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Abstract 

A novel model-based pose estimation algorithm is presented which estimates the motion of a three-dimensional object from a image 
sequence. The nonlinear estimation process within iteration is divided into two linear estimation stages, namely the depth approximation and 
the pose calculation. In the depth approximation stage, the depths of the feature points in three-dimensional space are estimated. In the pose 
calculation stage, the rotation and translation parameters between the estimated feature points and the model point set arer calculated by a fast 
singular value decomposition method. The whole process is executed recursively until the result is stable. Since both stages can be solved 
efficiently, the computational cost is low. As a result, the algorithm is well-suited for real computer vision applications. We demonstrate the 
capability of this algorithm by applying it to a real time head tracking problem. The results are satisfactory. 0 1998 Elsevier Science B.V. All 
rights reserved. 
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1. Introdution 

Tracking the pose (position and orientation) of a moving 
object from an image sequence is useful in applications such 
as photogrammetry, passive navigation, industry inspection 
and human-computer interfaces [ 1,2]. However, this is a 
difficult problem because of the following reasons. Firstly, 
the depth information has been transformed by a nonlinear 
mapping to yield the foreshortening effect in the captured 
image. Moreover, the rotation of the object in three- 
dimensional space leads to a nonlinear formulation which 
increases dramatically the computational requirement for 
generating the solution. 

In this paper, we are interested in the model-based pose 
estimation problem or the two-dimensional to three- 
dimensional problem as catagorized by Huang [3]. That 
is, when the three-dimensional structure of the object 
being investigated is known and its two-dimensional pro- 
jected image is available, we want to compute the pose of 
the object. In practice, the model of the three-dimensional 
positions of the feature points of the object can be measured 
manually before tracking begins. A two-dimensional corre- 
lation method can be used to track the movements of the 
projected two-dimensional feature points. Using this 
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information we would like to find the rotation (R) and trans- 
lation (T) of the object in three-dimensional. A number of 
techniques have been developed by previous researches [4- 
9, 2,101 to solve this problem. One way is to compute the 
motion information directly from the optical flow [I 1,8], 
which require massive computation power. In Ref. [4], a 
closed form solution for the pose from six points is derived. 
The method is extended to the estimation of more points by a 
consensus of sampling from the set. Robustness is achieved 
in this method at the expense of intensive computation of 
motion information from sampled subsets of the points. 

Another method to increase the robustness is the use of 
the method of least-squares. Depending on the formulation 
(using Euler angles or quatemions to represent rotation), 
various methods can be used to recover the pose from 
exact data. However, the problem will become a nonlinear 
least squares one when noise exists. Iterative algorithms 
such as the Newton-Raphson method [7] are applied to 
find the solution, but with the drawback of being heavily 
dependant on the initial guess. 

It is observed that a long image sequence can provide 
more information for the estimation process to suppress 
noise. Extended Kalman filter is used to model the problem 
as a recursive estimation process by Broida et al. [ 12,131 and 
Azarbayejani et al. [2]. The authors demonstrated that the 
pose of a moving object can be successfully recovered. 
However, the Kalman Filter method is found to be 
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successful in those applications where the observed objects 
would not change their appearance rapidly, e.g. aerospace 
and vehicles applications [7]. In other applicatons such as 
human motion tracking, owing to the complexities of the 
motion involved, more work is needed to increase the 
robostness of the overall tracking system. 

P 

PP 

Our interest is in devoping an efficient algorithm which is 
suitable for various applications on human motion analysis. 
This area is characterized by the rapid motion of the object 
concerned and high probability of occlusion/re-appearance 
of part of the object in the subsequent frames. 

