
In-band Cross-Trigger Event Transmission for Transaction-Based Debug

Shan Tang and Qiang Xu
Department of Computer Science & Engineering

The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
Email: {tangs,qxu}@cse.cuhk.edu.hk

Abstract
Cross-trigger, the mechanism to trigger activities in one debug entity
from debug events happened in another debug entity, is a very useful
technique for debugging applications involving multiple embedded
cores. Existing solutions rely on dedicated interconnects (i.e., dif-
ferent from functional interconnects) to transfer debug events and
cannot guarantee the arrival time of the debug events coincides with
the arrival time of the data messages between multiple cores. This
results in mismatches between the observed system internal oper-
ations and the ones that designers expect to watch. To tackle the
above problem, in this paper, we propose to package the cross-trigger
events and the actual data together into transaction messages and
transfer them along the same functional interconnects (namely in-
band debug event transmission), with the help of novel design-for-
debug circuits. Simulation results on a hypothetical NoC-based sys-
tems show the effectiveness of the proposed technique1.

1 Introduction
With the ever advancement of the semiconductor technology,
today’s high-performance system-on-a-chip (SoC) devices are
able to integrate hundreds of millions of transistors on a sin-
gle silicon die. To reduce time-to-market, SoC designs are
usually created by combining many pre-designed intellectual
property (IP) cores (e.g., processors, DSPs and memories) and
custom user-defined logic (UDL). These embedded cores typ-
ically communicate with each other via functional intercon-
nects such as on-chip buses or network-on-chip (NoC) [5, 8].

With more functionalities integrated onto the chip, it is nec-
essary to improve the designs’ debug support at a pace propor-
tionally to the increasing design complexity [10]. While the
traditional postmortem debug technique that captures snap-
shots of the system through JTAG run-control interface is still
the most widely-utilized method [18], various research groups
have proposed to embed more design-for-debug (DfD) struc-
tures on-chip for hardware tracing difficult-to-find bugs (e.g.,
[1, 3, 4, 11, 12, 19]). With the above techniques, debugging
a single embedded core is a relatively well studied problem
(still challenging though). For SoCs running applications that
involve multiple embedded processors and/or other IP cores,
however, debugging one core at a time can be sometimes mis-
leading because a bug may not exhibit itself until all related

1This work was supported in part by the Hong Kong SAR RGC Ear-
marked Research Grants 2150503 and 2150558.

parties are controlled and observed at the same time. Multi-
core debug solutions (e.g., [2, 15]) are essential to correctly
analyze the system’s internal operations in such cases.

In multi-core debug architecture, one of the key design fac-
tors is how to trigger a particular operation in one debug entity
(e.g., an IP core) from a debug event happened in another de-
bug entity. This so-called cross-trigger capability is essential
when debugging complex interactions among multiple cores.
For example, consider in an SoC device for a 3G cell phone,
two embedded cores perform digital signal processing (DSP)
and protocol tasks, respectively. They communicate with each
other in the form of transactions. Suppose, in one transaction,
we observe an erroneous response message from the DSP core
to the protocol core. This error can result from synchroniza-
tion problems during core interaction, computational errors
inside the DSP core, or even bugs inside the protocol core. For
a better understanding of this error, it would be really helpful
if we are able to stop the DSP core’s operations and observe
its internal states, triggered by the transaction initialized at the
protocol core.

Cross-trigger typically involves three parties: the trigger
source that generates trigger event when certain conditions
are fulfilled; the trigger target that performs debug actions
and trigger event delivery mechanism that transfers the trig-
ger event from the trigger source to the trigger target. It can be
observed from the above example that, in many cases, cross-
trigger are related to certain inter-core transactions. We name
such trigger events as transaction-related cross-trigger events
(TRCT-events) in this paper.

