
Hidden Factors and Hidden Topics:
Understanding Rating Dimensions with Review Text

Julian McAuley
Stanford University

jmcauley@cs.stanford.edu

Jure Leskovec
Stanford University

jure@cs.stanford.edu

ABSTRACT
In order to recommend products to users we must ultimately pre-
dict how a user will respond to a new product. To do so we must
uncover the implicit tastes of each user as well as the properties of
each product. For example, in order to predict whether a user will
enjoy Harry Potter, it helps to identify that the book is about wiz-
ards, as well as the user’s level of interest in wizardry. User feed-
back is required to discover these latent product and user dimen-
sions. Such feedback often comes in the form of a numeric rating
accompanied by review text. However, traditional methods often
discard review text, which makes user and product latent dimen-
sions difficult to interpret, since they ignore the very text that justi-
fies a user’s rating. In this paper, we aim to combine latent rating
dimensions (such as those of latent-factor recommender systems)
with latent review topics (such as those learned by topic models
like LDA). Our approach has several advantages. Firstly, we ob-
tain highly interpretable textual labels for latent rating dimensions,
which helps us to ‘justify’ ratings with text. Secondly, our approach
more accurately predicts product ratings by harnessing the informa-
tion present in review text; this is especially true for new products
and users, who may have too few ratings to model their latent fac-
tors, yet may still provide substantial information from the text of
even a single review. Thirdly, our discovered topics can be used
to facilitate other tasks such as automated genre discovery, and to
identify useful and representative reviews.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information Search
and Retrieval

Keywords
recommender systems, topic models

1. INTRODUCTION
Recommender systems have transformed the way users discover

and evaluate products on the web. Whenever users assess products,
there is a need to model how they made their assessment, either
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
RecSys’13, October 12–16, 2013, Hong Kong, China.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2409-0/13/10 ...$15.00.
http://dx.doi.org/10.1145/2507157.2507163.

to suggest new products they might enjoy [19], to summarize the
important points in their reviews [13], or to identify other users
who may share similar opinions [24]. Such tasks have been studied
across a variety of domains, from hotel reviews [6] to beer [21].

To model how users evaluate products, we must understand the
hidden dimensions, or facets, of their opinions. For example, to
understand why two users agree when reviewing the movie Seven
Samurai, yet disagree when reviewing Casablanca, it helps to know
that these films belong to different genres; these users may have
similar preferences toward action movies, but opposite preferences
for romantic dramas.

Modeling these hidden factors is key to obtaining state-of-the-art
performance on product recommendation tasks [2]. Crucially, rec-
ommender systems rely on human feedback, which typically comes
in the form of a plain-text review and a numeric score (such as a star
rating). This type of feedback is used to train machine learning al-
gorithms, whose goal is to predict the scores that users will give to
items that they have not yet reviewed [12].

In spite of the wealth of research on modeling ratings, the other
form of feedback present on review websites—namely, the reviews
themselves—is typically ignored. In our opinion, ignoring this rich
source of information is a major shortcoming of existing work on
recommender systems. Indeed, if our goal is to understand (rather
than merely predict) how users rate products, we ought to rely on
reviews, whose very purpose is for users to explain why they rated a
product the way they did. As we show later, ‘understanding’ these
factors helps us to justify users’ reviews, and can aid us in tasks
like genre discovery and identification of informative reviews.

Thus our goal in this paper is to develop statistical models that
combine latent dimensions in rating data with topics in review text.
This leads to natural interpretations of rating dimensions, for in-
stance we automatically discover that movie ratings are divided
along topics like genre, while beer ratings are divided along topics
like beer style. Rather than performing post-hoc analysis to make
this determination, we discover both rating dimensions and review
topics in a single learning stage, using an objective that combines
the accuracy of rating prediction (in terms of the mean squared er-
ror) with the likelihood of the review corpus (using a topic model).
We do this using a transform that aligns latent rating and review
terms, so that both are determined by a single parameter. Essen-
tially, the text likelihood acts as a ‘regulariser’ for rating prediction,
ensuring that parameters that are good at predicting ratings are also
likely in terms of the review text.

Not only does our model help us to ‘explain’ users’ review scores
by better understanding rating dimensions, but it also leads to better
predictions of the ratings themselves. Traditional models (based
on ratings alone) are difficult to apply to new users and products,
that have too few ratings to model their many latent dimensions or

factors [14]. In contrast, our model allows us to accurately uncover
such factors from even a single review.

Furthermore, by understanding how hidden rating dimensions
relate to hidden review dimensions, our models facilitate a variety
of novel tasks. For instance, we apply our models to automatically
discover product categories, or ‘genres’, that explain the variation
present in both ratings and reviews. We also apply our models to
find ‘informative’ reviews, whose text is good at explaining the fac-
tors that contributed to a user’s rating.

1.1 Contributions and Findings
Our main contribution is to develop statistical models that com-

bine latent dimensions in rating data with topics in review text. In
practice, we claim the following benefits over existing approaches.

Firstly, the topics we obtain readily explain the variation present
in ratings and reviews. For example, we discover that beer style
(e.g. light versus dark) explains the variation present in beer rat-
ing and review data; platform (e.g. console versus PC) explains the
variation present in video game data; country (e.g. Italian versus
Mexican) explains the variation present in restaurant data, etc.

Secondly, combining ratings with review text allows us to predict
ratings more accurately than approaches that consider either of the
two sources of data in isolation. This is especially true for ‘new’
products: product factors cannot be fit from only a few ratings,
though we can accurately model them from only a few reviews. We
improve upon state-of-the-art models based on matrix factorization
and LDA by 5-10% in terms of the mean squared error.

Thirdly, we can use our models to facilitate novel tasks. We
apply our models to the task of automatic genre discovery, where
they are an order of magnitude more accurate than methods based
on ratings or reviews alone. We also apply our models to the task
of identifying informative reviews; we discover that those reviews
whose text best ‘explains’ the hidden factors of a product are rated
as being ‘useful’ by human annotators on sites like yelp.com.

Last, we apply our models to novel corpora consisting of over
forty million reviews, from nine million users and three million
products. To our knowledge, this is the largest-scale study of pub-
lic review data conducted to date. Our methods readily scale to
datasets of this size.

1.2 Further Related Work
Although many works have studied ratings and review text in

isolation, few works attempt to combine the two sources of infor-
mation. The most similar line of work is perhaps that of aspect
discovery [6, 25, 29]. Aspects generally refer to features that are
relevant to all products. Individual users may assign such aspects
different weights when determining their overall score; for example
a spendthrift hotel reviewer might assign a low weight to ‘price’ but
a high weight to ‘service’, thus explaining why their overall rating
differs from a miserly reviewer who is only interested in price [6].

Though our work shares similarities with such studies, the top-
ics we discover are not similar to aspects. ‘Aspects’ explain di-
mensions along which ratings and reviews vary, which is also our
goal. Yet while aspects are dimensions common to every individual
review, they may not explain the variation present across entire re-
view corpora. For instance, although one may learn that individual
users assign different weights to ‘smell’ and ‘taste’ when reviewing
beers [21], this fails to explain why one user may love the smell of
a beer, while another believes the same beer smells terrible.

