
I
T&I n -3iF
COMPUllK

ELSEVIER Image and Vision Computing 16 (1998) 353-362

An efficient iterative pose estimation algorithm

S.H. Ora,*, W.S. Lukb, K.H. Wang”, I. King”

“Computer Science and Engineering Department, The Chinese University of Hong Kong, Shatin, NT, Hong Kong

‘K&h&eke Universiteit Leuven, Department Computerwetenschappen, Celrstijnenlaan ZOOA, B-3001 Heverlee, Belgium

Received 23 June 1997; received in revised form 29 October 1997; accepted 30 October 1997

Abstract

A novel model-based pose estimation algorithm is presented which estimates the motion of a three-dimensional object from a image
sequence. The nonlinear estimation process within iteration is divided into two linear estimation stages, namely the depth approximation and
the pose calculation. In the depth approximation stage, the depths of the feature points in three-dimensional space are estimated. In the pose
calculation stage, the rotation and translation parameters between the estimated feature points and the model point set arer calculated by a fast
singular value decomposition method. The whole process is executed recursively until the result is stable. Since both stages can be solved
efficiently, the computational cost is low. As a result, the algorithm is well-suited for real computer vision applications. We demonstrate the
capability of this algorithm by applying it to a real time head tracking problem. The results are satisfactory. 0 1998 Elsevier Science B.V. All
rights reserved.

Keywords: Pose estimation; Real time vision; Human-computer Interface; Singular value decomposition

1. Introdution

Tracking the pose (position and orientation) of a moving
object from an image sequence is useful in applications such
as photogrammetry, passive navigation, industry inspection
and human-computer interfaces [1,2]. However, this is a
difficult problem because of the following reasons. Firstly,
the depth information has been transformed by a nonlinear
mapping to yield the foreshortening effect in the captured
image. Moreover, the rotation of the object in three-
dimensional space leads to a nonlinear formulation which
increases dramatically the computational requirement for
generating the solution.

In this paper, we are interested in the model-based pose
estimation problem or the two-dimensional to three-
dimensional problem as catagorized by Huang [3]. That
is, when the three-dimensional structure of the object
being investigated is known and its two-dimensional pro-
jected image is available, we want to compute the pose of
the object. In practice, the model of the three-dimensional
positions of the feature points of the object can be measured
manually before tracking begins. A two-dimensional corre-
lation method can be used to track the movements of the
projected two-dimensional feature points. Using this

* Corresponding author. Tel: 00 852 2609 8402; fax: 00 852 2603 5024;
e-mail: shor@cse.cuhk.edu.hk.

0262.8856/98/$19.00 0 1998 Elsevier Science B.V. All rights reserved.

PII SO262-8856(97)00073-S

information we would like to find the rotation (R) and trans-
lation (T) of the object in three-dimensional. A number of
techniques have been developed by previous researches [4-
9, 2,101 to solve this problem. One way is to compute the
motion information directly from the optical flow [I 1,8],
which require massive computation power. In Ref. [4], a
closed form solution for the pose from six points is derived.
The method is extended to the estimation of more points by a
consensus of sampling from the set. Robustness is achieved
in this method at the expense of intensive computation of
motion information from sampled subsets of the points.

Another method to increase the robustness is the use of
the method of least-squares. Depending on the formulation
(using Euler angles or quatemions to represent rotation),
various methods can be used to recover the pose from
exact data. However, the problem will become a nonlinear
least squares one when noise exists. Iterative algorithms
such as the Newton-Raphson method [7] are applied to
find the solution, but with the drawback of being heavily
dependant on the initial guess.

It is observed that a long image sequence can provide
more information for the estimation process to suppress
noise. Extended Kalman filter is used to model the problem
as a recursive estimation process by Broida et al. [12,131 and
Azarbayejani et al. [2]. The authors demonstrated that the
pose of a moving object can be successfully recovered.
However, the Kalman Filter method is found to be

354 S.H. Or et al./lmage and Vision Computing 16 (1998) 353-362

successful in those applications where the observed objects
would not change their appearance rapidly, e.g. aerospace
and vehicles applications [7]. In other applicatons such as
human motion tracking, owing to the complexities of the
motion involved, more work is needed to increase the
robostness of the overall tracking system.

P

PP

Our interest is in devoping an efficient algorithm which is
suitable for various applications on human motion analysis.
This area is characterized by the rapid motion of the object
concerned and high probability of occlusion/re-appearance
of part of the object in the subsequent frames.

