution levelk is:

Sk(A, B) =
(

4k∑
i=1

|Aki − Bki |p
)1/p

whereSk(A, B) is the similarity measure ofA andB at resolution levelk, Aki andBki are
the portion of covered area in levelk cells of polygonA andB respectively, andp = 2 in
our implementation.
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Matching of two polygons can be done in levels, that is, perform similarity measuring
from coarse resolution (level 0) to fine resolution (the maximum resolution levelK ).

Definition 8. Two polygonsA andB are said to be matched at levelk if Sk(A, B) ≤ δk

whereδk is a predefined threshold value for levelk similarity measure.

Definition 9. Two polygons are said to be matched if they are matched at all levels, i.e.
the two polygons are similar at level 0, . . . , K .

5.3. Query processing using MRAM

Shape query processing can be further speeded up by taking advantage on MRAM’s multi-
resolution characteristic. We describe the procedures for handling matching queries and
similarity queries using MRAM. Note that the model polygons mentioned in the following
two sessions are those selected by the first stage algorithm of the two-stage framework
according to the target polygon.

Matching query. Since level 0 MRAI is just a real number, it can serve as a database index
for the model polygons. Matching queries are processed as follows.

1. Only model polygons having level 0 MRAI in the range [t0 − δ0, t0 + δ0] are fetched
for further matching wheret0 is the level 0 MRAI of the target polygon andδ0 is the
predefined threshold for level 0 matching as stated in Section 5.2. Since model polygons
are indexed on level 0 MRAI, this subset of polygons can be retrieved efficiently.

2. Model polygons selected in the previous step are then compared with the target polygon
individually using the approach described in Section 5.2.

Similarity query. Similarity queries are processed using following algorithm

Q← model polygons
for i = 0 to K do

sortQ in descending order ofSi (Qi , T) whereQi ∈ Q
Q← {Qi | Qi ∈ Q∧ 1≤ i ≤ ni }

end for

whereT is the target polygon andSi (·) is the leveli similarity measure of two polygons
as stated in Section 5.2. In our implementation,n0, n1, n2 andn3 are 100, 50, 25 and 10
respectively.

6. Minimum circular error bound

In this session, we describe the polygon matching technique using CEB and the new polygon
similarity measuring technique named MCEB.
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6.1. Polygon matching using circular error bound

The polygon matching technique using CEB is based on an intuitive human definition of
polygon resemblance. The intuitive definition of similar polygons is as follows. If two
polygons are matched, then each vertex of one polygon is close to its corresponding vertex
of another polygon when the two polygons are overlapped. The correspondence between
vertices is an one-to-one mapping. Therefore, the definition and the technique we proposed
only work on polygons that have the same number of vertices. Before the two polygons are
overlapped, translation, scaling and rotation are allowed to be performed on the polygons.

Definition 10. A transformationT is a vector, i.e. T = 〈tx, ty, sx, sy, θ〉 where tx is
translation inx-axis direction,ty is translation iny-axis direction,sx is the scaling inx-axis
direction,sy is the scaling iny-axis direction andθ is the rotation about the origin.T(Q)
denotes the object obtained by applyingT to Q whereQ may be a polygon or a vertex.

Definition 11. Given a tolerance vectorE = 〈ε1, ε2, . . . , εn〉, Q = {U1,U2, . . . ,Un} is
said to be matched withP = {V1,V2, . . . ,Vn} if there exists a transformationT such
that Q′ = T(Q) = {U ′1,U ′2, . . . ,U ′n} and∀1≤i≤n‖Vi − U ′i ‖ ≤ εi , where‖·‖ denotes the
Euclidean norm (figure 5).

Definition 12. GivenVi , εi andUi , the i th Circular Error Bound(CEB), Ci , is a circle
with εi as its radius and(Vi −Ui ) as its center.

Note that Definition 11 assumes we already know the pairing of vertices between the two
polygons, i.e.,Vi should matchUi .

Figure 5. Polygon matching under Definition 9.
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The polygon matching task using CEB is formulated as follows:

“Given two polygonsP andQ with a tolerance vectorE, the task is to determine whether
a transformationT exists such thatQ is said to be matched withP under Definition 11.”