Specifically we are interested in solving the two- 
dimensional to three-dimensional problem as mentioned 
by Haung [3]. We notice that there is already a solution 
for the three-dimensional to three-dimensional problem as 
mentioned in Ref. [ 141. That is when the three-dimensional 
locations of the features in the new positions are available, 
we can use the method of singular value decomposition 
(SVD) to find out the motion parameters [14-161. A least- 
squares solution is found. However, the algorithm will 
sometimes give a wrong (reflection of the correct. answer) 
solution when the input data are severely corrupted by noise. 
This was fixed by Umeyama [ 151 and later shown to be valid 
even when both point sets are noisey [ 161. In this paper, we 
propose an algorithm which extends the above methods to 
handle the problem of recovery of motion information from 
two-dimensional projections of a given three-dimensional 
point set. Our solution consists of the following two mod- 
ules: (1) from the two-dimensional features on the image 
plane, we estimate the locations of the features in three 
dimensions; and (2) using the estimated three-dimensional 
information we use the method of SVD as in [14-161 to 
develop the motion parameters of the object. The above two 
processes are executed recursively until the solution is 
stable. Our contribution here is that our algorithm requires 
significantly reduced computation compared with other 
techniques [7,2] under the situation of large number of 
feature points, say over 20. 

Fig. 1. Relationship between original point and projected point. 

Qi = txQ, > 'Q, 9 fh 

placed at (0, 0, fi, as shown in Fig. 1, where f is the 
focal length of the plane. Assume that a set of N model 
points (Pi, i E 1, 2,. . ., N} in three-dimensional space are 
given, which represents an object model. A rigid transfor- 
mation (a rotation followed by a translation) is applied to 
this point set, yielding {Pi’], which is then projected on the 
image plane, giving { (Xpi, Ye,), i E 1,2,. . .,N) .l These two- 
dimensional feature points in our three-dimensional coordi- 
nate system are given by: 

Let the three-dimensional coordinates of the transformed 
points Pi be (XPci, Y,c, Z,,,). The coordinates of P’i and 
Qi are related by: 

XP,, YP,, 
XQ, =f q ‘Qi =vf q 

The rest of this paper is organized as follows. In Section 2, 
the model-based pose estimation problem is formulated. 
Section 3 contains the first verson of our algorithm together 
with the convergence analysis of te algorithm. The weakness 
of our algorithm is identified and a more robust algorithm is 
then proposed. In Section 4, the performance of the improved 
algorithm is compared with two established approache, 
namely the Gauss-Newton method and the extended Kal- 
man filter method. In Section 5, we tested our algorithms on 
both synthetic and realistic image data. A head tracking 
application is implemented to test the validity of our 
approach on realistic images. Finally some possible 
enhancements of our algorithms are discussed in Section 6. 

In this arrangement, any point Qi tracked in the image will 
give an inverse projection ray from the focal center with unit 
vector vi given by (Xi, + Y& +f*) - “*(XQ,, YQi, f). The 
actual coordinates of this point in three-dimensional space 

are given by: 

P’i = diVi, (1) 

where di is the depth (a scalar) of the actual object from the 
perspectivity center. 

The problem of pose estimation can be described as fol- 
lows. Given { Qi, i E 1, 2,. . .,N} and a three-dimensional 
model (Pi, i E 1,2,. . .,N), where Pi = (Xp,, Ypc, Zp,) are the 
coordinates of the model points at a reference instant. We 
seek R, T and {di] such that the following measurement 
function: 

e2(R, T, {di ]) = f IIdiVi - (R Pi + T)II* 
i=l 

2. Problem formulation 

Consider a camera with the origin of the focal plane 
’ In this paper, we use a bold font to represent the two-dimensional vector 

on the image plane. 
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is minimized. The scalar di corresponds to the depth (2) 
which determines where in three-dimensional space should 

the actual point be located along the projection ray. 
In the formulation above, least-squares minimization 

methods can be applied to the N + 6 parameter space to 
find the minimum of the measurement function e2 where N 
is the number of feature points of the object. This approach 
is adopted In Refs [ 17,181. Since the original three- 
dimensional coordinates are being transformed by a per- 
specive projection, the objective function is thus nonlinear. 
To solve for the solution, nonlinear minimization methods 
are required, which are usually time consuming as the number 
of points increases. 