Specifically we are interested in solving the two-
dimensional to three-dimensional problem as mentioned
by Haung [3]. We notice that there is already a solution
for the three-dimensional to three-dimensional problem as
mentioned in Ref. [141. That is when the three-dimensional
locations of the features in the new positions are available,
we can use the method of singular value decomposition
(SVD) to find out the motion parameters [14-161. A least-
squares solution is found. However, the algorithm will
sometimes give a wrong (reflection of the correct. answer)
solution when the input data are severely corrupted by noise.
This was fixed by Umeyama [151 and later shown to be valid
even when both point sets are noisey [161. In this paper, we
propose an algorithm which extends the above methods to
handle the problem of recovery of motion information from
two-dimensional projections of a given three-dimensional
point set. Our solution consists of the following two mod-
ules: (1) from the two-dimensional features on the image
plane, we estimate the locations of the features in three
dimensions; and (2) using the estimated three-dimensional
information we use the method of SVD as in [14-161 to
develop the motion parameters of the object. The above two
processes are executed recursively until the solution is
stable. Our contribution here is that our algorithm requires
significantly reduced computation compared with other
techniques [7,2] under the situation of large number of
feature points, say over 20.

Fig. 1. Relationship between original point and projected point.

Qi = txQ, > 'Q, 9 fh

placed at (0, 0, fi, as shown in Fig. 1, where f is the
focal length of the plane. Assume that a set of N model
points (Pi, i E 1, 2,. . ., N} in three-dimensional space are
given, which represents an object model. A rigid transfor-
mation (a rotation followed by a translation) is applied to
this point set, yielding {Pi’], which is then projected on the
image plane, giving { (Xpi, Ye,), i E 1,2,. . .,N) .l These two-
dimensional feature points in our three-dimensional coordi-
nate system are given by:

Let the three-dimensional coordinates of the transformed
points Pi be (XPci, Y,c, Z,,,). The coordinates of P’i and
Qi are related by:

XP,, YP,,
XQ, =f q ‘Qi =vf q

The rest of this paper is organized as follows. In Section 2,
the model-based pose estimation problem is formulated.
Section 3 contains the first verson of our algorithm together
with the convergence analysis of te algorithm. The weakness
of our algorithm is identified and a more robust algorithm is
then proposed. In Section 4, the performance of the improved
algorithm is compared with two established approache,
namely the Gauss-Newton method and the extended Kal-
man filter method. In Section 5, we tested our algorithms on
both synthetic and realistic image data. A head tracking
application is implemented to test the validity of our
approach on realistic images. Finally some possible
enhancements of our algorithms are discussed in Section 6.

In this arrangement, any point Qi tracked in the image will
give an inverse projection ray from the focal center with unit
vector vi given by (Xi, + Y& +f*) - “*(XQ,, YQi, f). The
actual coordinates of this point in three-dimensional space

are given by:

P’i = diVi, (1)

where di is the depth (a scalar) of the actual object from the
perspectivity center.

The problem of pose estimation can be described as fol-
lows. Given { Qi, i E 1, 2,. . .,N} and a three-dimensional
model (Pi, i E 1,2,. . .,N), where Pi = (Xp,, Ypc, Zp,) are the
coordinates of the model points at a reference instant. We
seek R, T and {di] such that the following measurement
function:

e2(R, T, {di]) = f IIdiVi - (R Pi + T)II*
i=l

2. Problem formulation

Consider a camera with the origin of the focal plane
’ In this paper, we use a bold font to represent the two-dimensional vector

on the image plane.

S.H. Or et al./Imqe and Vision Computing 16 (1998) 353-362 355

is minimized. The scalar di corresponds to the depth (2)
which determines where in three-dimensional space should

the actual point be located along the projection ray.
In the formulation above, least-squares minimization

methods can be applied to the N + 6 parameter space to
find the minimum of the measurement function e2 where N
is the number of feature points of the object. This approach
is adopted In Refs [17,181. Since the original three-
dimensional coordinates are being transformed by a per-
specive projection, the objective function is thus nonlinear.
To solve for the solution, nonlinear minimization methods
are required, which are usually time consuming as the number
of points increases.

3. Our algorithm

Recently, some work has been presented which focuses
on using the projection rays as a guide to determine the pose
of an object in an image [191. However, that approach used
the iterative point matching method, which demands much
computational effort. Inspired by the inverse projection ray
approach, we propose that the minimization process can be
broken down into two stages: the first stage will estimate the
position of all the feature points in the three-dimensional
space, i.e { di) . The estimated point set will be passed to the
second stage, which is at least-squares fitting of the three-
dimensional model set and estimated three-dimensional
point set. The above procedure is repeated until the result
coverages. By dividing the estimation process into two stages,
the size of the solution space is much reduced and the cost in
locating the solution is minimized significantly. The resulting
algorithm is very efficient and can run in real time.