An early work that combines review text and ratings is [6]. They
observe that reviews often discuss multiple aspects, and that a user’s
rating will depend on the importance that they ascribe to each as-
pect. They find that these dimensions can be recovered from review

Symbol Description

ru,i rating of item i by user u
du,i review (‘document’) of item i by user u
rec(u, i) prediction of the rating for item i by user u
α global offset term
βu bias parameter for user u
βi bias parameter for item i
γu K-dimensional latent features for user u
γi K-dimensional latent features for item i
K number of latent dimensions/topics
θi K-dimensional topic distribution for item i
φk word distribution for topic k
ψk unnormalized word distribution for topic k
wu,i,j j th word of user u’s review of item i
zu,i,j topic for the j th word of user u’s review of item i
Nd number of words in document d

Table 1: Notation.

text, and that this information can be harnessed for rating predic-
tion. However, their method differs from ours in that their ‘aspects’
are provided by human annotators (e.g. they use domain knowledge
to determine that the ‘aspects’ of a restaurant are price, service,
etc.) for each of which a sentiment classifier must be trained.

We briefly mention works where aspects are explicit, i.e., where
users rate individual features of a product in addition to their overall
rating [1, 9, 17, 25], though this work differs from ours in that it re-
quires multiple ratings per review. We also briefly mention orthogo-
nal work that studies ‘interpretations’ of ratings using sources other
than reviews, e.g. information from a user’s social network [24].

A few works have considered the task of automatically identi-
fying review dimensions. Early works discover such dimensions
based on frequently occurring noun phrases [7], or more sophisti-
cated grammatical rules [23]. More recent works attempt to address
this problem in an unsupervised manner [5, 26, 30], however these
sophisticated methods are limited to datasets with only a few thou-
sand reviews. Furthermore, although related to our work, the goal
of such studies is typically summarization [5, 13, 18], or feature
discovery [23], rather than rating prediction per se.

Beyond product reviews, modeling the dimensions of free-text is
an expansive topic. The goal of Latent Dirichlet Allocation (LDA)
[4], like ours, is to discover hidden dimensions in text. Such models
have been applied in recommendation settings, e.g. to recommend
scientific articles in citation networks [28]. Although related, such
approaches differ from ours in that the dimensions they discover are
not necessarily correlated with ratings. Variants of LDA have been
proposed whose dimensions are related to output variables (such
as ratings), for example supervised topic models [3]. This is but
one of a broad class of works on sentiment analysis [10,15], whose
goal is to model numeric scores from text.

In spite of the similarity between our work and sentiment anal-
ysis, there is one critical difference: the goal of such methods—at
test time—is to predict sentiment from text. In contrast, in rec-
ommendation settings such as our own, our goal at test time is to
predict ratings of products that users have not reviewed.

2. MODELS OF RATINGS AND REVIEWS
We begin by briefly describing the ‘standard’ models for latent

factor recommender systems and Latent Dirichlet Allocation, be-
fore defining our own model. The notation we shall use throughout
the paper is defined in Table 1.

Latent-Factor Recommender Systems
The ‘standard’ latent-factor model [11] predicts ratings ru,i for a
user u and item i according to

rec(u, i) = α+ βu + βi + γu · γi, (1)

where α is an offset parameter, βu and βi are user and item biases,
and γu and γi are K-dimensional user and item factors (respec-
tively). Intuitively, γi can be thought of as the ‘properties’ of the
product i, while γu can be thought of as a user’s ‘preferences’ to-
wards those properties. Given a training corpus of ratings T , the
parameters Θ = {α, βu, βi, γu, γi} are typically chosen so as to
minimize the Mean Squared Error (MSE), i.e.,

Θ̂ = argmin
Θ

1

|T |
∑

ru,i∈T

(rec(u, i)− ru,i)2 + λΩ(Θ), (2)

where Ω(Θ) is a regulariser that penalizes ‘complex’ models, for
example the `2 norm ‖γ‖22. A variety of methods exist to optimize
(eq. 1), for instance alternating least-squares, and gradient-based
methods [11].

Latent Dirichlet Allocation
Unlike latent factor models, which uncover hidden dimensions in
review ratings, Latent Dirichlet Allocation (LDA) uncovers hidden
dimensions in review text. LDA associates each document d ∈ D
with a K-dimensional topic distribution θd (i.e., a stochastic vec-
tor), which encodes the fraction of words in d that discuss each of
theK topics. That is, words in the document d discuss topic k with
probability θd,k.

Each topic k also has an associated word distribution, φk, which
encodes the probability that a particular word is used for that topic.
Finally, the topic distributions themselves (θd) are assumed to be
drawn from a Dirichlet distribution.

The final model includes word distributions for each topic φk,
topic distributions for each document θd, and topic assignments for
each word zd,j . Parameters Φ = {θ, φ} and topic assignments
z are traditionally updated via sampling [4]. The likelihood of a
particular text corpus T (given the word distribution φ and topic
assignments for each word) is then

p(T |θ, φ, z) =
∏
d∈T

Nd∏
j=1

θd,zd,jφzd,j ,wd,j , (3)

where we are multiplying over all documents in the corpus, and all
words in each document. The two terms in the product are the like-
lihood of seeing these particular topics (θd,zd,j), and the likelihood
of seeing these particular words for this topic (φzd,j ,wd,j).

2.1 The HFT Model
Our model, which we title ‘Hidden Factors as Topics’, or HFT

for short, attempts to combine these two ideas. Unlike supervised
topic models (for example), that learn topics that are correlated with
an output variable [3], HFT discovers topics that are correlated with
the ‘hidden factors’ of products and users, γi and γu.

Topic models operate on documents, so first we must define the
concept of a ‘document’ in HFT. We shall derive documents from
review text, so an obvious choice is to define each review as a doc-
ument du,i (for user u and item i). Alternately, we could define a
document di as the set of all reviews of an item i, or du as the set
of all reviews by a user u.

Although we will later consider other alternatives, for the mo-
ment, let us consider the set of all reviews of a particular item i as
a document di. Our reasoning is that when users review products,

they tend to discuss properties of the product more than they dis-
cuss their own personal preferences; as we see in Section 4, model-
ing documents in this way leads to the best performance in practice.

With documents defined in this way, for each item i we learn a
topic distribution θi (a stochastic vector, i.e., θi ∈ ∆K). This vec-
tor encodes the extent to which each ofK topics is discussed across
all reviews for that product. Note that we implicitly assume that the
number of rating factors is the same as the number of review topics.

Given our motivation, we do not wish to learn rating parameters
γi and review parameters θi independently. Rather, we want the
two to be linked. Intuitively, rating ‘factors’ γi can be thought of as
properties that a product possesses; users will then give the product
a high rating if they ‘like’ these properties according to γu. On the
other hand, ‘topics’ θi define particular distributions of words that
appear in reviews of a product. By linking the two, we hope that if a
product exhibits a certain property (high γi,k), this will correspond
to a particular topic being discussed (high θi,k).

However, such a transformation is non-trivial, for example, we
cannot simply define the two to be equal. Critically, θi is a stochas-
tic vector, i.e., each of its entries describes a probability that a topic
is discussed, while rating factors γi can take any value in RK .