3. Our algorithm 

Recently, some work has been presented which focuses 
on using the projection rays as a guide to determine the pose 
of an object in an image [ 191. However, that approach used 
the iterative point matching method, which demands much 
computational effort. Inspired by the inverse projection ray 
approach, we propose that the minimization process can be 
broken down into two stages: the first stage will estimate the 
position of all the feature points in the three-dimensional 
space, i.e { di) . The estimated point set will be passed to the 
second stage, which is at least-squares fitting of the three- 
dimensional model set and estimated three-dimensional 
point set. The above procedure is repeated until the result 
coverages. By dividing the estimation process into two stages, 
the size of the solution space is much reduced and the cost in 
locating the solution is minimized significantly. The resulting 
algorithm is very efficient and can run in real time. 

3.1. Depth approximation stage 

We would like to estimate the approximate depth values 
di for all the feature points in this stage. Consider Fig. 1, 
which shows a transformed point P’ and its original position 
P. The point P’ falls on the projection ray which emanates 
from the origin through the image point. It is not possible to 
have an accurate prediction of where on the projection ray 
the point would reside. However, the point must be on the 
projection ray and by the assumption that the displacement 
should be small, we take the perpendicular intersection of 
the original point with the projection ray as the estimate 
dposition in the first version of our algorithm. From the 
figure, assuming that the unit vector along the projection 
ray is Y, the perpendicular projection is given by: 

Q’ = (v’P)v. (3) 

In the above formula, the superscript ‘t’ denotes the trans- 
pose of a vector. As seen in Fig. 1, the estimated position of 
the feature point in the three-dimensional space is only the 
perpendicular intersection of the model point with the pro- 
jection ray; therefore, it may not correspond to the actual 
location of the transformed point. However, after each 

iteration, the model will be transformed closer to the projec- 
tion ray. The algorithm will eventually converge to a solution 

when the sum of the perpendicular distances from the esti- 
mated feature points to the projection ray becomes minimal. 

3.2. Least-squares jtting 

In this stage, we minimize the objective function: 

e2(R, T) = $ IIQ’, - (R Pi + T)I12, 
i= 1 

(4) 

where Qli is the perpendicular projection given by Eq. (4) 
obtained in the previous estimation stage and Pi is the 
original (model) point. As mentioned above, various 
efficient algorithms are available for the fitting of two 
three-dimensional point sets. We chose the singular value 
decomposition method [ 14,151 due to its robustness in noise 
handling and that only a 3 X 3 matrix decomposition pro- 
cedure is needed. The algorithm is describe below. The 
readers are referred to Refs [ 15,141 for details. 

3.2.1. ArunNrneyama algorithm for three-dimensional to 

three-dimensional motion estimation 
Input: {Pi, i E 1, 2 , . . .,N} in three-dimensional space. 

Output: Rotation matrix R, translation vector T and scalar 
value c such that 

N 

~ IIP’i - (CRPi + T)I12 
i=l 

(5) 

is minimized. 

1. Compute the following: 

u; = f g lIPi - ppl12, 
r=l 

up’ = ; 2 IIP’i - j,iP’l12, 2 

1-l 

H = ; ,$ (Prj - pp,)(Pi - P~)~. 
1-l 

2. Find the SVD of H: 

H = UWV’, 

where U and V are 3 X 3 orthonormal matrices and W is a 
3 X 3 diagonal matrix whose diagonal elements contain the 
eigenvalues of H. 
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3. If the rank of H > 2, the optimal transformation is given 
by: 

s= 

I 

I if det(H) 2 0 

diag(1, 1, -1) if det(H)<O 

R = USV’, 

c = -Lr(WS), 

T = pp’ - CR/L,, 

else, if the rank of H = 2, 

1 

I 
s= 

if det( U) det( V) = 1 

diag(1, 1, - 1) if det(U) det(V) = - 1 

R= USV’, 

c= $WS), 

T = pp’ - cR/L~, 

In the above, det(x) is the determinant of x and tr(x) is the 
trace of a matrix x.In Umeyama’s formulation, a scaling 
parameter c is also recovered. In our algorithm, we fix the 
value of c at one to reflect the fact that the object size does 
not change in subsequent images. 

3.3. Algorithm I 

The complete algorithm is as follows: 

Input: 

(Pi,i E 1, 2,. . . ,N] : transformed feature points (or the model) 
of the object, Q’i : (Xe,,, Y,,,), i E 1,2,. .., N: transformed 
feature point coordinates on the image plane. 