By Definition 11, the transformationT is an arbitrary vector〈tx, ty, sx, sy, θ〉. However,
in nowadays applications, the transformations in polygon matching task are often restricted
to some special cases, for example, translation and (or) scaling only. With restricted trans-
formations, we have efficient solutions for the polygon matching task. In the following
sections, we will present the solution for the polygon matching task when (1) only transla-
tions are allowed, (2) only translations and uniform scaling inx-axis andy-axis directions
are allowed, and (3) only translations and independent scaling inx-axis andy-axis directions
are allowed.

6.1.1. Translation. Assume that the transformationT in Definition 11 is restricted to
T = 〈tx, ty, 1, 1, 0〉 only.

Proposition 1. Given P= {V1,V2, . . . ,Vn},Q = {U1,U2, . . . ,Un}and E= 〈ε1, ε2, . . . ,

εn〉, if the n Circular Error Bounds C1,C2, . . . ,Cn of P and Q have common intersection,
then Q is matched with P.

Proof: AssumingVi = (ai , bi ) andUi = (ci , di ), by Definition 12, Circular Error Bound
Ci is a circle withεi as its radius and(ai − ci , bi − di ) as its center. IfC1,C2, . . . ,Cn have
common intersection, then for any point(tx, ty) in the common intersection, the distance
between this point and the center of anyCi is less than or equal to the radius ofCi . Figure 6

Figure 6. Intersection of circular error bounds.
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illustrates this idea when bothP andQ are triangles. Thus,∀i, 1≤ i ≤ n,√
[(ai − ci )− tx]2+ [(bi − di )− ty]2 ≤ εi (1)

Re-arranging Eq. (1), we have√
[ai − (ci + tx)]2+ [bi − (di + ty)]2 ≤ εi (2)

which is equivalent to‖Vi − U ′i ‖ ≤ εi whereU ′i = T(Ui ) andT = 〈tx, ty, 1, 1, 0〉. By
Definition 11,Q is matched withP. 2

6.1.2. Translation and uniform scaling in x-axis and y-axis directions.Assume that the
transformationT in Definition 11 is restricted toT = 〈tx, ty, s, s, 0〉, i.e. only translation
and uniform scaling inx-axis andy-axis directions are allowed.

Let Ui = (ci , di ) and apply the scaling transformationS= 〈0, 0, s, s, 0〉 to Q, we have
U ′i = S(Ui ) = (sci , sdi ). Thus, Circular Error BoundCi of P andQ′, whereVi = (ai , bi ),
is a circle withεi as its radius and(ai − sci , bi − sdi ) as its center.

Two Circular Error BoundsCi andCj intersect each other if and only if√
[(ai − sci )− (aj − scj )]2+ [(bi − sdi )− (bj − sdj )]2 ≤ εi + ε j (3)

Re-arranging Eq. (3), we have

[(ci − cj )
2+ (di − dj )

2]s2− 2[(ai − aj )(ci − cj )+ (bi − bj )(di − dj )]s

+ [(ci − cj )
2+ (di − dj )

2− (εi + ε j )
2] ≤ 0 (4)

Solving Eq. (4), we get a range,Si j , for s that the inequality holds (figure 7).

Figure 7. Sij and its intersection.
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Proposition 2. If ∩1≤i, j≤nSi j 6= ∅, then Q is matched with P.

Proof: If ∩1≤i, j≤nSi j 6= ∅, then∃S = 〈0, 0, s, s, 0〉 ∈ ∩1≤i, j,≤nSi j such that Circu-
lar Error BoundsC1,C2, . . . ,Cn of P and Q′ have common intersection, whereQ′ =
S(Q). By Proposition 1,Q′ is matched withP. Thus,∃T =〈tx, ty, 1, 1, 0〉 such that
∀1≤i≤n‖Vi −U ′′i ‖ ≤ εi whereU ′′i = T(U ′i ). Therefore,∃T ′ = T ◦ S= 〈tx, ty, s, s, 0〉 such
that∀1≤i≤n‖Vi − U ′′i ‖ ≤ εi whereU ′′i = T ′(Ui ). By Definition 11,Q is matched withP.

2

6.1.3. Translation and independent scaling in x-axis and y-axis directions.Assume that
the transformationT in Definition 11 is restricted toT = 〈tx, ty, sx, sy, 0〉, i.e., independent
scaling inx-axis andy-axis directions as well as translation are allowed.

Let Ui = (ci , di ) and apply the scaling transformationS=〈0, 0, sx, sy, 0〉 to Q, we have
U ′i = S(Ui ) = (sxci , sydi ). Thus, Circular Error BoundCi of P andQ′, whereVi = (ai , bi ),
is a circle withεi as its radius and(ai − sxci , bi − sydi ) as its center.