3.1. Depth approximation stage

We would like to estimate the approximate depth values
di for all the feature points in this stage. Consider Fig. 1,
which shows a transformed point P’ and its original position
P. The point P’ falls on the projection ray which emanates
from the origin through the image point. It is not possible to
have an accurate prediction of where on the projection ray
the point would reside. However, the point must be on the
projection ray and by the assumption that the displacement
should be small, we take the perpendicular intersection of
the original point with the projection ray as the estimate
dposition in the first version of our algorithm. From the
figure, assuming that the unit vector along the projection
ray is Y, the perpendicular projection is given by:

Q’ = (v’P)v. (3)

In the above formula, the superscript ‘t’ denotes the trans-
pose of a vector. As seen in Fig. 1, the estimated position of
the feature point in the three-dimensional space is only the
perpendicular intersection of the model point with the pro-
jection ray; therefore, it may not correspond to the actual
location of the transformed point. However, after each

iteration, the model will be transformed closer to the projec-
tion ray. The algorithm will eventually converge to a solution

when the sum of the perpendicular distances from the esti-
mated feature points to the projection ray becomes minimal.

3.2. Least-squares jtting

In this stage, we minimize the objective function:

e2(R, T) = $ IIQ’, - (R Pi + T)I12,
i= 1

(4)

where Qli is the perpendicular projection given by Eq. (4)
obtained in the previous estimation stage and Pi is the
original (model) point. As mentioned above, various
efficient algorithms are available for the fitting of two
three-dimensional point sets. We chose the singular value
decomposition method [14,151 due to its robustness in noise
handling and that only a 3 X 3 matrix decomposition pro-
cedure is needed. The algorithm is describe below. The
readers are referred to Refs [15,141 for details.

3.2.1. ArunNrneyama algorithm for three-dimensional to

three-dimensional motion estimation
Input: {Pi, i E 1, 2 , . . .,N} in three-dimensional space.

Output: Rotation matrix R, translation vector T and scalar
value c such that

N

~ IIP’i - (CRPi + T)I12
i=l

(5)

is minimized.

1. Compute the following:

u; = f g lIPi - ppl12,
r=l

up’ = ; 2 IIP’i - j,iP’l12, 2

1-l

H = ; ,$ (Prj - pp,)(Pi - P~)~.
1-l

2. Find the SVD of H:

H = UWV’,

where U and V are 3 X 3 orthonormal matrices and W is a
3 X 3 diagonal matrix whose diagonal elements contain the
eigenvalues of H.

3.56 S.H. Or et al./lmage and Vision Computing 16 (1998) 353-362

3. If the rank of H > 2, the optimal transformation is given
by:

s=

I

I if det(H) 2 0

diag(1, 1, -1) if det(H)<O

R = USV’,

c = -Lr(WS),

T = pp’ - CR/L,,

else, if the rank of H = 2,

1

I
s=

if det(U) det(V) = 1

diag(1, 1, - 1) if det(U) det(V) = - 1

R= USV’,

c= $WS),

T = pp’ - cR/L~,

In the above, det(x) is the determinant of x and tr(x) is the
trace of a matrix x.In Umeyama’s formulation, a scaling
parameter c is also recovered. In our algorithm, we fix the
value of c at one to reflect the fact that the object size does
not change in subsequent images.

3.3. Algorithm I

The complete algorithm is as follows:

Input:

(Pi,i E 1, 2,. . . ,N] : transformed feature points (or the model)
of the object, Q’i : (Xe,,, Y,,,), i E 1,2,. .., N: transformed
feature point coordinates on the image plane.

Procedure:

While (change in R or T not iess than some threshold
values):

estimate di by VIPi is the unit vector along the projection
ray formed by image point Qi’ and the origin;
perform at least-squares fitting to Eq. (5) to estimate R
and T by the singular value decomposition method

114,151;
update Pi by PieRPi + T.

end while.

3.4. Convergence analysis

We now perform a convergence analysis of our
algorithm. The analysis of the convergence condition of a

particular algorithm is usually not treated in most pose esti-
mation literature. However, it is an important criterion for
the evaluation of algorithms. Many motion estimation algo-
rithms are very sensitive to noise. Moreover, nonlinear algo-
rithms usually lead to wrong results if the initial guess is not
sufficiently close to the recovered values.

Assuming that a model point P is transformed to another
location P’ by a rigid body transform, the perpendicular
projection of P onto P’ is Q’ (see Fig. 1) and P’ is given by:

P’=RF’+T. (6)

From Fig. 1, Q’ can also be written as:

Q’ = p’ 1 - ‘p;p--;;y’).