Procedure: 

While (change in R or T not iess than some threshold 
values): 

estimate di by VIPi is the unit vector along the projection 
ray formed by image point Qi’ and the origin; 
perform at least-squares fitting to Eq. (5) to estimate R 
and T by the singular value decomposition method 

114,151; 
update Pi by PieRPi + T. 

end while. 

3.4. Convergence analysis 

We now perform a convergence analysis of our 
algorithm. The analysis of the convergence condition of a 

particular algorithm is usually not treated in most pose esti- 
mation literature. However, it is an important criterion for 
the evaluation of algorithms. Many motion estimation algo- 
rithms are very sensitive to noise. Moreover, nonlinear algo- 
rithms usually lead to wrong results if the initial guess is not 
sufficiently close to the recovered values. 

Assuming that a model point P is transformed to another 
location P’ by a rigid body transform, the perpendicular 
projection of P onto P’ is Q’ (see Fig. 1) and P’ is given by: 

P’=RF’+T. (6) 

From Fig. 1, Q’ can also be written as: 

Q’ = p’ 1 - ‘p;p--;;y’). 

The second term on the right hand side of the above 
equation, which is the fractional difference between the 
estimated position and the true one, can be treated as the 
error in prediction. By studying the dependencies of this 
term on figurations and motion characteristics, the perfor- 
mance of our algorithm can be readily characterized. 

The second term inside the parenthesis on the right of 
Eq. (7) can be written as: 

(P’ - P)‘P’ 
&= 

llPrl12 ’ 
(8) 

(RP)‘RP + (RP)‘T + T’(T - P) - P’RP 
= 

(RP)‘RP + 2(RP)‘T + T’T 
(9) 

The prediction error term E depends on the values of R, P 
and T. From the above equation, we would expect that for a 
large ratio of lITI/ to IIPII, the algorithm would converge to a 
wrong result as E approaches one. 

From the above, we see that our algorithm would con- 
verge to wrong reuslts as the ratio IITII/IIPII increases. How- 
ever, imagine a scene in which an object moving at a fast 
speed, the feature points taken between successive frames 
would probably result in significant distances apart. Since 
our aligorithm will only try to bring the model as close to the 
projection ray as possible, this would result in te model 
being brought to a local minimum where the algorithm 
will be stuck. A more robust enhancement is therefore 
need to handle the translational movement. 

Recall that our original algorithm can be viewed as follows: 

Iterate until convergence 

1. construct the initial estimate by projecting the model 
points individually onto the line formed by the camera 
origin and feature points; 

2. fit a rotation matrix and a translation vector to account 
for the transformation between the estimated set and 
model set. 

We can see that the initial guess plays an important role in 
the overal estimation process. Assuming there is no motion 
in the model points (i.e. the rotation and translation have 
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already been determined and the model points have been 
updated), the variables (di} now remain to be determined. 
They can be viewed as the parameters obtained from the 
minimization of 0, where: 

0 = ~ lldivi - Pill* = ~ (d,? - diU:Pj - diP:~; + P:Pj). 
1=I i=l 

(10) 
In the above formula, Yi is the unit vector of the projection 
ray (with the property Y:Y~ = 1). 

Differentiating the above equation with respect to di and 
setting the partial differential equals to zero and rearranging 
terms, we have: 

di = v:P~, (11) 

which is the same form as a dot product of Yi with Pi. 
We can see that our original algorithm is working in the 

following way: 

1. assume the object has no motion, determine ( di, i E 1, 
2 ,...> NJ; 

2. assume {di,i E 1, 2 , . . . ,N) are determined, estimate R 
and T; 

3. update the state of the solution and iterate again. 

3.5. Algorithm II 

At this stage, we modify the minimization function in 
Eq. (10) so as to increase the robustness of our algorithm. 
The idea is to add the translation term into the minimization 
function in stage 1 so that the predicted position {di} for 
i E 1, 2,..., N will be more accurate. 