Two Circular Error BoundsCi andCj intersect each other if and only if√
[(ai − sxci )− (aj − sxcj )]2+ [(bi − sydi )− (bj − sydj )]2 ≤ εi + ε j (5)

Re-arranging Eq. (5), we have

[(ai − aj )− (ci − cj )sx]2+ [(bi − bj )− (di − dj )sy]2 ≤ (εi + ε j )
2 (6)

Eq. (6) defines an ellipse,Ei j , on thesx-sy plane. A point(sx, sy) in Ei j defines a transfor-
mationS= 〈0, 0, sx, sy, 0〉 such that whenS is applied toQ, the Circular Error BoundsCi

andCj , of S(Q) andP, intersect each other (figure 8).

Proposition 3. If ∀1≤i, j≤nEi j have common intersection, then Q is matched with P.

Figure 8. Eij and its intersection.
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Proof: If ∀1≤i, j≤nEi j have common intersection, then for any point(sx, sy) in the common
intersection, Circular Error BoundsC1,C2, . . . ,Cn of of P and Q′, intersect each other,
whereQ′ = S(Q) andS= 〈0, 0, sx, sy, 0〉. By Proposition 1,Q′ is matched withP. Thus,
∃T = 〈tx, ty, 1, 1, 0〉 such that∀1≤i≤n, |Vi − U ′′i | ≤ εi whereU ′′i = T(U ′i ). Therefore,
∃T ′ = T ◦ S= 〈tx, ty, sx, sy, 0〉 such that∀1≤i≤n, ‖Vi −U ′′i | ≤ εi whereU ′′i = T ′(Ui ). By
Definition 11,Q is matched withP. 2

6.2. Minimum circular error bound

The polygon matching techniques presented in Section 6.1 only deal with queries of whether
a polygonQ is matched with another polygonP subject to some tolerances (the tolerance
vector E) and restrictions on transformation. Thus, these techniques can only be used to
handle matching queries. By extending the idea of these techniques, we propose a similar-
ity measure of polygons named Minimum Circular Error Bound (MCEB). Since MCEB
is defined as the optimal value over all possible translations, it is a translation invariant
similarity measure of polygons.

Definition 13. The Minimum Circular Error Bound,ξ ∈ R, of a polygonQ = {U1,U2, . . . ,

Un} comparing to another polygonP = {V1,V2, . . . ,Vn} is defined as

ξ = min
∀tx ,ty T=(tx,ty)

max
1≤i≤n

‖Vi − T(Ui )‖

ξ can be calculated as follows. LetVi = (ai , bi ) andUi = (ci , di ). Further assume that
the tolerance vectorE = 〈ε1, ε2, . . . , εn〉 whereε1 = ε2 = · · · = εn. The Circular Error
BoundCi is a circle withεi as its radius and(ai − ci , bi − di ) as its center. If two Circular
Error BoundsCi andCj intersect each other, we have

√
[(ai − ci )− (aj − cj )]2+ [(bi − di )− (bj − dj )]2 ≤ εi + ε j (7)

Sinceεi = ε j , we denote the value ofεi andε j asεi j . The minimal value ofεi j that Eq. (7)
holds is

εi j = 1

2

√
[(ai − ci )− (aj − cj )]2+ [(bi − di )− (bj − dj )]2

The MCEB of the two polygonsQ andP is

ξ = max
1≤i, j≤n

εi j

such that forε1 = ε2 = · · · = εn ≥ ξ , ∀1≤i, j≤n Ci andCj intersect each other. That is, for
ε1 = ε2 = · · · = εn ≥ ξ , Circular Error BoundsC1,C2, . . . ,Cn of Q andP have common
intersection andQ is matched withP under Proposition 1.
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7. Experimental result

We compare the MRAM and MCEB techniques with the Hausdorff Distance method [2, 7]
and the Normalize Coordinate System (NCS) method [11, 12]. We select these two methods
for comparison since both of them measure polygon similarity based on the distance between
polygon vertices, as the MCEB technique does.

Hausdorff Distance is defined as follows.

Definition 14. Given two finite point setsA = {a1, . . . ,an} and B = {b1, . . . ,bm}, the
Hausdorff Distance is

H(A, B) = max(h(A, B), h(B, A))

where

h(A, B) = max
a∈A

min
b∈B
‖a− b‖

and‖·‖ is some underlying norm on the points of A and B.

