
198:538 Complexity of Computation Lecture 8
Rutgers University, Spring 2007 8 February 2007

1 Toda’s theorem

We will prove Toda’s theorem:

Theorem 1 (Toda). PH ⊆ P#P.

How do we interpret Toda’s theorem? We know that the counting problem #SAT is at least as
difficult as the decision problem SAT. Toda’s theorem tells us that #SAT is apparently a lot more
difficult; every problem into the polynomial hierarchy can be turned into a #SAT question. For
instance, the question “Is this the smallest circuit with the given functionality?” can be efficiently
turned into a question of the form “How many satisfying assignments does this formula have?”

Of course we do not even know how to rule out the possibility P#P = P. However this would have
strange consequences, in particular implying P = NP and the collapse of the polynomial hierarchy.
Might it still be possible that P#P = PNP? In other words, does the ability to count solutions give
us any more power than the ability to tell if solutions exist? Toda’s theorem indicates that in fact
counting is more powerful than deciding: If P#P were to equal PNP, then PH ⊆ PNP ⊆ Σ2 and the
polynomial hierarchy would collapse to Σ2.

2 Proof of Toda’s theorem

The starting point for the proof of Toda’s theorem is the unique solutions lemma of Valiant and
Vazirani: There is a randomized procedure that, given a formula ϕ on n variables,1 produces a
formula ψ such that if ϕ is unsatisfiable then so is ψ, but if ϕ is satisfiable then ψ has a unique
satisfying assignment with probability at least 1/8n.

One interpretation of Valiant-Vazirani is that if we had a way to tell whether a formula had one
satisfying assignment or zero satisfying assignmnets, then, using randomness, we could solve NP
complete problems.

Now suppose that we could tell if a formula had an even number or an odd number of satisfying
assignments. In particular we can then tell one from zero satisfying assignmnets, so we can solve
everything in NP. In fact we can now solve everything in the polynomial hierarchy.

Lemma 2. For every k there exists a randomized polynomial-time algorithm R that on input a
quantified boolean formula ϕ with k alternations produces an unquantified boolean formula ψ such

1We won’t insist that the formulas be in CNF form.

1

2

that

ϕ ∈ ΣkSAT −→ Pr[#SAT(ψ) is odd] ≥ 2/3
ϕ 6∈ ΣkSAT −→ #SAT(ψ) is even.

It looks like we are almost there: To solve ΣkSAT, we map ϕ to ψ, use the #P oracle to count the
number of satisfying assignments of ψ and return the parity. In fact this is sufficient to show that
PH ⊆ BPP#P, but we promised PH ⊆ P#P. To get there we need to do some extra work.

The additional ingredient we need is this:

Lemma 3. There is a deterministic reduction that runs in time O(n) and on input a formula ψ,
produces a formula ψ′ such that for every N :

#SAT(ψ) = 0 (mod N) −→ #SAT(ψ′) = 0 (mod N2)

#SAT(ψ) = −1 (mod N) −→ #SAT(ψ′) = −1 (mod N2)

Therefore, telling if a formula has an even or odd number of assignments reduces to telling if some
other formula has 0 or 3 assignments modulo 4, which in turn reduces to telling if some other
formula has 0 or 7 assigments modulo 8, and so on. Each time we apply the lemma the size of
the formula increases by a constant factor. If we apply the lemma log2m times to ψ for some
m, we obtain a formula ψ′ of size poly(m)|ϕ| and so that if we can tell if ψ′ has zero or nonzero
assignments modulo 2m, then we can tell if ψ has an even or odd number of assignments.

Now we put the two lemmas together. First consider the reduction R from Lemma 2. It is
randomized, but we think of it as a deterministic procedure that takes ϕ and a random string r of
length m− 1 and produces a formula ψr that depends on r. Applying Lemma 3 to ψr log2m times
we obtain a formula ψ′r.

We now consider the quantity K =
∑

r∈{0,1}m−1 #SAT(ψ′r), which counts the number of pairs (x, r)
such that assignment x satisfies formula ψ′r.

If ϕ 6∈ ΣkSAT, then regardless of the choice of r, #SAT(ψ′r) must equal 0 modulo 2m. It follows
that K = 0 modulo 2m.

If ϕ ∈ ΣkSAT, let p be the fraction of strings r such that #SAT(ψ′r) is odd. We then have
that for a p fraction of strings r, #SAT(ψ′r) = −1 modulo 2m, and for the remaining 1 − p
fraction, #SAT(ψ′r) = 0 modulo 2m. Since p ∈ [2/3, 1], it follows that K must fall in the range
[−2

32m−1,−2m−1] modulo 2m, so that K 6= 0 modulo 2m.

We now have our P#P algorithm for ΣkSAT. On input ϕ, we run the reductions from Lemmas 2
and 3, and ask the oracle to count the number of pairs (x, r) such that x satisfies ψ′r. (Observe
that this is a #P question.) If the answer divides 2m, we reject; otherwise we accept.

3 The parity quantifier and proof of Lemma 2

Lemma 2 says the determining if a quantified formula is true can be reduced to computing the
parity of the number of assignments of some other formula. It will be convenient to view parity

3

as a quantifier (like ∃ and ∀) over the resulting formula: Given a formula ϕ, we say the quantified
formula ”⊕x : ϕ(x)” is true if ϕ(x) is true for an odd number of x, and false otherwise. We define
the decision problem

⊕SAT = {ϕ : ”⊕x : ϕ(x)” is true}.