Existing multi-core debug solutions (e.g., [2, 9, 15]) uti-
lize dedicated interconnects (i.e., different from functional in-
terconnects) to distribute debug events to implement cross-
triggering. While this technique has the benefit to be able
to transfer any debug events at any time, it has a main limi-
tation when delivering TRCT-events: the arrival time of the
cross-trigger event and the related transaction message are of-
ten misaligned because they are transferred through different
paths. If the cross-trigger event arrives early, the target entity
may be stopped at an unexpected state and require cumber-
some debug control to walk into the expected state. If the
cross-trigger event arrives late, the target entity may have al-
ready passed the expected state and the information that we
want to observe is lost.

core

C
ro

ss
tr

ig
g

er

In
te

rf
ac

e

（

C
T

I）

D
e

bu
g

A
cc

es
s

P
or

t
D

A
P

Debug APB

Trace ATB

AMBA AXI /AHB

Cross-trigger Matrix（CTM）

ETM

JTAG core

C
ro

ss
tr

ig
g

er

In
te

rf
ac

e

（

C
T

I）

ETM

Figure 1. ARM Cross-Trigger Infrastructure [2]

As the timing of the debug event transmission plays a vital
role for the effectiveness of the cross-triggering mechanism,
in this paper, we propose to transfer the transaction-related
cross-trigger events along with the actual associated transac-
tion data via the same functional interconnects. We call this
strategy in-band cross-trigger event transmission and we in-
troduce novel core-level DfD circuits to implement it. By do-
ing so, we guarantee the timing of the trigger event coincides
with the actual transaction message and hence we are able to
control and analyze the system’s internal operations precisely.
A case study on a NoC-based system shows the effectiveness
of the proposed technique. We have also demonstrated the
overhead and limitations of the proposed approach.

The remainder of this paper is organized as follows. Section
2 reviews the related work in this domain and motivates this
work. The proposed in-band cross-trigger event transmission
strategy and its implementation details are described in Sec-
tion 3 and Section 4, respectively. Next, Section 5 presents
experimental results for a hypothetical NoC-based system. Fi-
nally, Section 6 concludes this paper.

2 Prior Work and Motivation

The key implementation issue in a cross-triggering mecha-
nism is how the trigger events are distributed in the system.
A typical solution is presented in the ARM CoreSight de-
bug architecture [2], where a novel embedded cross trigger
(ECT) unit, consisting of a number of cross-trigger interface
(CTI) blocks and a cross-trigger matrix (CTM), is specified
to pass the trigger event from one embedded core to another.
As shown in Fig. 1, the CTI combines and maps the trigger
requests from an embedded core and/or its associated embed-
ded trace module (ETM), and broadcasts them to all the CTI
blocks in the ECT as channel events or re-maps these events
onto a trigger output after receiving them. Dedicated inter-
connects are employed in the CTM to connect multiple CTIs.

While the above solution focused on debugging systems
from a computation-centric point of view, transaction-based
debug strategies have been advocated by several research
groups with the increasingly importance of communication
in today’s electronic systems [9, 16].The authors in [16] pro-
posed a system-level debug solution for NoC-based systems
and introduced a debug probe to generate trigger events based
on predefined configurable trigger conditions. It is mentioned

that these trigger events are transferred by reusing the NoC
links, but no details are presented. Goossens et al. systemat-
ically discussed communication-centric debug in [9] and in-
troduced dedicated event distribution interconnect (EDI) that
“deliver events from the monitors and other event generators,
such as the TAP controller, to the relevant debug components,
such as the network interfaces and TAP controller”. Debug
events can be quickly distributed on their proposed EDI as
they are broadcast synchronously at high functional frequency
by pipelined stop module.

To show the limitations of the current cross-triggering mech-
anisms, a typical multi-core debug scenario is presented in
Fig. 2. Core B runs a complex computation task and updates
its status registers (0x0004) from time to time. Core A is
running a complex state machine to control the operation of
the whole chip. In some states, Core A needs to check Core
B’s status by reading address 0xF0000004 (‘F’ is mapped to
a remote read transaction to Core B.). Suppose we encounter
an unexpected state transition after checking Core B’s status,
which indicates an error happens on the transaction path that
involves hardware/software of core A, core B and the inter-
connects between them. Debugging a single core at a time
is not good enough to identify this type of bug as it does not
have the knowledge of the complete context of the error. We
need cross-trigger mechanism to discover the root cause of
this problem.