The improved algorithm is as follows: 

1. Minimize the function below to estimate { di,i E 1, 2, 
. . ..N]. 

~ IIdiVi - (P; + ~)ll*. (12) 
i=l 

The resulting {d,, i E 1, 2,. .,N) and T is given by: 

d, = v;(P; = T), (13) 

T= - ($4) -’ (zAi’i)f (14) 

where Ai is a 3 X 3 matrix given by 

Ai = I - u~v:. (15) 

For the derivation of the above formula, please refer to 
Appendix A. 
2. Using the estimated (di, i E 1, 2,...,N) in the previous 

stage, apply the SVD method to determine the rigid 
transformation R and T. 

3. Update {P;, i E 1, 2,. . .,N} by Pt+RPt + T. 

Note that the Ais are not needed to be stored explicitly. 
Firstly, each Ai depends only on Vi, which is fixed before the 
execution of our algorithm. Therefore, the value of 
(xr=, Ai) - ’ in Eq. (14) can be precomputed before the 
iterations, which avoids the expensive inverting operation 
of a matrix. Moreover, the matrix vector product A,Pi can 
be computed efficiently using the formula Pi - Vi(V:Pi). AS a 
rough estimate for the computational requirements at each 
iteration, for N data points, our algorithm needs only about 
4 1 N arithmetic operations (additions, subtractions and 
multiplications) and one singular value decomposition 
operation for a 3 X 3 matrix that is about a hundred floating 
point operations. We also noticed the algorithm by 
DeMenthon and Davies [9] which requires only 24N arith- 
metic operations and two square root operations. However, 
our argument for the efficiency is still valid by the following 
reasons. Firstly, in the appraoch used by De Menthon and 
Davies, the algorithm requires an approximate pose estimate 
from the previous stage, which would inevitably contribute 
to the computational requirement. Moreover, their method 
does not guarentee the orthonormality of the resulting rota- 
tion matrix. Whereas our algorithm uses the singular value 
decomposition, which provides an orthonormal result, 
hence improves the accuracy and thus justifies the increase 
in computation. Hence, we conclude that the resulting algo- 
rithm is accurate and efficient. 

4. Performance comparison 

Various approaches have been applied successfully to the 
problem of motion analysis. In this section, we compare the 
performance of two established approaches with our algo- 
rithm. The main interest here is the computational efficincy 
since the main concern during the motion tracking applica- 
tion would probably be the timing requirement as well as 
accuracy and stability. We chose the Gauss-Newton 
method (by Lowe [7]) and the extended Kalman filter 
method (by Broida et al. [13] and Azarbayejani et al. [2]) 
due to their robustness and computational efficiency. 

4.1. Gauss-Newton method 

Lowe [7,20] used the Gauss-Newton method augmented 
with stabilization with prior variance to solve the pose track- 
ing method and the following matrix equation is solved: 

[“WI,= [ -oE]T 
where h is the unknown vector of corrections to be made to 
current estimate, E is the error between the current measure- 
ment and that of model prediction, J is the Jacobian matrix 
of the error with respect to the parameters; W is a diagonal 
weighting matrix which stabilizes the solution. It should be 
noted that Lowe’s approach minimizes the errors between 
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Fig. 2. CPU time per iteration for extended Kalman filter, Gauss-Newton 

and PRA. 

the model prediction in two-dimensional image space, while 
our formulation fits a rigid transformation between the pre- 
vious model and an estimated one in three-dimensional 
object space. In our experiment, Lowe’s approach is written 
in C and is derived from the package on rigidity checking 
from the kind offer by Mcreynolds [213.* 

4.2. Extended Kalman jilter method 

The Kalman filter has been investigated by many 
researchers for solving the motion tracking problem 
[2,13]. It features an optimal least-squares solution to the 
problem along with the prediction mechanism. Our imple- 
mentation followed that of Azarbayejani et al. [2]. The main 
advantages of Azarbayejani et al.‘s formation is that it only 
used one parameter per feature which reduces the size of 
measurement matrix and thus is computationally more effi- 
cient. The extended Kalman filter algorithm was implemen- 
ted in C and was tested together with the approach by Lowe 
as well as ours. 