If we simply enforced that γi was also stochastic, we would lose
expressive power in our rating model, yet if we relaxed the require-
ment that θi was stochastic, we would lose the probabilistic inter-
pretation of review topics (which is crucial for sampling). In short,
we desire a transform that allows arbitrary γi ∈ RK , while enforc-
ing θi ∈ ∆K (i.e.,

∑
k θik = 1). We also desire a transform that

is monotonic, i.e., it should preserve orderings so that the largest
values of γi should also be the largest values of θi. Therefore to
link the two we define the transformation

θi,k =
exp(κγi,k)∑
k′ exp(κγi,k′)

. (4)

Here the exponent in the denominator enforces that each θi,k is
positive, and the numerator enforces that

∑
k θi,k = 1. In this

way γi acts as a natural parameter for the multinomial defined by
θi [27]. We introduce the parameter κ (which we fit during learn-
ing) to control the ‘peakiness’ of the transformation. As κ → ∞,
θi will approach a unit vector that takes the value 1 only for the
largest index of γi; as κ → 0, θi approaches a uniform distribu-
tion. Intuitively, large κ means that users only discuss the most
important topic, while small κ means that users discuss all topics
evenly.

Note that in practice, we do not fit both γ and θ, since one
uniquely defines the other (in practice we fit only γ). For conve-
nience, we shall still use γi when referring to rating parameters,
and θi when referring to topics.

Our final model is based on the idea that the factors γi should
accurately model users’ ratings (as in eq. 1), but also that the review
corpus should be ‘likely’ when these factors are transformed into
topics (as in eq. 3). To achieve this, we define the objective of a
corpus T (ratings and reviews) as

f(T |Θ,Φ, κ, z) =
∑

ru,i∈T

(rec(u, i)− ru,i)2︸ ︷︷ ︸
rating error

−µl(T |θ, φ, z)︸ ︷︷ ︸
corpus likelihood

.

(5)
Recall that Θ and Φ are rating and topic parameters (respectively),
κ controls the transform (eq. 4), and z is the set of topic assign-
ments for each word in the corpus T . The first part of this equation
is the error of the predicted ratings as in (eq. 1), while the second
part is the (log) likelihood of the review corpus as in (eq. 3). µ is a
hyperparameter that trades-off the importance of these two effects.

Note that the presence of the corpus likelihood in (eq. 5) is criti-
cal, even if our ultimate goal is only to predict ratings. Essentially,
the corpus likelihood acts as a regulariser for the rating prediction
model, replacing the regulariser Ω from (eq. 1). When few ratings
are available for a product i (or user u), the regulariser Ω of (eq. 1)
has the effect of pushing γi and γu toward zero. What this means
in practice is that the standard model of (eq. 1) reduces to an offset
and bias term for products and users that have few ratings.

Alternately, HFT can accurately predict product factors γi even
for items with only a few reviews; or, for users with few reviews
if we model documents at the level of users. In essence, a small
number of reviews tells us much more about a product or a user
than we can possibly glean from the same number of ratings.

In the next section, we describe in detail how we fit the parame-
ters Θ and Φ of the HFT model.

3. FITTING THE HFT MODEL
Our goal is to simultaneously optimize the parameters associated

with ratings Θ = {α, βu, βi, γu, γi} and the parameters associated
with topics Φ = {θ, φ}. That is, given our review and rating corpus
T our objective is to find

argmin
Θ,Φ,κ,z

f(T |Θ,Φ, κ, z). (6)

Recall that θ and γ are linked through (eq. 4), so that both Θ and
Φ depend on γ. So, a change in γ modifies both the rating error
and the corpus likelihood in (eq. 5). Thus we cannot optimize Θ
and Φ independently.

Typically, recommender parameters like those in (eq. 1) are fit by
gradient descent, while those of (eq. 3) would be found by Gibbs
sampling [4]. Since HFT consists of a combination of these two
parts, we use a procedure that alternates between the two steps.

We define a stochastic optimization procedure consisting of the
following two steps, which we describe in more detail below:

update Θ(t),Φ(t), κ(t) = argmin
Θ,Φ,κ

f(T |Θ,Φ, κ, z(t−1)) (7)

sample z(t)
d,j with probability p(z(t)

d,j = k) = φ
(t)
k,wd,j

. (8)

In the first of these steps (eq. 7) topic assignments for each word
(our latent variable z) are fixed. We then fit the remaining terms,
Θ, Φ, and κ, via gradient descent. We use L-BFGS, a quasi-
Newton method for non-linear optimization of problems with many
variables [22]. This is similar to ‘standard’ gradient-based meth-
ods [11], but for the presence of the additional terms arising from
(eqs. 3 and 4), whose gradients are easily computed.

The second step (eq. 8) iterates through all documents d and
all word positions j and updates their topic assignments. As with
LDA, we assign each word to a topic (an integer between 1 and K)
randomly, with probability proportional to the likelihood of that
topic occurring with that word. Recalling that each item i has a K-
dimensional topic distribution θi, for each word wu,i,j (in user u’s
review of item i), we set zu,i,j = k with probability proportional
to θi,kφk,wu,i,j . This expression is the probability of the topic k
being used for this product (θi,k), multiplied by the probability of
the particular word wu,i,j being used for the topic k (φk,wu,i,j).

To ensure that φk (the word distribution for topic k) is a stochas-
tic vector (

∑
w φk,w = 1), we introduce an additional variable ψ

and define

φk,w =
exp(ψk,w)∑
w′ exp(ψk,w′)

. (9)

As with (eq. 4), we can then optimize ψk ∈ RD to determine
φk ∈ ∆D (where D is the size of the dictionary, i.e., the num-

ber of unique words in the corpus). That is, ψk ∈ RD acts as a
natural parameter for the multinomial φk ∈ ∆D .

The above procedure (eq. 8) is analogous to updating topic as-
signments using LDA. The critical difference is that in HFT, topic
proportions θ are not sampled from a Dirichlet distribution, but in-
stead are determined based on the value of Θt found during the pre-
vious step, via (eq. 4). What this means in practice is that only a sin-
gle pass through the corpus is required to update z. We only sample
new topic assignments z once Θt has been updated by (eq. 7).

Finally, the two steps (eqs. 7 and 8) are repeated until conver-
gence, i.e., until the change in Θ and Φ between iterations is suffi-
ciently small. Although our objective (like other ‘standard’ recom-
mender system objectives) is certainly non-convex [12] and subject
to local minima, in our experience it yields similar topics (though
possibly permuted) when restarting with different initial conditions.

4. EXPERIMENTS
In this section, we show that:
1. Our model leads to more accurate predictions (in terms of the

MSE) on standard recommendation tasks (Sec. 4.4)
2. HFT allows us to address the ‘cold-start’ problem. HFT’s

ability to fuse review text and rating information allows for
more accurate recommendations for products with few rat-
ings (Sec. 4.5)

3. HFT allows us to automatically discover product categories
or ‘genres’ (Sec. 4.7)

4. HFT can be used to automatically identify representative re-
views, which are considered ‘useful’ by human annotators
(Sec. 4.8)

4.1 Datasets
We collect review data from a variety of public sources. Our

primary source of data is Amazon, from which we obtain approx-
imately 35 million reviews. To obtain this data, we started with a
list of 75 million asin-like strings (Amazon product identifiers) ob-
tained from the Internet Archive;1 around 2.5 million of them had at
least one review. We further divide this dataset into 26 parts based
on the top-level category of each product (e.g. books, movies). This
dataset is a superset of existing publicly-available Amazon datasets,
such as those used in [8, 16, 19] and [21].