In computation-centric debug solutions such as [2], a break-
point can be set before or after the corresponding ”remote
load” instruction in core A to stop its execution and cross-
trigger a ‘stop’ operation at core B. In the first case, the read
transaction has not even executed and hence it is impossible
to identify the error. If the breakpoint is set after ‘load’, since
the read transaction has already been completed at this mo-
ment, the chances to observe intermediate operations in core
B and the interconnects will disappear. Transaction-based de-
bug solutions (e.g., [9, 16]) are able to link the trigger event
with the actual transaction by generating it according to the
signals on core A’s communication interface. Unfortunately,
as the cross-trigger event goes through a path different from
the functional transactions, the trigger event may arrive core
B earlier or later than the expected time (i.e., the time when
the actual transaction arrives core B), which causes core B to
stop at an unexpected state. Although [9] is able to block fur-
ther transactions coming out of core A, the content in address
0x0004 can be a misleading value written at a different time
inside core B. Tracing before and/or after the trigger event
happening is helpful for tolerating the timing uncertainty, but
it requires large trace buffer and also cannot guarantee to solve
the problem.

In above debug scenario, when debugging inter-core trans-
actions, ideally, we should stop and observe the master core’s
behavior from the point where it issues the transaction, moni-
tor the interconnects from the point that the transaction trans-
fers along them, and stop and observe the slave core exactly
at the time that the transaction request arrives. This, however,
cannot be easily achieved with current debug solutions. The

Core A
(Master)

Regs/
Memory

Core B
(Slave

Cross-trigger Event Interconnection

Transaction
based Trigger

Functional
Interconnection

Different Paths

monitor

stopstop

capture
trigger

read(0xF00000 04)

0x0004

Registers

ComputationControl FSM

S2

S3

S5

S4

S1 +

+

×

Figure 2. Different Paths for Transaction Messages and Trigger Events

Core A
(Master)

Req

Resp

Core B
(Slave)

Req

Resp

config config

Functional
Interconnection

 Bus
 Crossbar

 NoC

TAP

Debug Control Interconnection

Req +
debug event

Debug
Control

Debug
Control

Req +
debug event

TR
C

T
-I

nt
e

rf
ac

e
(M

a
st

e
r S

id
e)

TR
C

T
-I

nt
e

rf
ac

e
(S

la
ve

 S
id

e)

Enable

Figure 3. In-band Debug Event Distribution

above observations motivate us to investigate a better way to
generate and distribute TRCT-events to achieve more effective
cross-triggering. Our solution is simple yet effective: we try
to generate and transmit the trigger event together with the
corresponding transactions along the same path, detailed in
the following sections.

3 In-band Trigger Event Transmission

We borrow the word ‘in-band’ from the telecommunication
literature, where the in-band signaling and the voice data are
transmitted along the same communication channel. Despite
the underlying media and the length of the communication
path, the signaling and the corresponding data arrive the des-
tination at the same time. We apply the similar concept to the
transmission of the cross-trigger events and its related inter-
core transactions, and we name it in-band trigger event trans-
mission.

As demonstrated in Fig. 3, core A and core B are the mas-
ter and the slave of a particular transaction, connected via
functional interconnects such as bus, cross bar, or NoC. New
transaction-related cross-trigger interfaces (TRCT-interfaces)
are introduced between the core’s communication ports and
the functional interconnects for both the master core and the
slave core. When core A starts a transaction by sending out
a request message, master side TRCT-interface analyzes the
message and generates a trigger event when predefined trigger
conditions are qualified. The outgoing message of the TRCT-
interface is a combination of debug event (coded signals as
discussed later) and the original request. This ‘Req + trigger
event’ message is transmitted via the underlying interconnects

and arrives core B’s slave TRCT-interface, where the original
request is directed to. The debug event are then used to gener-
ate appropriate debug control signals (e.g., stop signal for core
B) for its execution. In addition, we can equip other debug
entities (e.g., the bus monitors, the NoC’s network interfaces
or routers) with capabilities to ‘recognize’ the in-band trigger
events, so that they can use them as the ‘signaling’ to trigger
certain debug actions. If these entities are not provided with
such capabilities, the cross-trigger events are simply treated
as part of the functional transactions and bypassed.