The second term on the right hand side of the above
equation, which is the fractional difference between the
estimated position and the true one, can be treated as the
error in prediction. By studying the dependencies of this
term on figurations and motion characteristics, the perfor-
mance of our algorithm can be readily characterized.

The second term inside the parenthesis on the right of
Eq. (7) can be written as:

(P’ - P)‘P’
&=

llPrl12 ’
(8)

(RP)‘RP + (RP)‘T + T’(T - P) - P’RP
=

(RP)‘RP + 2(RP)‘T + T’T
(9)

The prediction error term E depends on the values of R, P
and T. From the above equation, we would expect that for a
large ratio of lITI/ to IIPII, the algorithm would converge to a
wrong result as E approaches one.

From the above, we see that our algorithm would con-
verge to wrong reuslts as the ratio IITII/IIPII increases. How-
ever, imagine a scene in which an object moving at a fast
speed, the feature points taken between successive frames
would probably result in significant distances apart. Since
our aligorithm will only try to bring the model as close to the
projection ray as possible, this would result in te model
being brought to a local minimum where the algorithm
will be stuck. A more robust enhancement is therefore
need to handle the translational movement.

Recall that our original algorithm can be viewed as follows:

Iterate until convergence

1. construct the initial estimate by projecting the model
points individually onto the line formed by the camera
origin and feature points;

2. fit a rotation matrix and a translation vector to account
for the transformation between the estimated set and
model set.

We can see that the initial guess plays an important role in
the overal estimation process. Assuming there is no motion
in the model points (i.e. the rotation and translation have

S.H. Or et al./hage and Vision Computing 16 (1998) 353-362 357

already been determined and the model points have been
updated), the variables (di} now remain to be determined.
They can be viewed as the parameters obtained from the
minimization of 0, where:

0 = ~ lldivi - Pill* = ~ (d,? - diU:Pj - diP:~; + P:Pj).
1=I i=l

(10)
In the above formula, Yi is the unit vector of the projection
ray (with the property Y:Y~ = 1).

Differentiating the above equation with respect to di and
setting the partial differential equals to zero and rearranging
terms, we have:

di = v:P~, (11)

which is the same form as a dot product of Yi with Pi.
We can see that our original algorithm is working in the

following way:

1. assume the object has no motion, determine (di, i E 1,
2 ,...> NJ;

2. assume {di,i E 1, 2 , . . . ,N) are determined, estimate R
and T;

3. update the state of the solution and iterate again.

3.5. Algorithm II

At this stage, we modify the minimization function in
Eq. (10) so as to increase the robustness of our algorithm.
The idea is to add the translation term into the minimization
function in stage 1 so that the predicted position {di} for
i E 1, 2,..., N will be more accurate.

The improved algorithm is as follows:

1. Minimize the function below to estimate { di,i E 1, 2,
. . ..N].

~ IIdiVi - (P; + ~)ll*. (12)
i=l

The resulting {d,, i E 1, 2,. .,N) and T is given by:

d, = v;(P; = T), (13)

T= - ($4) -’ (zAi’i)f (14)

where Ai is a 3 X 3 matrix given by

Ai = I - u~v:. (15)

For the derivation of the above formula, please refer to
Appendix A.
2. Using the estimated (di, i E 1, 2,...,N) in the previous

stage, apply the SVD method to determine the rigid
transformation R and T.

3. Update {P;, i E 1, 2,. . .,N} by Pt+RPt + T.

Note that the Ais are not needed to be stored explicitly.
Firstly, each Ai depends only on Vi, which is fixed before the
execution of our algorithm. Therefore, the value of
(xr=, Ai) - ’ in Eq. (14) can be precomputed before the
iterations, which avoids the expensive inverting operation
of a matrix. Moreover, the matrix vector product A,Pi can
be computed efficiently using the formula Pi - Vi(V:Pi). AS a
rough estimate for the computational requirements at each
iteration, for N data points, our algorithm needs only about
4 1 N arithmetic operations (additions, subtractions and
multiplications) and one singular value decomposition
operation for a 3 X 3 matrix that is about a hundred floating
point operations. We also noticed the algorithm by
DeMenthon and Davies [9] which requires only 24N arith-
metic operations and two square root operations. However,
our argument for the efficiency is still valid by the following
reasons. Firstly, in the appraoch used by De Menthon and
Davies, the algorithm requires an approximate pose estimate
from the previous stage, which would inevitably contribute
to the computational requirement. Moreover, their method
does not guarentee the orthonormality of the resulting rota-
tion matrix. Whereas our algorithm uses the singular value
decomposition, which provides an orthonormal result,
hence improves the accuracy and thus justifies the increase
in computation. Hence, we conclude that the resulting algo-
rithm is accurate and efficient.