Just like SAT asks whether a formula is satisfiable, ⊕SAT asks if it has an odd number of satisfying
assignments. We can do the same for quantified formulas: Define

⊕ΣkSAT = {ϕ : ”⊕x∃y1∀y2 . . . Qyk : ϕ(x, y1, . . . , yk)” is true}

and ⊕ΠkSAT similarly. In particular the language ⊕ΣkSAT is hard for Σk. So to prove Lemma 2,
it is sufficient to design a reduction R such that

ϕ ∈ ⊕ΣkSAT −→ Pr[ψ ∈ ⊕SAT] ≥ 2/3
ϕ 6∈ ⊕ΣkSAT −→ ψ 6∈ ⊕SAT.

We start with the case k = 1. We are given ϕ(x, y) and want to determine if ”⊕x∃y : ϕ(x, y)”
is true. Let |x| = |y| = n. For the moment, let’s forget about x and focus on y. What can we
do? Using Valiant-Vazirani, we can randomly produce a formula ϕ′(x, y) such that if ϕ(x, y) is
satisfiable for some y, then ϕ′(x, y) has a unique satisfying assignment with probability 1/8n, and
otherwise it is not satisfiable.

Let us think wishfully and suppose that instead of working with probability 1/8n, the Valiant-
Vazirani reduction worked with probability one. Then the formula ”⊕y : ϕ′(x, y)” would be equiv-
alent to ”∃y : ϕ(x, y)”, and so the ⊕SAT instance ”⊕x⊕y : ϕ′(x, y)” and the ⊕Σ1SAT instance
”⊕x∃yϕ(x, y)” would also be equivalent.

Unfortunately Valiant-Vazirani sometimes fails; what we will do instead is obtain a random ϕ′(x, y)
such that ”⊕y : ϕ′(x, y)” and ”∃y : ϕ(x, y)” are equivalent with very high probability over the choice
of ϕ′. We will make this probability as high as 1− 1

62−n. Then by the union bound we have that

Pr[For all x: ”⊕y : ϕ′(x, y)” is equivalent to ”∃y : ϕ(x, y)”] ≥ 5/6.

so in particular

Pr[The formulas ”⊕x⊕y : ϕ′(x, y)” and ”⊕x∃y : ϕ(x, y)” are equivalent] ≥ 5/6.

Let’s now see how to construct ϕ′ from ϕ. We run the Valiant-Vazirani reduction m = O(n2) times
independently to produce formulas ϕ′1(x, y) up to ϕ′m(x, y). If ϕ(x, y) is satisfiable (in y), then
with probability 1 − 1

62−n at least one of these formulas has a unique satisfying assignment, and
otherwise none of them has a satisfying assignment.

We are left with the following task: Given formulas ϕ′1, . . . , ϕ
′
m produce a single formula ϕ′ such

that ”⊕y : ϕ′(x, y)” is true iff at least one of ”⊕y : ϕ′i(x, y)” is true. This can be done using the
following general construction: Given two unquantified formulas ψ(y), ψ′(y) define

• ψ · ψ′ as the formula ψ(y) ∧ ψ′(z), where y and z are disjoint sets of variables. It is easy to
check that #SAT(ψ · ψ′) = #SAT(ψ) ·#SAT(ψ′).

4

• ψ + ψ′ as the formula (w ∧ ψ(y)) ∨ (w ∧ ψ′(y)), where w is an additional boolean variable.
Then #SAT(ψ + ψ′) = #SAT(ψ) + #SAT(ψ′).

• 1 as an arbitrary formula with exactly one satisfying assignment.

Then we can set

ϕ′(x, y) = 1 + (1 + ϕ′1(x, y)) · (1 + ϕ′2(x, y)) . . . (1 + ϕ′m(x, y))

where we think of the formulas as formulas over y, and x is just a free variable that gets copied in
the process of constructing ϕ′. By construction ϕ′ has an odd number of satisfying assignments (in
y) iff at least one of the ϕ′i does.

This concludes the case k = 1. In general, to go from ⊕ΣkSAT to ⊕Σk−1SAT we carry out exactly
the same argument to eliminate the outermost existential quantifier of ϕ. We then obtain an
instance ψ of ⊕Πk−1SAT. Now observe that ψ ∈ ⊕Πk−1SAT iff ψ ∈ ⊕Σk−1SAT, and the inductive
step is done. We can arrange the probabilities so that the reduction from ⊕ΣkSAT to ⊕Σk−1SAT
succeeds with probability at least 1/6k2. Then even after we put everything together the reduction
will work with probability 1−

∑
k(1/6k

2) ≥ 2/3.

4 Proof of Lemma 3

We now prove Lemma 3. First let us construct a polynomial p such that

s = 0 (mod N) −→ p(s) = 0 (mod N2)

s = −1 (mod N) −→ p(s) = −1 (mod N2)

It is not difficult to find such a p: If s2 factors into p the first property is satisfied. Now if s = −1
modulo N , then s3 = −1 modulo N , so s3(s3 + 2) = (s3 + 1)2 − 1 = −1 modulo N2. We can set
p(s) = s3(s3 + 2).

Now the formula ψ′ = ψ3 · (ψ3 + 2) proves the lemma.