With the proposed in-band trigger event transmission mech-
anism, no matter how the on-chip interconnection are im-
plemented, the cross-trigger event reaches the target together
with the corresponding transaction. Therefore, the problems
described in Section 2 can be solved, i.e., we can stop core B
and check the content of the memory address 0004 just at the
time when the transaction request arrives it.

Similarly, the above concept can be used for the response
messages, in which the only difference is that the trigger
events are generated at the slave side and transmitted to the
master side.

4 Implementation in NoC-Based Systems

For a simple single-layer bus-based system, as the delay of
the transaction messages and the delay of the trigger events
are usually small, typically their arrival time difference is
also small when they are transferred along different paths.
Therefore, this problem is relatively easy to deal with by in-
troducing trace buffers with acceptable size. However, in a
large-scale SoC with more complex on-chip communication

Core B
(Slave)

 TRCT-Interface (Master Side)
TRCT-Interface

(Slave Side)
NoC

Detector 1

Detector n

Detector 2

Req

Tr
ig

g
er

 S
ig

na
l

Control

In
p

ut
 S

w
itc

h
Event

Encoder

codes

M
U

X

OCP

Reg
W/R

local debug
control signals

Event
Decoder

Req

Control

debug
control
signals

NI NI

RR

R R

NI NI

M

M M

M
OCP+ OCP+

Core A
(Master)

RespResp
OCP

enable

monitor

Figure 4. Implementation in NoC-Based Systems

schemes such as multi-layer bus or NoC, the difference be-
tween the arrival time of the trigger events and the one of
the corresponding transactions could be quite large and un-
predictable. For example, in [6], the average packet latency
is shown to be inversely dependent on the bandwidth guaran-
tees, typically around 30 to 50 clock cycles. Latency overhead
introduced by the NI (Network Interface, refer to Sect. 4.1) it-
self is between 4 and 10 cycles in [14]. Aligning the delay
of the TRCT-events and their associated transactions in such
systems is therefore quite difficult when they are transferred
using different paths. In addition, the SoC may be a globally-
asynchronous locally-synchronous (GALS) system, in which
the cores and the communication infrastructure are running
with different clocks. This makes the delay aligning prob-
lem even more complex. The proposed in-band trigger event
transmission strategy is more valuable for such systems.

4.1 NoC-Based System Model

In our NoC-based system, an IP core is modeled as a mod-
ule that has both a communication port and a debug control
interface. The communication port is assumed to be compli-
ant with the open core protocol (OCP) [13], which defines a
transaction-level interface commonly used in NoC-based sys-
tems. To simplify the discussion, the debug control interface
is defined as a set of control signals. Enable/disable each of
them results in a supported IP core debug operation, such as
‘stop’, ‘step’, ‘resume’ and ‘start trace’. A more complex de-
bug interfaces generally provides similar functions with a dif-
ferent protocol. For IP cores that do not have a debug inter-
face, debug wrappers are required to be implemented to pro-
vide a similar debug control interface.

The NoC is assumed to be composed of three fundamen-
tal components: network interfaces (NIs) that connect the IP
cores to the NoC, routers that transport data between NIs ac-
cording to pre-defined protocol, and links that connect routers
to provide the raw bandwidth.

4.2 TRCT-Interface Implementation

As discussed above, the master side TRCT-Interface analyzes
the transactions and generates coded trigger events for lo-
cal and remote debug entities; while the slave side TRCT-

Interface decodes the debug events to generate the debug con-
trol signals. We explain the details in this section.

Transaction Analysis: This is conducted by a number of de-
tectors that realize various configurable trigger conditions (as
shown in Fig. 4). The inputs of these detectors are chosen
from the OCP signals with an input switch; while their outputs
are supplied to a MUX to generate the final trigger signals.