In our experiment, we use Euclidean norm for computing Hausdorff Distance.
The NCS method represents a polygon with an ordered list of normalized coordinates.

The normalization is carried out as follows. Assume that an-sided polygon is represented
by an ordered list ofn 2D points. A pair of points in the original list of coordinates is
chosen to form a basis vector. A new coordinate system (the normalized one) is defined
using the basis vector as a unit vector along thex-axis and each point in the original list
is transformed to the new system. This process produces a list of normalized coordinates.
Since the first two points of these normalized coordinates must be(0, 0) and(1, 0), they
can be removed from the list. Thus, an-sided polygon is represented by an ordered list of
normalized coordinates with size ofn− 2.

Table 2 summaries the main characteristics of the four methods. More detailed discussion
is presented below.

Table 2. Comparison of MRAM, MCEB, Hausdorff Distance and NCS.n is number of vertices of polygons to
be handled.m is the number of polygons in the database.L is size of the MRAI vectors.

MRAM MCEB Hausdorff Distance NCS

Handle polygons with different number of sides Yes No Yes No

Require preprocessing Yes No No Yes

Storage requirement O(L) O(n) O(n) O(n)

Time complexity O(mL) O(mn2) O(mn2) O(mn)

Require vertex correspondence No Yes No Yes

Translation invariant No Yes No No
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1. MRAM and Hausdorff Distance method can handle polygons with different number of
sides but MCEB and NCS method can only handle polygons with same number of sides.

2. Among the four method, MRAM and NCS require preprocessing of polygons. MRAM
requires the computation of MRAI and NCS requires the normalization of coordinates,
while MCEB and Hausdorff Distance method operate directly on the original polygon
data.

3. MRAM requiresO(L) storage whereL is the size of the MRAI depending on the
maximum resolution level chosen in an implementation. All other three methods requires
O(n) storage wheren is the number of sides of polygons to be processed.

4. The computational complexity of MRAM, MCEB, Hausdorff Distance and NCS are
O(L), O(n2), O(n2) and O(n) respectively. Thus, for handlingm model polygons,
the running time complexity of the four methods areO(mL), O(mn2), O(mn2) and
O(mn) respectively. Though in generalL is larger thann or evenn2, the running
time of MRAM method in average is less than other three methods because of its multi-
resolution strategy. Table 3 shows the relative similarity query processing time of the four
methods using the simple system we described in [17]. The experiments are conducted on
a SunSparc workstation 10/30. Several polygon databases are used in the experiments.
Each database consisted of 9000 polygons with particular number of sides. We assume
an uniform distribution on the number of polygons in equivalent classes. The statistic
obtained in each experiment is normalized using the time spent by the fastest method in
that experiment. For example, in the experiment of 3-sided polygons, MRAM method
is the fastest one so its speed index is 1. Hausdorff Distance method is the slowest one
in this experiment and has a speed index of 1.67, meaning that its query processing time
is 1.67 times MRAM’s.

5. Both MCEB and NCS method require the knowledge of the vertex correspondence
between the two polygons being compared. However, this problem can be handled
by a simple heuristic. Given a polygon, we choose the first end point of the longest
edge as the starting vertex. When there are more than one edge having the largest
length, we simply pick one randomly. In our implementation, we pick the first one the
implementation found when such situations occur. This simple strategy gives satisfactory
result in empirical experiment.

6. An ideal similarity measure of polygons should be translation invariant. MCEB is the
only one among the four method that has this property. Other three methods simply align

Table 3. Relative processing time for a single shape query.

Number of Total number Hausdorff
n-gon equivalent classes of polygons MRAM MCEB distance NCS

3 1 9000 1.00 1.59 1.67 1.49

4 2 9000 1.00 1.22 1.33 1.18

5 4 9000 1.00 1.15 1.27 1.16

6 9 9000 1.00 1.09 1.14 1.06

7 15 9000 1.00 1.04 1.06 1.01

8 30 9000 1.00 1.02 1.03 1.00
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the two polygons at an anchor point as the solution to this problem. In [1], the computa-
tional complexity of translation invariant Hausdorff Distance is given asO(n4 log3(n2)),
which is much larger than MCEB’s.

Experiments have also been carried out to examine the quality of visual ranking produces
by the four methods. By ‘quality of visual ranking’, we mean the degree of resemblance
between human polygon similarity rankings and those produced by the four methods.