I 21 41 61 61 

Input angle 

Fig. 3. Recovered angles versus input angles. 

the whole sequence. Angles with respect to they- and x-axis 
are slowly increased from zero to around 0.4 in the last 50 
frames. Monte Carlo simulation was applied to the data and 
Gaussian random noise with zero mean and standard devia- 
tion of one unit is added to the coordinates of each feature 
point. The plots of average time per frame used by various 
approaches are shown in Fig. 2. In the plot, our algorithm is 
represented using the title ‘PRA’ which stands for ‘projec- 
tion ray attraction’. The computational advantage of our 
approach is clear from the figure. It can be seen that the 
time required by Lowe’s approach increases linearly with 
the number of points whereas our approach remains roughly 
the same. The main reason is that the Gauss-Newton 
method requires the solution of an (N + 6) X (N + 6) 
matrix, where N is the number of feature points measured. 
This matrix inverse operation is computationally the most 
demanding step. The long computational time of the 
extended Kalman filter algorithm has the properties of 
motion prediction together with the recursive estimation 
of structure as well as focal length. Another example is 
the stabilizing properties of Lowe’s approach, which is 
important during long sequence tracking. In view of the 
generality of our formulation, it is not a difficult problem 
and we will incorporate the above features in the future. 

All the simulations were performed on a SUN Ultra l/170 
workstation. The same data set was used which involved 
both translation and rotation of two to four planes in 
three-dimensional space. The test set was started with 
seven points, then 10 points which lie on the same plane. 
Five points were added after each test and a new plane was 
added after each 10 points increment. The motion trajectory 
consists of increasing values in both rotation and translation 
for 100 frames. Translation in the x-axis increased from zero 
to 0.5 in the first 50 frames, whereas translation in y-axis is 
in the negative direction and linearly decreased to - 2.0 for 

4.3. Results and discussions 

5. Experiments 

‘The package can be downloaded form the following site ftp:/l 
ftp.cs.ubc.ca/pub/local/danm. 

5.1. Synthetic data 

To test the validity of the above formulae, we use a ran- 
domly generated point set of 16 points inside a unit cube. 
The point set is transformed (rotated and translated) and 
projected on an image plane of unit focal length. Algorithm 
II is then applied to recover the transformation parameters. 
We vary one of the parameters, say roll angle, while keeping 
all the other parameters at zero. The resultant plots for 
deifferent Euler angles are shown in Fig. 3. We have also 
tested the performance for different translation values and 
the results are satisfactory. Since the algorithm can estimate 
the translation accurately, we did not show the plot here. It is 
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Fig. 4. Recovered values for increasing translation. 

observed that the rcovered Euler angle becomes unreliable 
after one or more of the input angles exceed 20”. Also note 
that the translation terms can be unambiguously recovered 
even for a large value compared with the magnitude of 
original model vectors. We have also performed the same 
set of experiments on Algorithm I. The same performance 
on recovered rotation is observed, while the estimated trans- 
lation quickly drops to zero when the translation increases 

4.0 

3.5 

2.5 

as shown in Fig. 4. This is to be expected according to the 
analysis in Section 3.4. 

The performance of our algorithm under a noisy environ- 
ment was also invetigated. Two sets of experiments were 
performed. We first descibe the set-up since they are uncom- 
mon for both experiments. A number of points are randomly 
generated in the three-dimensional space such that they will 
project on an image plane of size 2 X 2. These model points 
are then transformed by a rotation about the axis (1, 1, 1) by 
6” followed by a translation of (5.0, 3.0, 6.0). The trans- 
formed points are then projected on the image plane. The 
image coordinates are then digitized to a screen resolution 
of 512 X 512. The process of digitization introduces noise 
in this case. 100 random scences are generated according to 
this set-up and the digitized coordinates are used together 
with the original generated three-dimensional model to 
determine the pose. 