A detector can be a simple two-input comparator, which
compares a set of OCP signals (e.g., command, address or
data) to a run-time configurable value. A more complex de-
tector can be a transaction analyzer with counter, sequencer
or even finite-state machine (FSM), which is able to iden-
tify transaction errors or certain patterns. It can be extended
for different debug requirements and fitted in the system with
well-defined interface. Multiple detectors can work together
to form more complex trigger conditions by supplying one de-
tector’s output to other detectors as part of its inputs or even
as its enable/disable control signal. Instantiating how many
detectors is a design-time decision, but the trigger conditions
can be run-time controlled by programming the debug control
register inside the TRCT-Interface.

Trigger Events Generation and Coding: The trigger events
are generated when the transaction analyzer detects that the
trigger condition is fulfilled, and the enable signal from the
core is set at the same time. With the enable signal from the
core, more precise control of trigger event generation can be
achieved. In the example shown in Sec. 2, the program run-
ning on core A may read the same address of core B sev-
eral times, these read requests appear to be the same at the
OCP interface and hence the transaction analyzer itself can-
not distinguish them. To precisely locate a particular read
request, we need to know the exact instruction that initiates
the read transaction. This can be done by utilizing the break-
point/watchpoint of core A to generate the ‘enable’ signal and
“tell” the TRCT-Interface when to start the trigger process.

Encoding the TRCT-events reduces the bandwidth require-
ment to transfer them. In the master side TRCT-Interface, the
trigger signals are encoded by pre-defined codewords. For
example, with a 2-bit code, we can translate the trigger sig-
nal into up to four different events. These coded events are
decoded into control signals at the slave side TRCT-Interface

and/or by the debug entities along the transaction path. In one
debug iteration, different debug entities may translate these
events into different actions such as ‘stop’, ‘step’, ‘resume’,
‘start tracing’ and ‘flushing the trace data’.

Control and Configuration of TRCT-Interfaces: The
TRCT-Interfaces are controlled by setting its debug control
registers through a register write/read interface. There are
also some status registers implemented inside these interfaces,
e.g., ‘trigger happened indication’ in the master side TRCT-
Interface and ‘trigger event received indication’ in the slave
side TRCT-Interface. In addition, to reduce power consump-
tion in normal functional mode, the whole TRCT-Interface
can be disabled by setting the ‘stop’ bit of the control register.

Generally speaking, for one debug iteration, this module
should be programmed in the following sequence:

1. Select the inputs of the detectors from the OCP signals;
2. Set the trigger output of MUX.
3. Set the operation parameters of the detector and the transaction
analyzer;
4. Set the codeword for event coding and decoding.
5. Start the trigger process;

Note: As its function is simple, slave side TRCT-Interface may use fixed

settings.

Delay Introduced in the TRCT-Interface: The master side
TRCT-Interface needs to delay the functional transactions
(typically one OCP clock cycle) to align them with the cor-
responding trigger event. This is generally acceptable in a
SoC with complex interconnection infrastructure as the mas-
ter IP usually does not expect delay-free communication. As
discussed earlier, in NoC-based systems, the delay introduced
by the NoC itself can be in the range of tens of clock cycles.
For cores that are able to tolerate such delays, the extra delay
introduced in the TRCT-Interface will not cause unacceptable
performance degradation. For the slave side TRCT-Interface,
as it just needs ‘listening’, only a small combinational logic
delay is introduced.

Finally, in terms of implementation, the TRCT-Interface can
be a stand-alone module or embedded in a more complex DfD
component, such as the debug probe proposed in [16, 17]. It
should also be noted that a TRCT-interface can contain both
master-side and slave-side functionalities.

4.3 Trigger Event Transportation in NoC

TRCT-events are transmitted along the functional transaction
path. In a NoC-based system, the path starts from the master
communication port (i.e., the inputs to the NI), ends at the
corresponding slave communication port (i.e., the outputs of
the NI), via the NoC links. There are two ways to transport
the extra trigger events together with the functional message.