We also consider 6 million beer and wine reviews previously
studied in [19, 21], though in addition we include pub data from
ratebeer.com, and we consider restaurant data from citysearch.com,
previously used in [6]. Finally, we include 220 thousand reviews
from the recently proposed Yelp Dataset Challenge.2

A summary of the data we obtain is shown in Table 2. In total,
we obtain 42 million reviews, from 10 million users and 3 million
items. Our datasets span a period of 18 years and contain a total of
5.1 billion words. Data and code are available online.3

4.2 Baselines
We compare HFT to the following baselines:

(a) Offset only: Here we simply fit an offset term (α in eq. 1), by
taking the average across all training ratings. In terms of the MSE,
this is the best possible constant predictor.
(b) Latent factor recommender system: This is the ‘standard’
latent factor model, i.e., the model of (eq. 1). We fit all parameters
using L-BFGS [22].

1http://archive.org/details/asin_listing/
2https://www.yelp.com/dataset_challenge/
3http://snap.stanford.edu/data/

http://archive.org/details/asin_listing/
https://www.yelp.com/dataset_challenge/
http://snap.stanford.edu/data/

dataset #users #items #reviews #words av. words since

Amazon (total) 9,505,488 2,490,432 35,276,583 4.63B 90.90 Jun. 1995
Pubs (Ratebeer) 13,957 22,418 140,359 9.89M 70.52 Jan. 2004
Beer (Ratebeer) 29,265 110,369 2,924,163 154.01M 52.67 Apr. 2000
Pubs (Beeradvocate) 15,268 16,112 112,184 21.85M 194.79 Mar. 2002
Beer (Beeradvocate) 33,388 66,055 1,586,614 195.31M 123.09 Aug. 1996
Wine (Cellartracker) 35,235 412,666 1,569,655 60.02M 38.24
Citysearch 5,529 32,365 53,122 3.94M 74.18 May. 2002
Yelp Phoenix 45,981 11,537 229,907 29.88M 129.98 Mar. 2005
Total 9,684,111 3,161,954 41,892,587 5.10B

Table 2: Dataset statistics (number of users; number of items; number of reviews; total number of words; average number of words
per review, time of oldest review).

(a) (b) (c) (d) (e) improvement
dataset offset +lat. factors LDA HFT (θ ∼ γu) HFT (θ ∼ γi) e vs. b e vs. c

Amazon (average) 1.774 (0.00) 1.423 (0.00) 1.410 (0.00) 1.329 (0.00) 1.325 (0.00)* 6.89% 6.03%
Pubs (Ratebeer) 0.699 (0.01) 0.477 (0.00) 0.483 (0.01) 0.456 (0.00)* 0.457 (0.00) 4.13% 5.44%
Beer (Ratebeer) 0.701 (0.00) 0.306 (0.00) 0.306 (0.00) 0.301 (0.00)* 0.302 (0.00) 1.18% 1.24%
Pubs (Beeradvocate) 0.440 (0.00) 0.331 (0.00) 0.332 (0.00) 0.311 (0.00)* 0.311 (0.00) 6.16% 6.31%
Beer (Beeradvocate) 0.521 (0.00) 0.371 (0.00) 0.372 (0.00) 0.367 (0.00) 0.366 (0.00)* 1.50% 1.61%
Wine (Cellartracker) 0.043 (0.00) 0.029 (0.00) 0.029 (0.00) 0.028 (0.00) 0.027 (0.00)* 4.84% 4.03%
Citysearch 2.022 (0.04) 1.873 (0.03) 1.875 (0.03) 1.728 (0.03)* 1.731 (0.03) 7.56% 7.66%
Yelp Phoenix 1.488 (0.01) 1.272 (0.01) 1.282 (0.01) 1.225 (0.01) 1.224 (0.01)* 3.78% 4.53%

Average MSE 1.577 1.262 1.253 1.181 1.178 6.70% 5.98%
Average MSE with K = 10 1.577 1.260 1.253 1.180 1.176 6.64% 6.11%

Table 3: Results in terms of the Mean Squared Error for K = 5 (the best performing model on each dataset is starred; the standard
error is shown in parentheses). Due to the large size of our datasets, all reported improvements are significant at the 1% level or
better. HFT is shown with topics tied to user parameters (column d), and with topics tied to product parameters (column e).

(c) Product topics learned using LDA: Finally, as a baseline that
combines text with product features, we consider Latent Dirichlet
Allocation [4]. By itself, LDA learns a set of topics and topic pro-
portions (stochastic vectors) for each document. By treating each
‘document’ as the set of reviews for a particular product, LDA gen-
erates a stochastic vector per product (θi), which we use to set γi.
With γi fixed, we then fit α, βu, βi, and γu using L-BFGS. In other
words, we fit a ‘standard’ recommender system, except that γi is set
using the per-document topic scores produced by LDA. Like HFT,
this baseline benefits from review text at training time, but unlike
HFT its topics are not chosen so as to explain variation in ratings.

We compare these baselines to two versions of HFT:
(d) HFT, user topics In this version of HFT, topics in review text
are associated with user parameters γu.
(e) HFT, item topics In this version of HFT, topics in review text
are associated with item parameters γi.

4.3 Evaluation Procedure
We randomly subdivide each of the datasets in Table 2 into train-

ing, validation, and test sets. We use 80% of each dataset for train-
ing, up to a maximum of 2 million reviews. The remaining data is
evenly split between validation and test sets. Offset and bias terms
α, βu, and βi are initialized by averaging ratings and residuals;
other parameters are initialized uniformly at random. Parameters
for all models are fit using L-BFGS, which we run for 2,500 it-
erations. After every 50 iterations, topic assignments are updated
(for HFT), and the Mean Squared Error (MSE) is computed. We
report the MSE (on the test set) for the model whose error on the
validation set is lowest.

Experiments were run on commodity machines with 32 cores
and 64gb of memory. Our largest dataset fits on a single machine,
and our update equations (eqs. 7 and 8) are naïvely parallelizable.
Using L-BFGS on Beeradvocate data (for example), our algorithm
required 30 minutes to fit, compared to 11 minutes for a ‘standard’
latent-factor recommender system. Our largest model (Amazon
books) required around one day to fit. Although our optimization
procedure yields local optima, we observed less than 3% deviation
in MSE and energy across ten random initializations.

4.4 Rating Prediction
Results in terms of the Mean Squared Error are shown in Table

3. HFT achieves the best performance on 30 of the 33 datasets we
consider (columns d and e). Due to space constraints, we only show
average results across the 26 Amazon product categories.4

On average, across all datasets with K = 5 topics, a latent fac-
tor model achieves an MSE of 1.262; latent dirichlet allocation
achieves a similar MSE of 1.253. HFT (with item topics) achieves
on average an MSE of 1.178. Increasing the number of topics
to K = 10 improves the performance of all models by a small
amount, to 1.262 (latent factor model), 1.253 (LDA), and 1.176
(HFT). With K = 10 HFT achieves the best performance on 32
out of 33 datasets.