The errors shown in the following are all relative errors. 
We used quaternions to represent the rotation such that all 
the estimated results are in vector form. The relative error of 
a vector is defined by the Euclidean norm of the difference 
between the true vector divided by the Euclidean norm of 
the true vector. The first set of experiments tests the perfor- 
mance of the algorithm under different number of points in 
the scene. The results are shown in Fig. 5. From the plot, it is 
observed that the estimated rotation is relatively stable with 
respect to the variation of the number of points whereas the 

6 6 10 12 14 16 16 20 22 24 26 28 30 

No. of points 

Fig. 5. Plot of error dependency on the number of points. 
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Fig. 6. Plot of error in estimation versus measurment noise 

translation has the greatest improvement from eight to 12 
points. In addition, the digitization only introduces a small 
effect on the estimated results, as can be seen in the range of 
errors it is only within 3%. 

Another set of experiments simulates the measurement 
noise by introducing an offset value to both digitized x 
and y coordinates. These offset values are normally distrib- 
uted with a variance of k pixels where k is the parameter to 
be varied in the experiments. 16 points are used in this set of 
experiments. Fig. 6 shows the results and our algorithm 
again is quite stable under the situation of increasing noise. 

5.2. Real image testing 

Pose tracking involves continuous monitoring of the pose 
of an object from the imput image sequence. Our algorithm 
can easily be adapted for continuous tracking by performing 
estimation between successive image frames. We tested our 
algorithm by applying it to track to track the head of a 
person in an image sequence. Our implementation is per- 
formed on an SGI Indy workstation. To verify the correct- 
ness of the recovered pose information, we produce the 
same motion on the workstation at the same time. Though 
it is difficult in this case to estimate the perfomance figure of 
the algorithm, an overall estimate of the usefulness of the 
algorithm can be obtained. 

X2.1. Calibration 
A calibrated data point set for the face to be tracked is 

needed in our experiment. Two methods can be used. In 
the first approach, one can measure dirctly the three- 
dimensional coordinates of the feature points on the face 
with respect to a reference point, say the nose tip, The draw- 
back of this approach is that careful measurements are 
needed and that the process is intrusive. The second 
approach uses the structure from mtion algorithm. We 

Fig. 7. Sample run ot the nead tracking application: (a) initialization; 

(b) rotation of the head and reconstructed pose. 

used the second approach, following the algorithm by 
Szeliski [ 171. An image sequence of the object is obtained 
and the feature points of the model are selected and tracked 
throughout the sequence to generate a batch of two- 
dimensional image coordinates of these feature points. 
The resulting data is input to the batch processing algorithm 
which performs a nonlinear minimization (Levenberg- 
Marquardt method). The algorithm will estimate the focal 
length f, the model set {P,, i, 2,. . .,N} as well as the motion 
parameters. This process usually requires much more time. 
For the case of a total of 250 data points for a synthetic head 
model, the total time needed is over 10 h on a SUN-Spare 10 
workstation. In our real image experiment, only 12 points 
are used. All points are selected on the criteria that they can 
be tracked unambiguously throughout the sequence so as to 
increase the accuracy of the recovered pose. We use four 
points for the head boundary including ears, four points the 
mouth and four points for each of the eyebrows. 

5.2.2. Initialization 
The user first clicks on the captured image with a mouse 

to select the feature points. The selected feature points must 
be the same as those taken in the calibration stage. These 
selected feature points are then tracked by the normalized 
correlation method to give coordinates in successive frames. 
The correlation window is of size 5 X 5, whereas the search 
window is of size 7 X 7. The point inside the search window 
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with the highest correlation score is chosen as the feature 
point location in the subsequent frame. For the first frame, 

the captured point sets are used to estimate the proper pose 
adjustment of our model set. The pose adjustment is nec- 
cessary since the pose of the model point set obtained in the 
calibration stage. However, according to our experience, 
this discrepancy is minor in that our algorithm can still 
maintain the tracking over a long period, say over 100 
frames. Once the pose adjustment is completed, the pose 

tracking procedure can be applied to the human object. 