One way is to expand the OCP protocol and re-implement
the NoC to support the extra debug event signals. For exam-
ple, in addition to current OCP signals, one set of debug event
signals can be instantiated similar to the ‘side-band’ signals
in OCP protocol, and the NoC should support the transfer of

these signals. Although this is the ideal way to implement the
‘in-band’ trigger event transmission concept, it is not applica-
ble until changes are made in the communication protocols
and the NoC implementations.

An alternative method is to add some signals as part of the
functional signals, for example, adding two more signals as
additional OCP address bits. Suppose initially the address is
16-bit, the output of TRCT-Interface becomes OCP-compliant
port with 18-bit address. From the NoC’s point of view, the
only difference is that the master core transfers data with 18-
bit address instead of 16-bit one. To support this, we can sim-
ply re-configure the NI to support 18-bit address (This is easy
to achieve as most NI implementation is configurable). In ad-
dition, we also need to update the routing address to make
correct routing decision. That is, for example, if the original
design use the four most significant bits (address[15..12]) to
locate the different slave cores while the address bits [11..0]
are used for the memory element inside it. When two more
bits are added for debug purpose as address [17..16], the NoC
should still use address[15..12] to find the slave core instead
of the current four most significant bits ([17..14]). Otherwise,
wrong routing decision will be made. Since address mapping
is typically a basic feature of the NoC, this is applicable in
most case. Even for NoCs that do not support flexible address
mapping, a small modification of NI can solve the problem.

One important question is what if the NoC itself contains
bugs and cannot even deliver the trigger events to the slave
core correctly. If this happens, in most cases, there should be
some clues for us to narrow down the root cause into the NoC.
For example, we can compare the ‘trigger event generated’ bit
in the master side TRCT-Interface’s status register and ‘trigger
event received’ bit in the slave side TRCT-Interface to observe
whether the transmitted message is received successfully. For
the bugs inside NoC, its own DfD modules (such as the debug
monitors in [7]) can be employed for further analysis.

Using the above method, the NI needs to support additional
debug coded signals, e.g., the two more address bits on the
interface for the above example. This results in very small
increase of area cost . Another cost is the extra NoC band-
width required to transmit these signals. While it is hard to
give a quantitative analysis because this depends on the NoC
implementations, it should be comparable to the bandwidth
consumed in the dedicated debug interconnects in prior work,
but at a much lower routing cost.

5 Experimental Results

To verify the proposed concept of ‘in-band’ trigger event
transmission, we implement an experimental design as de-
scribed in Sec. 4.2.

Fig. 5 depicts the simulation waveform for this design.
The master side TRCT-Interface listens to core A’s OCP in-
terface (the MCmd and MAddr signals, refer to [13]), and
triggers an TRCT-event when core A tries to read the register
(0x0004) inside core B. As can be observed in the waveform,
however, there are two similar transactions: both are ‘read on
0xF0000004’. To distinguish them, as discussed earlier, the

Slave side OCP signals

MCmd detector hit

Maddr detector hit

Local debug control signals (stop)

Target message

Configure the Control Registers

Master side OCP signals

NoC delay

Remote debug control signals (stop)

Trigger event

Read request to
the same address

Enable signal from core

Request with
“in-band” trigger event

Figure 5. Simulation Waveform for the Experimental Design

‘Enable’ signal generated by a breakpoint/watchpoint hit in-
side Core A is used. Next, if the ‘Enable’ signal is set, the
trigger event is coded and sent to core B together with the
original read transaction. When the transaction (including the
trigger event) arrives core B, the slave side TRCT-Interface
decodes the event and stops core B just on time to examine
whether the value of register (0x0004) is the expected one.
It should be noted that the debug control registers are set as
described in Sec. 4.2 before the debug process starts.

As the TRCT-Interfaces need to be inserted in any transac-
tion path where cross-triggering capabiity is required, we need
to instantiate a number of them in an SoC. To observe the area
cost of the TRCT-interfaces, we implement the above TRCT-
Interface with a 0.13 µm commercial CMOS technology. The
master side TRCT-Interface is composed of two detectors ana-
lyzing the OCP ‘MCmd’ and ‘MAddr’ signals and an encoder
to generate the coded trigger events. Its total area is 5950 µm2

(about 1478 equivalent two-input NAND gates). For the slave
side TRCT-Interface, it just contains a decoder and a control
interface, and its area cost is less than 100 gates. When com-
pared to today’s large design size, in general, the area cost to
implement the proposed ‘in-band’ trigger event transmission
concept is acceptable.