On several categories, such as ‘clothing’ and ‘shoes’, we gain
improvements of up to 20% over state-of-the-art methods. Ar-
guably, these categories where HFT is the best performing are the
most ‘subjective’; for example, if a user dislikes the style of a shirt,
or the size of a shoe, they are arguably revealing as much about
4Refer to our extended version for complete tables [20].

themselves as they are about the product. By using review text,
HFT is better able to ‘tease apart’ the objective qualities of a prod-
uct and the subjective opinion of the reviewer.

It is worth briefly addressing the fact that we obtain only small
benefits with K > 10 topics, contrary to established wisdom that
traditional latent-factor models often use many more [12]. We note
that while there may be many factors that influence a user’s rating,
only a few of these factors may be discussed in a typical review.
A natural extension of HFT would be to augment it with additional
latent factors, some of which are not constrained to be related to
review text.

Modeling User Features with Text
We have primarily focused on how HFT can be used to align prod-
uct features γi with review topics θi. However, it can also discover
topics associated with users. This simply means treating the set of
all reviews by a particular user u as a document, with an associated
topic vector θu; HFT then associates γu with θu as in (eq. 4).

Results for HFT, trained to model user features with text, are
shown in Table 3 (column d). Both models exhibit similar per-
formance; their MSEs differ by less than 1%. A few individual
datasets show greater variation, e.g. item features are more infor-
mative in the ‘music’ category, while user features are more infor-
mative in the ‘office’ category (see our extended version [20]).

This high level of similarity indicates that there is not a sub-
stantial difference between user and product topics. This seems
surprising in light of the fact that our product topics tend to cor-
respond with product categories (as we show later); we would not
necessarily expect product categories to be similar to user cate-
gories. However a simple explanation is as follows: users do not
review all products with the same likelihood, but rather they have
a preference towards certain categories. Thus, while a ‘dark beer’
topic emerges from reviews of dark beers, a ‘dark beer’ topic also
emerges from users who preferentially review dark beers. In both
cases, the topics we discover are qualitatively similar.

4.5 Recommending New Products
The ‘cold-start’ problem is a common issue in recommender sys-

tem. In particular, when a product or a user is new and one does
not have enough rating data available, it is very hard to train a rec-
ommender system and make predictions.

In particular, with latent factor recommender systems, as with
HFT, each user and product is associated with K + 1 parameters
(K-dimensional latent factors and a bias term). As a consequence,
when given only a few ratings for a particular user u or product
i (e.g. fewer than K ratings), a latent factor recommender system
cannot possibly estimate γu or γi accurately due to lack of data.
The presence of the regulariser Ω(Θ) in (eq. 1) pushes γu and γi
towards zero in such cases, meaning that such users and products
are modeled using only their bias terms.

However, review text provides significant additional information
and our hope is that by including review text the relationship be-
tween products and ratings can be more accurately modeled. Even
a single review can tell us many of a product’s properties, such as
its genre. Our hypothesis is that when training data for a product is
scarce (e.g. when a new product appears in the corpus), the benefit
gained from using review text will be greatest.

In Figure 1 we compare the amount of training data (i.e., the
number of training reviews available for a particular product, x-
axis) to the improvement gained by using HFT (y-axis). Specif-
ically, we report the MSE of a latent-factor recommender system
minus the MSE of HFT; thus a positive value indicates that HFT
has better performance. Results are shown for K = 5 on our

three largest datasets (Amazon books, movies, and music). Figure
1 (left) shows the absolute improvement in MSE when using HFT
compared to a latent factor recommender system. Notice that our
model gains significant improvement when training data is partic-
ularly scarce. The improvement on movie data is the largest, while
for books the ‘standard’ model is on par with HFT once ratings are
abundant. Similar results are obtained for new users.

4.6 Qualitative Analysis
Some of the topics discovered by HFT are shown in Table 4.

Topics are shown with K = 5 for beer, musical instruments, video
game, and clothing data, and for K = 10 for Yelp data. We
find that the most common words (in all topics) are stop words
(‘the’/‘and’/‘it’ etc.), so to visualize each topic, we first compute
averages across all topics for each word w: bw = 1

K

∑
k ψk,w.

This generates a ‘background’ distribution that includes words that
are common to all topics. Subtracting this value from ψk,w gives us
topics with common words and stop words removed. These values
(i.e., ψk,w − bw) are shown in Table 4. Note that we show all K
topics, i.e., none are hand-selected or excluded.

The topics we discover are clean and easy to interpret. Discov-
ered topics are similar to genres, or categories of products. For in-
stance, beer topics include pale ales, lambics (sour Belgian beers),
dark beers, and wheat beers, with an additional topic describing
spices. From a modeling perspective, there is a simple explana-
tion as to why HFT discovers ‘genre-like’ topics. Firstly, users are
likely to rate products of the same genre similarly, so separating
products into genres explains much of the variation in rating data.
Secondly, different language is used to describe products from dif-
ferent genres, so genres also explain much of the variation in review
data. As we see in the next section, if our goal is to discover genres,
combining these two sources of data (ratings and reviews) leads to
much better performance than using either in isolation.

4.7 Genre Discovery
We noted that the ‘topics’ discovered by HFT are similar to prod-

uct ‘categories’, or ‘genres’. Now, we confirm this quantitatively,
and investigate the possibility of using HFT to automatically dis-
cover such categories. For brevity we focus on the Yelp Phoenix
dataset, which contains detailed product category information.

Each of the models compared in the previous section outputs
a K-dimensional vector per product, where K is the number of
latent product/user dimensions (θi in the case of LDA, γi in the
case of the latent factor model and HFT). We define the category of
a product, which we denote ci, to be the latent dimension with the
highest weight, i.e.,

ci = argmax
k

γi,k (10)

(or argmaxk θi,k for LDA). Thus each product has a ‘category’
between 1 and K. We then compute the best alignment between
these K categories and the K most popular (i.e., most frequently
occurring) categories in the Yelp dataset. We denote by Ck the set
of products whose predicted category is k (i.e., {i|ci = k}), and by
C∗k the set of products whose true category is k. The score of the
optimal correspondence is then

min
f

1

K

K∑
k=1

F1(Ck, C
∗
f(k)), (11)

where f(·) is a one-to-one correspondence (computed by linear as-
signment) between predicted product categories k and ground-truth
categories f(k); (eq. 11) is then the average F1 score between the
predicted and the true product categories.

1 10
number of training items

−0.05

0.00

0.05

0.10

re
du

ct
io

n
in

M
S

E
(c

vs
.

e) Books

Figure 1: When training data is scarce, the benefit gained from modeling review text is the greatest. Improvement in MSE compared
to a latent factor model on three Amazon datasets.