4. Performance comparison

Various approaches have been applied successfully to the
problem of motion analysis. In this section, we compare the
performance of two established approaches with our algo-
rithm. The main interest here is the computational efficincy
since the main concern during the motion tracking applica-
tion would probably be the timing requirement as well as
accuracy and stability. We chose the Gauss-Newton
method (by Lowe [7]) and the extended Kalman filter
method (by Broida et al. [13] and Azarbayejani et al. [2])
due to their robustness and computational efficiency.

4.1. Gauss-Newton method

Lowe [7,20] used the Gauss-Newton method augmented
with stabilization with prior variance to solve the pose track-
ing method and the following matrix equation is solved:

[“WI,= [-oE]T
where h is the unknown vector of corrections to be made to
current estimate, E is the error between the current measure-
ment and that of model prediction, J is the Jacobian matrix
of the error with respect to the parameters; W is a diagonal
weighting matrix which stabilizes the solution. It should be
noted that Lowe’s approach minimizes the errors between

358 S.H. Or et al/Image and Vision Computing 16 (1998) 353-362

6wo .-

6ow --

l---/ m

. . ..~.~r.r.r.~p.~~.------4---
___--9

o _L..;-;-_.;.8__yI_‘_- .‘.. ~.~.~.~~~.~.~..~.~.~.~.. (:

7 10 15 20 25 30

No. of points

Fig. 2. CPU time per iteration for extended Kalman filter, Gauss-Newton

and PRA.

the model prediction in two-dimensional image space, while
our formulation fits a rigid transformation between the pre-
vious model and an estimated one in three-dimensional
object space. In our experiment, Lowe’s approach is written
in C and is derived from the package on rigidity checking
from the kind offer by Mcreynolds [213.*

4.2. Extended Kalman jilter method

The Kalman filter has been investigated by many
researchers for solving the motion tracking problem
[2,13]. It features an optimal least-squares solution to the
problem along with the prediction mechanism. Our imple-
mentation followed that of Azarbayejani et al. [2]. The main
advantages of Azarbayejani et al.‘s formation is that it only
used one parameter per feature which reduces the size of
measurement matrix and thus is computationally more effi-
cient. The extended Kalman filter algorithm was implemen-
ted in C and was tested together with the approach by Lowe
as well as ours.

I 21 41 61 61

Input angle

Fig. 3. Recovered angles versus input angles.

the whole sequence. Angles with respect to they- and x-axis
are slowly increased from zero to around 0.4 in the last 50
frames. Monte Carlo simulation was applied to the data and
Gaussian random noise with zero mean and standard devia-
tion of one unit is added to the coordinates of each feature
point. The plots of average time per frame used by various
approaches are shown in Fig. 2. In the plot, our algorithm is
represented using the title ‘PRA’ which stands for ‘projec-
tion ray attraction’. The computational advantage of our
approach is clear from the figure. It can be seen that the
time required by Lowe’s approach increases linearly with
the number of points whereas our approach remains roughly
the same. The main reason is that the Gauss-Newton
method requires the solution of an (N + 6) X (N + 6)
matrix, where N is the number of feature points measured.
This matrix inverse operation is computationally the most
demanding step. The long computational time of the
extended Kalman filter algorithm has the properties of
motion prediction together with the recursive estimation
of structure as well as focal length. Another example is
the stabilizing properties of Lowe’s approach, which is
important during long sequence tracking. In view of the
generality of our formulation, it is not a difficult problem
and we will incorporate the above features in the future.

All the simulations were performed on a SUN Ultra l/170
workstation. The same data set was used which involved
both translation and rotation of two to four planes in
three-dimensional space. The test set was started with
seven points, then 10 points which lie on the same plane.
Five points were added after each test and a new plane was
added after each 10 points increment. The motion trajectory
consists of increasing values in both rotation and translation
for 100 frames. Translation in the x-axis increased from zero
to 0.5 in the first 50 frames, whereas translation in y-axis is
in the negative direction and linearly decreased to - 2.0 for

4.3. Results and discussions

5. Experiments

‘The package can be downloaded form the following site ftp:/l
ftp.cs.ubc.ca/pub/local/danm.

