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The Rules of Go

Capture Territory



Brute force search intractable:

1. Search space is huge

2. “Impossible” for computers 
to evaluate who is winning

Game tree complexity = bd

Why is Go hard for computers to play?







Convolutional neural network
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Exhaustive search



Monte-Carlo rollouts



Reducing depth with value network



Reducing depth with value network



Reducing breadth with policy network



Deep reinforcement learning in AlphaGo

Human expert
positions

Supervised Learning
policy network

Self-play data Value networkReinforcement Learning
policy network



Policy network: 12 layer convolutional neural network

Training data: 30M positions from human expert games (KGS 5+ dan)

Training algorithm: maximise likelihood by stochastic gradient descent

                              

 

Training time: 4 weeks on 50 GPUs using Google Cloud

Results: 57% accuracy on held out test data (state-of-the art was 44%)

Supervised learning of policy networks



Policy network: 12 layer convolutional neural network

Training data: games of self-play between policy network

Training algorithm: maximise wins z by policy gradient reinforcement learning

Training time: 1 week on 50 GPUs using Google Cloud

Results: 80% vs supervised learning. Raw network ~3 amateur dan. 

Reinforcement learning of policy networks



Value network: 12 layer convolutional neural network

Training data: 30 million games of self-play

Training algorithm: minimise MSE by stochastic gradient descent

Training time: 1 week on 50 GPUs using Google Cloud

Results: First strong position evaluation function - previously thought impossible

Reinforcement learning of value networks





Monte-Carlo tree search in AlphaGo: selection

P    prior probability
Q    action value



Monte-Carlo tree search in AlphaGo: expansion
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Monte-Carlo tree search in AlphaGo: evaluation
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Monte-Carlo tree search in AlphaGo: rollout
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Monte-Carlo tree search in AlphaGo: backup
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Deep Blue

Handcrafted chess knowledge

Alpha-beta search guided by 

heuristic evaluation function

200 million positions / second

AlphaGo

Knowledge learned from expert 

games and self-play

Monte-Carlo search guided by 

policy and value networks

60,000 positions / second



Nature AlphaGo Seoul AlphaGo



Evaluating Nature AlphaGo against computers
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Evaluating Nature AlphaGo against humans

Fan Hui (2p): European Champion 2013 - 2016

Match was played in October 2015

AlphaGo won the match 5-0

First program ever to beat a professional

on a full size 19x19 in an even game



Deep Reinforcement Learning (as Nature AlphaGo)

● Improved value network

● Improved policy network

● Improved search

● Improved hardware (TPU vs GPU)

Seoul AlphaGo



Evaluating Seoul AlphaGo against computers
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Evaluating Seoul AlphaGo against humans

Lee Sedol (9p): winner of 18 world titles

Match was played in Seoul, March 2016

AlphaGo won the match 4-1





AlphaGo vs Lee Sedol: Game 1



AlphaGo vs Lee Sedol: Game 2



AlphaGo vs Lee Sedol: Game 3



AlphaGo vs Lee Sedol: Game 4



AlphaGo vs Lee Sedol: Game 5 



Deep Reinforcement Learning: Beyond AlphaGo

http://www.youtube.com/watch?v=U_WY2qxUqHQ
http://www.youtube.com/watch?v=nMR5mjCFZCw
http://www.youtube.com/watch?v=0xo1Ldx3L5Q


What’s Next?



Team

David Silver1*, Aja Huang1*, Chris J. Maddison1, Arthur Guez1, Laurent Sifre1, George van den Driessche1,
Julian Schrittwieser1, Ioannis Antonoglou1, , Veda Panneershelvam1, Marc Lanctot1, Sander Dieleman1, Dominik Grewe1
John Nham2, Nal Kalchbrenner1, Ilya Sutskever2, Timothy Lillicrap1, Madeleine Leach1, Koray Kavukcuoglu1,
Thore Graepel1 & Demis Hassabis1

With thanks to: Lucas Baker, David Szepesvari, Malcolm Reynolds, Ziyu Wang, 
Nando De Freitas, Mike Johnson, Ilya Sutskever, Jeff Dean, Mike Marty, Sanjay Ghemawat.
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Demis Hassabis