Beer (Beeradvocate)

pale ales lambics dark beers spices wheat beer

ipa funk chocolate pumpkin wheat
pine brett coffee nutmeg yellow

grapefruit saison black corn straw
citrus vinegar dark cinnamon pilsner
ipas raspberry roasted pie summer

piney lambic stout cheap pale
citrusy barnyard bourbon bud lager
floral funky tan water banana
hoppy tart porter macro coriander
dipa raspberries vanilla adjunct pils

Musical instruments (Amazon)

drums strings wind microphones software

cartridge guitar reeds mic software
sticks violin harmonica microphone interface
strings strap cream stand midi
snare neck reed mics windows
stylus capo harp wireless drivers

cymbals tune fog microphones inputs
mute guitars mouthpiece condenser usb
heads picks bruce battery computer
these bridge harmonicas filter mp3

daddario tuner harps stands program

Video games (Amazon)

fantasy nintendo windows ea/sports accessories

fantasy mario sims drm cable
rpg ds flight ea controller

battle nintendo windows spore cables
tomb psp xp creature ps3
raider wii install nba batteries
final gamecube expansion football sonic

battles memory program nhl headset
starcraft wrestling software basketball wireless

characters metroid mac madden controllers
ff smackdown sim hockey component

Clothing (Amazon)

bags winter formal pants bras

backpack vest scarf pants bra
bag jacket cards jeans bras

jansport fleece shirt pair support
costume warm shirts dickies cup
books columbia suit these cups

hat coat silk levis underwire
laptop sweatshirt wallet waist supportive
bags russell belt pairs breasts

backpacks gloves leather socks sports
halloween sweater tie they breast

Yelp Phoenix

theaters spas mexican vietnamese snacks italian medical donuts coffee seafood

theater massage mexican pho cupcakes pizza dr donuts coffee sushi
movie spa salsa vietnamese cupcake crust stadium donut starbucks dish
harkins yoga tacos yogurt hotel pizzas dentist museum books restaurant
theaters classes chicken brisket resort italian doctor target latte rolls
theatre pedicure burrito beer rooms bianco insurance subs bowling server
movies trail beans peaks dog pizzeria doctors sub lux shrimp
dance studio taco mojo dogs wings dental dunkin library dishes

popcorn gym burger shoes frosting pasta appointment frys espresso menu
tickets hike carne froyo bagel mozzarella exam tour stores waiter
flight nails food zoo bagels pepperoni prescription bike gelato crab

Table 4: Top ten words from each of K = 5 topics from five of our datasets (and with K = 10 from Yelp). Each column is labeled
with an ‘interpretation’ of that topic. Note we display all the topics (and not only the ‘interpretable’ ones). All topics are clean and
easily interpretable.

(b) (c) (e) improvement
K lat. factors LDA HFT e vs. b e vs. c

5 0.166 0.205 0.412* 148.15% 100.23%
10 0.097 0.169 0.256* 163.54% 51.16%
20 0.066 0.091 0.165* 151.34% 81.82%
50 0.042 0.047 0.199* 369.14% 317.58%

Table 5: Genre discovery (on Yelp data). Values shown are
average F1 score between the predicted and the ground-truth
product categories (higher is better).

This score is shown in Table 5 for different values of K. Nei-
ther latent factor models nor LDA produce latent dimensions that
are similar to genres, while HFT recovers these genres accurately;
with 50 genres HFT outperforms latent factor models and LDA by
over 300%. It is worth noting that K = 50 is far larger than what
we found beneficial when predicting ratings in Section 4.4. We
note that when K is small, ‘similar’ genres tend to be combined
in a single topic, e.g. ‘yoga’ and ‘massage’ in Table 4. Pleasingly,
this implies that even after further topics no longer improve rating
prediction accuracy, HFT continues to generate meaningful topics.

4.8 Identifying Useful Reviews
In addition to modeling how users rate products, HFT can iden-

tify reviews that users are likely to find ‘useful’. As we have shown,
for each product i, HFT generates a topic vector θi, which deter-
mines the distribution of topics, and consequently the distribution
of words, that are likely to be used when describing that product.

We use this topic distribution to identify ‘representative’ reviews.
Specifically, we identify reviews ru,i whose language matches the
topic distribution θi closely. Recall that in HFT, ‘topics’ are learned
in order to explain the variation present in product ratings. Thus, in
order for a reviewer to adequately explain their rating, they ought
to discuss each of these topics in proportion to their importance.

Recall that for each word wu,i,j (j th word in user u’s review of
item i), HFT estimates a topic assignment zu,i,j for that word (i.e.,
each word belongs to a topic from 1 to K). Given the full set of
words in a review du,i, we can then compute the proportion of each
topic in that review. Specifically, we compute

ϑu,i,k =
1

Ndu,i

Ndu,i∑
j=1

δ(zu,i,j = k). (12)

Here we are simply counting the number of times each topic k oc-
curs in a review du,i, and normalizing so that the entries of ϑu,i

0 10
review’s ‘useful’ rating

0.004

0.006

0.008

0.010

0.012

0.014

0.016

d
(θ
i,
ϑ
u
,i
)

yelp, K = 10

0 10
review’s ‘useful’ rating

0.006

0.009

0.012

0.015

0.018

d
(θ
i,
ϑ
u
,i
)

yelp, K = 20

0 10
review’s ‘useful’ rating

0.006

0.009

0.012

0.015

0.018
d
(θ
i,
ϑ
u
,i
)

yelp, K = 50

Figure 2: Reviews that are ‘useful’ (according to Yelp users) are
those whose choice of language matches the topic distribution
learned by HFT.

sum to 1. In this way, we have a topic distribution for each product,
θi, and a topic distribution for each individual review, ϑu,i (both of
which are stochastic vectors).

Our definition of a ‘representative’ review is one for which ϑu,i
is similar to θi, i.e., a review that discusses those topics that explain
the variation in product i’s ratings. We identify this by computing
the distance

d(θi, ϑu,i) = ‖θi − ϑu,i‖22. (13)

We hypothesize that reviews with small d(θi, ϑu,i) will be ‘rep-
resentative’ of the product i. We evaluate this quantitatively by
comparing d(θi, ϑu,i) to ‘usefulness’ ratings on Yelp.

In Figure 2 we compare Yelp ‘useful’ ratings (non-negative in-
tegers) to d(θj , ϑu,i). Results are shown for K ∈ {5, 10, 20, 50}.
We observe a clear relationship between the two quantities. When
K = 5 (for example), reviews with even two useful votes are half
the distance from θi compared to reviews with no useful votes; re-
views with 10 useful votes are one third the distance from θi. This
experiment suggests that in addition to predicting ratings, HFT can
also be used to identify ‘useful’, or ‘representative’ reviews.

5. CONCLUSION
We have presented HFT, a model that combines ratings with re-

view text for product recommendations. HFT works by aligning
hidden factors in product ratings with hidden topics in product re-
views. Essentially, these topics act as regularisers for latent user
and product parameters. This allows us to accurately fit user and
product parameters with only a few reviews, which existing models
cannot do using only a few ratings. We evaluated HFT on large,
novel corpora consisting of over forty million product reviews. In
addition to more accurately predicting product ratings, HFT discov-
ers highly interpretable product topics, that can be used to facilitate
tasks such as genre discovery and to suggest informative reviews.

Acknowledgements
Thanks to David Blei for comments on an initial draft of this paper,
and to Dan Jurafsky for discussions. This research has been sup-
ported in part by NSF IIS-1016909, CNS-1010921, CAREER IIS-
1149837, IIS-1159679, ARO MURI, DARPA SMISC, the Okawa

Foundation, Docomo, Boeing, Allyes, Volkswagen, Intel, as well
as the Alfred P. Sloan and the Microsoft Faculty Fellowships.