5.1. Synthetic data

To test the validity of the above formulae, we use a ran-
domly generated point set of 16 points inside a unit cube.
The point set is transformed (rotated and translated) and
projected on an image plane of unit focal length. Algorithm
II is then applied to recover the transformation parameters.
We vary one of the parameters, say roll angle, while keeping
all the other parameters at zero. The resultant plots for
deifferent Euler angles are shown in Fig. 3. We have also
tested the performance for different translation values and
the results are satisfactory. Since the algorithm can estimate
the translation accurately, we did not show the plot here. It is

S.H. Or et al./Image and Vision Computing 16 (1998) 353-362 359

12 T

1 11 21 31 41 51

Translation

Fig. 4. Recovered values for increasing translation.

observed that the rcovered Euler angle becomes unreliable
after one or more of the input angles exceed 20”. Also note
that the translation terms can be unambiguously recovered
even for a large value compared with the magnitude of
original model vectors. We have also performed the same
set of experiments on Algorithm I. The same performance
on recovered rotation is observed, while the estimated trans-
lation quickly drops to zero when the translation increases

4.0

3.5

2.5

as shown in Fig. 4. This is to be expected according to the
analysis in Section 3.4.

The performance of our algorithm under a noisy environ-
ment was also invetigated. Two sets of experiments were
performed. We first descibe the set-up since they are uncom-
mon for both experiments. A number of points are randomly
generated in the three-dimensional space such that they will
project on an image plane of size 2 X 2. These model points
are then transformed by a rotation about the axis (1, 1, 1) by
6” followed by a translation of (5.0, 3.0, 6.0). The trans-
formed points are then projected on the image plane. The
image coordinates are then digitized to a screen resolution
of 512 X 512. The process of digitization introduces noise
in this case. 100 random scences are generated according to
this set-up and the digitized coordinates are used together
with the original generated three-dimensional model to
determine the pose.

The errors shown in the following are all relative errors.
We used quaternions to represent the rotation such that all
the estimated results are in vector form. The relative error of
a vector is defined by the Euclidean norm of the difference
between the true vector divided by the Euclidean norm of
the true vector. The first set of experiments tests the perfor-
mance of the algorithm under different number of points in
the scene. The results are shown in Fig. 5. From the plot, it is
observed that the estimated rotation is relatively stable with
respect to the variation of the number of points whereas the

6 6 10 12 14 16 16 20 22 24 26 28 30

No. of points

Fig. 5. Plot of error dependency on the number of points.

360 S.H. Or et al./Image and Vision Computing 16 (1998) 353-362

30

T P

Fig. 6. Plot of error in estimation versus measurment noise

translation has the greatest improvement from eight to 12
points. In addition, the digitization only introduces a small
effect on the estimated results, as can be seen in the range of
errors it is only within 3%.

Another set of experiments simulates the measurement
noise by introducing an offset value to both digitized x
and y coordinates. These offset values are normally distrib-
uted with a variance of k pixels where k is the parameter to
be varied in the experiments. 16 points are used in this set of
experiments. Fig. 6 shows the results and our algorithm
again is quite stable under the situation of increasing noise.

5.2. Real image testing

Pose tracking involves continuous monitoring of the pose
of an object from the imput image sequence. Our algorithm
can easily be adapted for continuous tracking by performing
estimation between successive image frames. We tested our
algorithm by applying it to track to track the head of a
person in an image sequence. Our implementation is per-
formed on an SGI Indy workstation. To verify the correct-
ness of the recovered pose information, we produce the
same motion on the workstation at the same time. Though
it is difficult in this case to estimate the perfomance figure of
the algorithm, an overall estimate of the usefulness of the
algorithm can be obtained.

X2.1. Calibration
A calibrated data point set for the face to be tracked is

needed in our experiment. Two methods can be used. In
the first approach, one can measure dirctly the three-
dimensional coordinates of the feature points on the face
with respect to a reference point, say the nose tip, The draw-
back of this approach is that careful measurements are
needed and that the process is intrusive. The second
approach uses the structure from mtion algorithm. We

Fig. 7. Sample run ot the nead tracking application: (a) initialization;

(b) rotation of the head and reconstructed pose.

used the second approach, following the algorithm by
Szeliski [171. An image sequence of the object is obtained
and the feature points of the model are selected and tracked
throughout the sequence to generate a batch of two-
dimensional image coordinates of these feature points.
The resulting data is input to the batch processing algorithm
which performs a nonlinear minimization (Levenberg-
Marquardt method). The algorithm will estimate the focal
length f, the model set {P,, i, 2,. . .,N} as well as the motion
parameters. This process usually requires much more time.
For the case of a total of 250 data points for a synthetic head
model, the total time needed is over 10 h on a SUN-Spare 10
workstation. In our real image experiment, only 12 points
are used. All points are selected on the criteria that they can
be tracked unambiguously throughout the sequence so as to
increase the accuracy of the recovered pose. We use four
points for the head boundary including ears, four points the
mouth and four points for each of the eyebrows.