5.2.3. Tracking 

Once the pose adjustment is completed, our algorithm 
will generate the pose estimations in all subsequent frames. 
The pose estimates are in the form of a rotation matrix and a 
translation vector. We transform the rotation matrix into the 
Euler angle format. This information will be used to control 
a synthetic head model.3 The results are shown in Fig. 7. 
Fig. 7(a) shows a snapshot during initialization. The user is 
sitting right in front of the camera and the feature points on 
the face are being selected. Once the initialization is per- 
formed, the user is allowed to move freely within the view 
ofthe camera. Fig. 7(b) shows another snapshot in which the 
user is rotating his head to the right and tilting upward. It can 
be seen that the synthetic face can produce visually the same 
pose at the same time. Currently our system can achieve a 
processing speed of around 12 frames/s for a 320 X 240 
image size. The performance figures are obtained under 
the condition of the tasks of capturing, feature tracking, 
motion estimation and controlling of the synthetic character 
all being performed on the same SGI Indy workstation. 

For the first problem, one solution is to bootstrap the 

algorithm itself after a number of frames. This is possible 
since our algorithm has quite a large range of conver- 
gence (approximately 40” for the rotation angles as 
seen in Section 5.1). Another solution is to cross-check 
the pose estimation result with two or more frames earlier 
so as to minimize the error itself. The second problem 
demands a further enhancement of our algorithm to handle 
the occulsion problem, which is not too dificult due to the 
model-based nature of our algorithm [23]. We are currently 
working in this direction. When the above problems are 
solved, we can produce a robust head tracking system. An 
exciting application of head tracking is in low bit rate video 
single compression. 

7. Conclusion 

An efficient pose estimation algorithm has been pre- 
sented. By breaking down the pose estimation process into 
two separate linear stages, the computation cost is signifi- 
cantly reduced. A real time pose tracking system has been 
produced. We also analyzed the input tolerance of our sys- 
tem and found that the range of input variation in the 
rotation angles should not exceed the range of 40” approxi- 
mately for each angle. Tests on synthetic data as well as real 
world head tracking have demonstrated the effectiveness of 
our algorithm. 

Appendix A Derivation of initial guess for improved 
algorithm 

6. Discussion 

In the experiments on head tracking, we found out that 
our algorithm can effectively recover the motion informa- 
tion from the images. The main advantage of our algorithm 
can effictively recover the motion information from the 
images. The main advantage of our algorithm is that it is 
computationally efficient. In addition, by performing the 
fitting of the model set in three-dimensional object space 
and not on the image plane, a larger range of convergence is 
achieved which enables our algorithm to be more stable 
with respect to different initial guesses. However, our algo- 
rithm also has the following drawbacks. Firstly, due to the 
fact that our algorithm is formulated under the situation of 
two frames only; thus, the error in the estimation will be 
accumulated in the subsequent frames and may lead to fail- 
ure after a large number of frames. Moreover, in the current 
formulation, the problem of occulsion is not being handled. 
Finally, it is found that the recovered pose of the head will 
slowly lose track when one or more of the correlated point 
fails to give the correct movement. 

Given (Pi} and (vi), we want to minimize the function 
below to estalish the initial guess { di) : 

O = ~ IIdivi - (Pi + T)II* 
i=l 

= f_ [divi - (Pi + T)‘[div; - (Pi + T)]. 

i= I 

Applying partial differentiation to 0 with respect to di and 
setting it to zero, we have: 

a@ 
~ = 0 j di = V:(Pi + T). 

I 

(16) 

Note that the above equation can be interpreted as: the opti- 
mal depth di is obtained by orthogonally projecting the 
translated point onto the projection ray. Similarly applying 
partial differentiation to 0 with respect to T and setting it to 
zero, we have: 

ao 
dT="*T=- 

b,f_ (diVj_P') I . 
r=l 

(17) 

3 The synthetic character is a public domain implementation of the facial The above equation can be interpreted as: the optimal trans- 

animation work by Keith Waters [22] lation T is equal to the average distance between the original 
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point set and the resulting point set. By substituting Eq. (16) 
into Eq. (17), we get: 

T = ~ ,~ (v:(P~ + T)vi - Pi) 
r-l 

= ~ ~ (v:P~v~ - Pi) + ~ ~ VITVi 
r-l 1-l 

= ~ ,~ [(viu:)Pi - Pi] + ~ ,~ [(ViV:)T]. 
1-l r-1 

This implies that: 

Writing Ai as I - ViV: we have: 

(18) 
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