6. REFERENCES
[1] S. Baccianella, A. Esuli, and F. Sebastiani. Multi-facet rating of

product reviews. In ECIR, 2009.
[2] J. Bennett and S. Lanning. The Netflix prize. In KDD Cup and

Workshop, 2007.
[3] D. Blei and J. McAuliffe. Supervised topic models. In NIPS, 2007.
[4] D. Blei, A. Ng, and M. Jordan. Latent dirichlet allocation. JMLR,

2003.
[5] S. Brody and N. Elhadad. An unsupervised aspect-sentiment model

for online reviews. In ACL, 2010.
[6] G. Ganu, N. Elhadad, and A. Marian. Beyond the stars: Improving

rating predictions using review text content. In WebDB, 2009.
[7] M. Hu and B. Liu. Mining and summarizing customer reviews. In

KDD, 2004.
[8] N. Jindal and B. Liu. Opinion spam and analysis. In WSDM, 2008.
[9] Y. Jo and A. Oh. Aspect and sentiment unification model for online

review analysis. In WSDM, 2011.
[10] S.-M. Kim and E. Hovy. Determining the sentiment of opinions. In

COLING, 2004.
[11] Y. Koren and R. Bell. Advances in collaborative filtering. In

Recommender Systems Handbook. Springer, 2011.
[12] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques

for recommender systems. Computer, 2009.
[13] K. Lerman, S. Blair-Goldensohn, and R. McDonald. Sentiment

summarization: evaluating and learning user preferences. In EACL,
2009.

[14] A. Levi, O. Mokryn, C. Diot, and N. Taft. Finding a needle in a
haystack of reviews: cold start context-based hotel recommender
system. In RecSys, 2012.

[15] C. Lin and Y. He. Joint sentiment/topic model for sentiment analysis.
In CIKM, 2009.

[16] G. Linden, B. Smith, and J. York. Amazon.com recommendations:
Item-to-item collaborative filtering. IEEE Internet Computing, 2003.

[17] B. Lu, M. Ott, C. Cardie, and B. Tsou. Multi-aspect sentiment
analysis with topic models. In Workshop on SENTIRE, 2011.

[18] Y. Lu, C. Zhai, and N. Sundaresan. Rated aspect summarization of
short comments. In WWW, 2009.

[19] J. McAuley and J. Leskovec. From amateurs to connoisseurs:
modeling the evolution of user expertise through online reviews. In
WWW, 2013.

[20] J. McAuley and J. Leskovec. Hidden Factors and Hidden Topics:
Understanding Rating Dimensions with Review Text. Extended
version http://i.stanford.edu/~julian/pdfs/
recsys_extended.pdf

[21] J. McAuley, J. Leskovec, and D. Jurafsky. Learning attitudes and
attributes from multi-aspect reviews. In ICDM, 2012.

[22] J. Nocedal. Updating quasi-newton matrices with limited storage.
Mathematics of Computation, 1980.

[23] A. Popescu and O. Etzioni. Extracting product features and opinions
from reviews. In HLT, 2005.

[24] A. Sharma and D. Cosley. Do social explanations work? Studying
and modeling the effects of social explanations in recommender
systems. In WWW, 2013.

[25] I. Titov and R. McDonald. A joint model of text and aspect ratings
for sentiment summarization. In ACL, 2008.

[26] I. Titov and R. McDonald. Modeling online reviews with multi-grain
topic models. In WWW, 2008.

[27] M. Wainwright and M. Jordan. Graphical models, exponential
families, and variational inference. Foundations and Trends in
Machine Learning, 2008.

[28] C. Wang and D. Blei. Collaborative topic modeling for
recommending scientific articles. In KDD, 2011.

[29] H. Wang, Y. Lu, and C. Zhai. Latent aspect rating analysis on review
text data: a rating regression approach. In KDD, 2010.

[30] W. Zhao, J. Jiang, H. Yan, and X. Li. Jointly modeling aspects and
opinions with a MaxEnt-LDA hybrid. In EMNLP, 2010.

http://i.stanford.edu/~julian/pdfs/recsys_extended.pdf
http://i.stanford.edu/~julian/pdfs/recsys_extended.pdf

7. APPENDIX

7.1 Complete Tables

dataset #users #items #reviews #words av. words since

arts (Amazon) 24071 4211 27980 2.05M 73.55 Apr. 1998
books (Amazon) 2589009 929273 12886506 1.86B 144.86 Jun. 1995
gourmet foods (Amazon) 112544 23476 154635 10.95M 70.83 Jun. 1998
movies (Amazon) 1318175 235042 8567727 1.25B 146.98 Jun. 1995
video games (Amazon) 228570 21025 463669 66.06M 142.48 Feb. 1997
automotive (Amazon) 133256 47577 188728 13.67M 72.45 Oct. 1998
health (Amazon) 311636 39539 428781 34.72M 80.99 Jul. 1998
musical instruments (Amazon) 67007 14182 85405 7.93M 92.88 Apr. 1998
shoes (Amazon) 73590 48410 389877 23.82M 61.11 Apr. 2000
watches (Amazon) 62041 10318 68356 5.77M 84.43 Dec. 1998
baby (Amazon) 123837 6962 184887 18.17M 98.31 Feb. 1999
clothing (Amazon) 128794 66370 581933 35.13M 60.37 Jan. 1999
home and kitchen (Amazon) 644509 79006 991794 86.10M 86.81 Oct. 1995
music (Amazon) 1134704 556845 6396690 847.35M 132.46 Aug. 1995
software (Amazon) 68464 11234 95084 12.23M 128.69 Nov. 1997
electronics (Amazon) 884175 96643 1371574 148.54M 108.30 Nov. 1996
industrial and scientific (Amazon) 29590 22622 137042 7.11M 51.90 Aug. 1998
office (Amazon) 112348 14972 140517 12.03M 85.62 Jun. 1997
sports and outdoors (Amazon) 329234 68295 510995 40.79M 79.83 Jul. 1999
beauty (Amazon) 167725 29004 252056 18.29M 72.59 Jan. 1997
furniture (Amazon) 166912 19577 206338 18.14M 87.92 Nov. 1998
jewelery (Amazon) 40594 18794 58621 3.12M 53.26 Feb. 1999
pet supplies (Amazon) 160496 17523 217170 19.38M 89.26 Apr. 2000
tools and home improvement (Amazon) 290100 53377 419778 37.15M 88.51 Jul. 1998
kitchen (Amazon) 13394 2555 14444 1.24M 86.38 Apr. 2000
toys (Amazon) 290713 53600 435996 36.05M 82.70 Aug. 1996
Pubs (Ratebeer) 13,957 22,418 140,359 9.89M 70.52 Jan. 2004
Beer (Ratebeer) 29,265 110,369 2,924,163 154.01M 52.67 Apr. 2000
Pubs (Beeradvocate) 15,268 16,112 112,184 21.85M 194.79 Mar. 2002
Beer (Beeradvocate) 33,388 66,055 1,586,614 195.31M 123.09 Aug. 1996
Wine (Cellartracker) 35,235 412,666 1,569,655 60.02M 38.24
Citysearch 5,529 32,365 53,122 3.94M 74.18 May. 2002
Yelp Phoenix 45,981 11,537 229,907 29.88M 129.98 Mar. 2005
Total 9,684,111 3,161,954 41,892,587 5.10B

Table 6: Dataset statistics (number of users; number of items; number of reviews; total number of words; average number of words
per review, time of oldest review).