5.2.2. Initialization
The user first clicks on the captured image with a mouse

to select the feature points. The selected feature points must
be the same as those taken in the calibration stage. These
selected feature points are then tracked by the normalized
correlation method to give coordinates in successive frames.
The correlation window is of size 5 X 5, whereas the search
window is of size 7 X 7. The point inside the search window

S.H. Or et al./lmage and Vision Computing 16 (1998) 353-362 361

with the highest correlation score is chosen as the feature
point location in the subsequent frame. For the first frame,

the captured point sets are used to estimate the proper pose
adjustment of our model set. The pose adjustment is nec-
cessary since the pose of the model point set obtained in the
calibration stage. However, according to our experience,
this discrepancy is minor in that our algorithm can still
maintain the tracking over a long period, say over 100
frames. Once the pose adjustment is completed, the pose

tracking procedure can be applied to the human object.

5.2.3. Tracking

Once the pose adjustment is completed, our algorithm
will generate the pose estimations in all subsequent frames.
The pose estimates are in the form of a rotation matrix and a
translation vector. We transform the rotation matrix into the
Euler angle format. This information will be used to control
a synthetic head model.3 The results are shown in Fig. 7.
Fig. 7(a) shows a snapshot during initialization. The user is
sitting right in front of the camera and the feature points on
the face are being selected. Once the initialization is per-
formed, the user is allowed to move freely within the view
ofthe camera. Fig. 7(b) shows another snapshot in which the
user is rotating his head to the right and tilting upward. It can
be seen that the synthetic face can produce visually the same
pose at the same time. Currently our system can achieve a
processing speed of around 12 frames/s for a 320 X 240
image size. The performance figures are obtained under
the condition of the tasks of capturing, feature tracking,
motion estimation and controlling of the synthetic character
all being performed on the same SGI Indy workstation.

For the first problem, one solution is to bootstrap the

algorithm itself after a number of frames. This is possible
since our algorithm has quite a large range of conver-
gence (approximately 40” for the rotation angles as
seen in Section 5.1). Another solution is to cross-check
the pose estimation result with two or more frames earlier
so as to minimize the error itself. The second problem
demands a further enhancement of our algorithm to handle
the occulsion problem, which is not too dificult due to the
model-based nature of our algorithm [23]. We are currently
working in this direction. When the above problems are
solved, we can produce a robust head tracking system. An
exciting application of head tracking is in low bit rate video
single compression.

7. Conclusion

An efficient pose estimation algorithm has been pre-
sented. By breaking down the pose estimation process into
two separate linear stages, the computation cost is signifi-
cantly reduced. A real time pose tracking system has been
produced. We also analyzed the input tolerance of our sys-
tem and found that the range of input variation in the
rotation angles should not exceed the range of 40” approxi-
mately for each angle. Tests on synthetic data as well as real
world head tracking have demonstrated the effectiveness of
our algorithm.

Appendix A Derivation of initial guess for improved
algorithm

6. Discussion

In the experiments on head tracking, we found out that
our algorithm can effectively recover the motion informa-
tion from the images. The main advantage of our algorithm
can effictively recover the motion information from the
images. The main advantage of our algorithm is that it is
computationally efficient. In addition, by performing the
fitting of the model set in three-dimensional object space
and not on the image plane, a larger range of convergence is
achieved which enables our algorithm to be more stable
with respect to different initial guesses. However, our algo-
rithm also has the following drawbacks. Firstly, due to the
fact that our algorithm is formulated under the situation of
two frames only; thus, the error in the estimation will be
accumulated in the subsequent frames and may lead to fail-
ure after a large number of frames. Moreover, in the current
formulation, the problem of occulsion is not being handled.
Finally, it is found that the recovered pose of the head will
slowly lose track when one or more of the correlated point
fails to give the correct movement.

Given (Pi} and (vi), we want to minimize the function
below to estalish the initial guess { di) :

O = ~ IIdivi - (Pi + T)II*
i=l

= f_ [divi - (Pi + T)‘[div; - (Pi + T)].

i= I

Applying partial differentiation to 0 with respect to di and
setting it to zero, we have:

a@
~ = 0 j di = V:(Pi + T).