1. Figures 9(a) and 10(a) show two set of polygons created by generating in-between
polygons from the first and last polygon in each set. The polygons are in white color and
are placed from left to right, top to bottom. Similarity rankings are performed using the
four methods where the first polygon in each set serves as the target polygon. The rankings
produced by the four methods are compared with the original ones and the number of
mis-ranked polygons is used as a measure of the quality of the rankings, where small
numbers indicate high quality rankings. MRAM, MCEB and NCS methods succeed
in producing exactly the same rankings as the original ones but the Hausdorff Distance
method produces rankings with quality measures of 9 and 13 for the two polygon sets
respectively. Figures 9(b) and 10(b) show the rankings produced by the Hausdorff
Distance method.

Figure 9. Result of similar ranking experiment 1.

Figure 10. Result of similar ranking experiment 2.
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Figure 11. Result of similar ranking experiment 3.

2. Figure 11(a) shows the polygons of another experiment. The first polygon is used as the
target polygon. In this experiment, only MCEB and Hausdorff Distance method produce
polygon ranking as the original one. Both MRAM and NCS method produce a ranking
different from the original one, as shown in figure 11(b).

Our experiments show that MCEB method is the only one which passes the two tests.

8. Discussion

From Table 1, we observe that the number of equivalent classes are relatively small when the
polygons being handled are with small number of sides. For example, all triangles will be
in one equivalent class. Thus, SBSD may not be a good method for polygon classification
in these situations. A possible solution to this problem is to record the angle of a vertex
in more discrete levels (rather than convex and concave only). For example, if 4 discrete
levels are used (0< θ ≤ π

2 ,
π
2 < θ ≤ π, π < θ ≤ 3π

2 and 3π
2 < θ < 2π ), there will

be 2 equivalent classes for triangles instead of 1. If 8 discrete levels are used, then there
will be 6 equivalent classes for triangles. Thus, the number of discrete levels used to record
the vertex angle can be chosen according to the number of sides of polygons a system is
expected to process.

Pruning the search space using only SBSDs may have some shortcomings as illustrated in
the following example. In figure 12, there are three polygons namedP, Q, andR. Polygon

Figure 12. The problem of using only SBSD as filtering function.
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P and R are in the same equivalent class according to their SBSDs while polygonQ is
in another equivalent class. Thus, polygonQ will never be selected and compared with
polygonP no matter how similar they are visually. In order to overcome this shortcoming,
we propose that instead of selecting model polygons having exactly the same SBSD as the
target polygon we now select model polygons having SBSDs within a predefined tolerance
of Hamming Distance from the SBSD of the target polygon. With this modification, the
first stage of the two-stage framework should look like:

1. Q={Pi | Pi ∈P∧HAMDIST(SBSD(Pi ),SBSD(T))≤ δ}whereQ is the set of polygons
selected for second stage matching,P is the set of model polygons,T is the target polygon,
SBSD(·) denoted the SBSD function,HAMDIST(·) denotes the function that computes
the Hamming Distance between two binary strings, andδ is the user specified Hamming
Distance tolerance.

Note that the original two-stage framework is a particular instance of the modified one,
with the Hamming Distance toleranceδ always set to 0. This modification provides a
systematic way for controlling the degree of search space pruning by allowing user to make
tradeoff between quality of query result and speed of query processing. A small tolerance
produces larger pruning effect but with higher risk of producing worse query results. On
the other hand, large tolerance may produce better query results but has a smaller pruning
effect.

9. Conclusion

We propose a two-stage framework for the polygon retrieval task which incorporates quali-
tative and quantitative measures of polygon in the first stage and second stage respectively.
The first stage uses SBSDs as a mean to prune the search space and reduce the number of
polygons needed to be compared with the target polygon. The second stage incorporates
any available polygon matching and similarity measuring technique to compare model poly-
gons with the target polygon. This two-stage framework is more efficient than model-driven
approach since it reduces the number of polygons needed to be compared. It also avoids
the difficulty and inefficiency of manipulating complex multi-dimensional index structures.
Instead, it uses string as index which is well studied and efficient indexing techniques are
available. We also propose two polygon similarity measuring techniques named MRAM
and MCEB. We compare these two techniques with the Hausdorff Distance method and
NCS method. Our experiments show that MRAM technique is more efficient than the two
methods and MCEB technique produces better polygon similarity ranking than the two
methods.
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