(a) (b) (c) (d) (e) improvement
dataset offset +lat. factors LDA HFT (θ ∼ γu) HFT (θ ∼ γi) e vs. b e vs. c

arts (Amazon) 1.785 (0.05) 1.565 (0.04) 1.574 (0.05) 1.433 (0.04) 1.388 (0.04)* 11.30% 11.79%
books (Amazon) 1.455 (0.00) 1.107 (0.00) 1.107 (0.00)* 1.141 (0.00) 1.135 (0.00) -2.54% -2.54%
gourmet foods (Amazon) 1.617 (0.02) 1.515 (0.02) 1.492 (0.02) 1.434 (0.02) 1.431 (0.02)* 5.56% 4.11%
movies (Amazon) 1.678 (0.00) 1.118 (0.00) 1.117 (0.00)* 1.119 (0.00) 1.119 (0.00) -0.08% -0.17%
video games (Amazon) 1.825 (0.01) 1.610 (0.01) 1.607 (0.01) 1.513 (0.01) 1.511 (0.01)* 6.15% 5.99%
automotive (Amazon) 1.795 (0.02) 1.570 (0.01) 1.586 (0.02) 1.428 (0.01)* 1.428 (0.01) 9.02% 9.97%
health (Amazon) 1.865 (0.01) 1.613 (0.01) 1.608 (0.01) 1.544 (0.01) 1.528 (0.01)* 5.28% 4.95%
musical instruments (Amazon) 1.585 (0.02) 1.506 (0.02) 1.519 (0.02) 1.397 (0.02) 1.396 (0.02)* 7.34% 8.12%
shoes (Amazon) 1.365 (0.01) 0.273 (0.00) 0.279 (0.00) 0.224 (0.00)* 0.226 (0.00) 17.37% 19.16%
watches (Amazon) 1.583 (0.03) 1.533 (0.03) 1.517 (0.03) 1.493 (0.03) 1.486 (0.03)* 3.02% 2.02%
baby (Amazon) 1.903 (0.01) 1.615 (0.01) 1.599 (0.01) 1.439 (0.01)* 1.442 (0.01) 10.69% 9.76%
clothing (Amazon) 1.586 (0.01) 0.392 (0.00) 0.405 (0.00) 0.328 (0.00) 0.327 (0.00)* 16.55% 19.06%
home and kitchen (Amazon) 1.990 (0.00) 1.626 (0.00) 1.610 (0.00) 1.530 (0.00) 1.527 (0.00)* 6.06% 5.15%
music (Amazon) 1.261 (0.00) 0.957 (0.00)* 0.957 (0.00) 0.980 (0.00) 0.969 (0.00) -1.23% -1.20%
software (Amazon) 2.775 (0.01) 2.408 (0.02) 2.215 (0.02) 2.179 (0.02)* 2.197 (0.02) 8.75% 0.79%
electronics (Amazon) 2.092 (0.00) 1.829 (0.00) 1.821 (0.00) 1.722 (0.00)* 1.724 (0.00) 5.73% 5.28%
industrial and scientific (Amazon) 1.328 (0.02) 0.461 (0.01) 0.462 (0.01) 0.359 (0.01) 0.357 (0.01)* 22.54% 22.69%
office (Amazon) 2.097 (0.02) 1.813 (0.02) 1.796 (0.02) 1.670 (0.02)* 1.680 (0.02) 7.32% 6.45%
sports and outdoors (Amazon) 1.603 (0.01) 1.219 (0.01) 1.224 (0.01) 1.139 (0.00) 1.136 (0.00)* 6.74% 7.12%
beauty (Amazon) 1.809 (0.01) 1.400 (0.01) 1.408 (0.01) 1.358 (0.01) 1.347 (0.01)* 3.78% 4.38%
furniture (Amazon) 2.061 (0.01) 1.845 (0.01) 1.828 (0.01) 1.680 (0.01)* 1.686 (0.01) 8.65% 7.76%
jewelery (Amazon) 1.496 (0.03) 1.257 (0.03) 1.279 (0.03) 1.190 (0.03) 1.178 (0.02)* 6.21% 7.84%
pet supplies (Amazon) 1.908 (0.01) 1.700 (0.01) 1.699 (0.01) 1.592 (0.01) 1.582 (0.01)* 6.94% 6.87%
tools and home impr. (Amazon) 1.887 (0.01) 1.600 (0.01) 1.608 (0.01) 1.505 (0.01) 1.499 (0.01)* 6.29% 6.74%
kitchen (Amazon) 2.098 (0.06) 1.996 (0.06) 1.949 (0.06) 1.781 (0.06) 1.777 (0.06)* 10.95% 8.80%
toys (Amazon) 1.674 (0.01) 1.467 (0.01) 1.393 (0.01) 1.370 (0.01) 1.366 (0.01)* 6.86% 1.97%
Pubs (Ratebeer) 0.699 (0.01) 0.477 (0.00) 0.483 (0.01) 0.456 (0.00)* 0.457 (0.00) 4.13% 5.44%
Beer (Ratebeer) 0.701 (0.00) 0.306 (0.00) 0.306 (0.00) 0.301 (0.00)* 0.302 (0.00) 1.18% 1.24%
Pubs (Beeradvocate) 0.440 (0.00) 0.331 (0.00) 0.332 (0.00) 0.311 (0.00)* 0.311 (0.00) 6.16% 6.31%
Beer (Beeradvocate) 0.521 (0.00) 0.371 (0.00) 0.372 (0.00) 0.367 (0.00) 0.366 (0.00)* 1.50% 1.61%
Wine (Cellartracker) 0.043 (0.00) 0.029 (0.00) 0.029 (0.00) 0.028 (0.00) 0.027 (0.00)* 4.84% 4.03%
Citysearch 2.022 (0.04) 1.873 (0.03) 1.875 (0.03) 1.728 (0.03)* 1.731 (0.03) 7.56% 7.66%
Yelp Phoenix 1.488 (0.01) 1.272 (0.01) 1.282 (0.01) 1.225 (0.01) 1.224 (0.01)* 3.78% 4.53%

Average MSE 1.577 1.262 1.253 1.181 1.178 6.70% 5.98%
Average MSE with K = 10 1.577 1.260 1.253 1.180 1.176 6.64% 6.11%

Table 7: Results in terms of the Mean Squared Error for K = 5 (the best performing model on each dataset is starred; the standard
error is shown in parentheses). Due to the large size of our datasets, all reported improvements are significant at the 1% level or
better. HFT is shown with topics tied to user parameters (column d), and with topics tied to product parameters (column e).

	Introduction
	Contributions and Findings
	Further Related Work

	Models of Ratings and Reviews
	The HFT Model

	Fitting the HFT Model
	Experiments
	Datasets
	Baselines
	Evaluation Procedure
	Rating Prediction
	Recommending New Products
	Qualitative Analysis
	Genre Discovery
	Identifying Useful Reviews

	Conclusion
	References
	Appendix
	Complete Tables