I

(16)

Note that the above equation can be interpreted as: the opti-
mal depth di is obtained by orthogonally projecting the
translated point onto the projection ray. Similarly applying
partial differentiation to 0 with respect to T and setting it to
zero, we have:

ao
dT="*T=-

b,f_ (diVj_P') I .
r=l

(17)

3 The synthetic character is a public domain implementation of the facial The above equation can be interpreted as: the optimal trans-

animation work by Keith Waters [22] lation T is equal to the average distance between the original

362 S.H. Or et al./lmage and Vision Computing 16 (1998) 353-362

point set and the resulting point set. By substituting Eq. (16)
into Eq. (17), we get:

T = ~ ,~ (v:(P~ + T)vi - Pi)
r-l

= ~ ~ (v:P~v~ - Pi) + ~ ~ VITVi
r-l 1-l

= ~ ,~ [(viu:)Pi - Pi] + ~ ,~ [(ViV:)T].
1-l r-1

This implies that:

Writing Ai as I - ViV: we have:

(18)

References

[1] B.K.P. Horn, Robot Vision. MIT/McGraw-Hill, New York, 1986.

[2] A. Azarbayejani, A. Pentland, Recursive estimation of motion, struc-

ture and focal length, IEEE Trans. Pattern Anal. Machine Intell. 17 (6)

(1995) 562-575.

[3] T.S. Huang, A.N. Netravali, Motion and structure from feature corre-

spondence: a review, Proc. IEEE 82 (1994) 252-268.

[4] M. Fischler, M. Belles, Random sample consensus: A paradigm for

model fitting with applications to image analysis and automated car-

tography, Commun. ACM 24 (6) (1981) 381-395.

[5] Z. Zhang, 0. Faugeras, 3D Dynamic Scene Analysis, Springer, Berlin,

1992.

[6] R.Y. Tsai, A versatile camera calibration technique for high

accuracy 3D machine vision metrology using off-the-shelf TV cam-

eras and lenses, IEEE Trans. Robotics Automation 3 (4) (1987) 323-

344.

[7] D.G. Lowe, Fitting parametized three-dimensional models to images,

IEEE Trans. Pattern Anal. Machine Intell. 13 (5) (1991) 441-450.

[8] H. Li, P. Roivainen, R. Forcheimer, 3-D motion estimation in model-

based facial image coding, IEEE Trans. Pattern Anal. Machine Intell.

15 (6) (1993) 545-555.

[9] D.F. Dementhon, L.S. Davis, Model-based object pose in 25 lines of

code, Int. J. Comput. Vision 15 (1995) 123-141.
[IO] A. Gee, R. Cipolla, Determining the gaze of faces in images, Image

Vision Comput. 12 (10) (1994) 639-647.
[l l] S. Basu, I. Essa, A. Pentland, Motion regulization for model-based

head tracking. In: Proceedings of the 13th International Conference on

Pattern Regognition (ICPR96), 1996.

[12] T.J. Broida, R. Chellappa, Estimation of object motion parameters

from noisey images, IEEE Trans. Pattern Anal. Machine Intell. 8

(1) (1986) 90-99.
[13] T.J. Broida, Recursive 3-D motion estimation from a monocular

image sequence, IEEE Trans. Aerospace Electron. Syst. 26 (4)

(1990) 639-655.
[141 KS. Arun, T.S. Huang, SD. Blostein, Least-square fitting of two 3-D

point sets, IEEE Trans. Pattern Anal. Machine Intell. 9 (5) (1987)

698-700.
[151 Shinji Umeyama, Least-square estimation of transformation param-

eters between two point pattern, IEEE Trans. Pattern Anal. Machine

Intell. 13 (4) (1991) 376-380.
[16] D. Goryn, S. Hein, On the estimation of rigid body rotation from

noisey data, IEEE Trans. Pattern Anal. Machine Intell. 17 (12)

(1995) 1219-1220.
[17] R. Szeliski, S.B. Kang, Recovering 3D shape and motion from image

streams using non-linear least squares. Cambridge Research Labatory

Technical Report, 1983.
[18] J. Weng, N. Ahuja, T.S. Huang, Optimal motion and structure estima-

tion, IEEE Trans. Pattern Anal. Machine Intell. 15 (9) (1993) 864-

884.
[191 P. Wunsch, G. Hirzinger, Registration of CAD-models to images by

iterative inverse perspective matching, Proc. ICPR 96 (1996) 78-83.
[20] D.G. Lowe, Robust model-based motion tracking through the

integration of search and estimation, Int. J. Comput. Vision 8

(1992) 113-122.
[21] D.P. McReynolds, D.G. Lowe, Rigidity checking of 3D point corre-

spondences under perspective projection, IEEE Trans. Pattern Anal.

Machine Intell. 18 (12) (1996) 1174-1185.

[22] K. Waters, A muscle model for animating three-dimensional facial

expression, Comput. Graphics 21 (4) (1987) 17-24.

[23] D.B. Gennery. Visual tracking of known three-dimensional objects.

Intl. Journal of Comput. Vision, 8:243-270, 1992.