6 Conclusion

Cross-trigger is a very useful technique for debugging appli-
cations involving multiple embedded cores. Existing solu-
tions rely on dedicated interconnects to transfer debug events
and hence may result in mismatches between the observed
system internal operations and the one that designers expect to
watch. To tackle the above problem, in this paper, we propose
the so-called in-band debug event transmission concept, in
which we package the transaction-related cross-trigger events
and the actual data together into transaction messages and
transfer them along the same functional interconnects. Exper-
imental results on a hypothetical NoC-based systems prove
the effectiveness of the proposed technique at a low design-
for-debug cost.

References

[1] M. Abramovici, et al. A Reconfigurable Design-for-Debug Infrastruc-
ture for SoCs. In Proceedings ACM/IEEE Design Automation Confer-
ence (DAC), pages 7–12, 2006.

[2] Advanced RISC Machines Ltd. CoreSight Architecture Specification,
2004. ARM IHI 0029B.

[3] Altera Inc. Design Debugging Using the SignalTap II Embedded Logic
Analyzer. http://www.altera.com.

[4] ARM Ltd. How CoreSight Technology Gets Higher Performance,
More Reliable Product to Market Quicker. http://www.arm.com.

[5] L. Benini and G. de Micheli. Networks on chips: A new SoC para-
digm. Computer, 12(1):70–78, January 2002.

[6] D. Bertozzi and L. Benini. Xpipes: A network-on-chip architecture
for gigascale systems-on-chip. IEEE Circuits and Systems Magazine,
4(2):18–31, 2004.

[7] C. Ciordaş, et al. Transaction Monitoring in Networks on Chip: The
On-Chip Run-Time Perspective. In Proc. IES, Oct. 2006.

[8] W. J. Dally and B. Towles. Route Packets, Not Wires: On-Chip Inter-
connection Networks. In Proc. DAC, pages 18–22, 2001.

[9] K. Goossens, B. Vermeulen, R. van Steeden, and M. Bennebroek.
Transaction-based communication-centric debug. In Proc. NOCS,
pages 95–106, 2007.

[10] A. B. T. Hopkins and K. D. McDonald-Maier. Debug Support for
Complex Systems on-Chip: A Review. IEE Proceedings, Computers
and Digital Techniques, 153(4):197–207, July 2006.

[11] R. Leatherman and N. Stollon. An Embedded Debugging Architecture
for SOCs. IEEE Potentials, 24(1):12–16, Feb-Mar 2005.

[12] MIPS Technologies Inc. EJTAG Trace Control Block Specification.
http://www.mips.com.

[13] OCP International Partnership. Open Core Protocol Specification.
http://www.ocpip.org.

[14] A. Rădulescu, et al. An efficient on-chip network interface offer-
ing guaranteed services, shared-memory abstraction, and flexible net-
work programming. IEEE Transactions on Computer-Aided Design,
24(1):4–17, Jan. 2005.

[15] N. Stollon, R. Leatherman, B. Ableidinger, and E. Edgar. Multi-Core
Embedded Debug for Structured ASIC Systems. In Proc. DesignCon,
2004.

[16] S. Tang and Q. Xu. A Multi-Core Debug Platform for NoC-Based
Systems. In Proc. DATE, pages 870–875, 2007.

[17] S. Tang and Q. Xu. A Debug Probe for Concurrently Debugging Mul-
tiple Embedded Cores and Inter-Core Transactions in NoC-Based Sys-
tems. In Proc. ASP-DAC, accepted, 2008.

[18] B. Vermeulen, T. Waayers, and S. K. Goel. Core-Based Scan Archi-
tecture for Silicon Debug. In Proc. ITC, pages 638–647, Oct. 2002.

[19] Xilinx Inc. Chipscope Pro Software and Cores User Guide.
http://www.xilinx.com.

