
198:538 Complexity of Computation Lecture 16
Rutgers University, Spring 2007 8 March 2007

In this lecture we discuss Shamir’s theorem that PSPACE is the set of languages that have inter-
active proofs with an arbitrary (polynomial) number of rounds.

Theorem 1 (Shamir). IP = PSPACE.

There are two directions here. For IP ⊆ PSPACE, we show that the accepting probability of
every interactive protocol with a polynomial-time verifier can be computed by a polynomial space
machine. Then this machine can solve every language in IP by checking if the accepting probability
exceeds 2/3 or is at most 1/3.

Let us consider an arbitrary interactive protocol specified by a polynomial-time verifier V . Recall
that with a loss of at most two rounds of interaction, we can assume that the protocol is public
coin. On input x of length n, the verifier sends a random string r1 ∈ {0, 1}p(n), the prover answers
with a2 ∈ {0, 1}p(n), the verifier responds with a random r3 ∈ {0, 1}p(n), and so on. After k(n)
messages have been exchanged, the verifier makes a decision as to whether x ∈ L. The accepting
probability of V is the quantity

maxP ∗ Pr[(P ∗, V)(x) accepts]
= Er1 [maxa2 Er3 [maxa4 . . .Pr[V (x; r1, a2, r3, a4, . . . , rk(n)) accepts] . . .]]

where what we mean by ”V (x; y1, . . . , yk) accepts” is that V accepts input x when the transcript
of the interaction between V and the prover consists of the messages y1, . . . , yk. The accepting
probability is a quantity that depends entirely on the verifier. If there exists a prover that can
make the verifier accept often, this probability is high. If no such prover exists, then it is low.

For every x, the accepting probability can be computed as follows. For every fixed r1 and a2 in
{0, 1}p(n), let

p(r1, a2) = Er3 [maxa4 . . .Pr[V (x; r1, a2, r3, a4, . . . , rk(n)) accepts] . . .].

The accepting probability of the verifier is then

Er1 [maxa2 p(r1, a2)]

and this expression can be computed recursively using space polynomial in |x|.

We now turn to the more interesting direction: PSPACE ⊆ IP.

1 Boolean encodings for PSPACE

Now we are given a PSPACE language L and we want to design an interactive protocol for it. Let
us look at a Turing Machine that decides L in space s(n) on inputs of length n. We know that

1

2

such a machine must always halt in time 2O(s(n)). However it might be the case that the machine
takes time much less than 2O(s(n)) on certain inputs. It will be convenient for us that the machine
takes the same time to halt on all inputs of length n, and that this time is always a power of two.
In fact this can be arranged by carefully making sure that the machine keeps track of its running
time and idles for a certain number of steps after it is done with its computation. The details are
not so interesting so we summarize this and a few other convenient facts in the following claim.

Claim 2. For every L in PSPACE there exists a polynomial-space Turing Machine M that decides
L and a polynomial t(n) such that for every x,

• M(x) halts in exactly 2t(|x|) steps.

• M(x) has a unique accepting configuration.

• The computation graph of M(x) is acyclic.

Let M be a machine of this type for L, so that on inputs of length n, M uses space s(n) and runs
in time exactly 2t(n). Recall that a configuration of M is specified by the state of the control, the
position of the head, and the contents of the first s(n) cells of the tape. We can think of this as
a string z of symbols z1, . . . , zs(n), each taking value in some fixed size alphabet Σ. The value of
zi includes the contents at the ith position of the tape together with information that indicates
whether the head is currently at the ith position and, if so, what state the machine is in.

Just as in the proof of the Savitch theorem, given a pair of configurations u and v and a time bound
t, we define a formula ϕt(u, v) that says whether M goes from configuration u to configuration v
in exactly 2t steps. The formulas ϕt are defined recursively via the equation

ϕt+1(u, v) = ∃w ∈ {0, 1}s(n) : ϕt(u, w) ∧ ϕt(w, v).

In the base case, we have

ϕ1(u, v) =
s(n)∧
i=1

valid(ui−1, ui, ui+1, vi)

where valid(y1, y2, y3, y) says that the transition from (y1, y2, y3) to y is allowed to occur in a
computation tableau of M .

Usually, we think of the quantified variables ui and vi as indeterminates taking values in Σ, and ϕt

as a formula that maps Σ to ”true” or ”false”. The key idea in the proof is to look at an alternative
representation of ϕt which we now describe.

2 Low degree extension and arithmetization

For the moment let us forget about ϕt and look at an arbitrary boolean valued formula ϕ over
variables y1, . . . , yk taking values in Σ. We can think of ϕ as a function mapping Σk to {0, 1},
where 0 stands for ”false”, and 1 stands for ”true”.

3

Let’s now think of Σ as a subset of some finite field F, and think of ϕ as a function mapping Σk to
F which happens to always take values 0 and 1. The following claim shows that any such function
can be ”extended” to a low-degree polynomial over F.

Claim 3. For every function ϕ : Σk → F there exists a k-variate polynomial q over F where the
degree of each variable is at most |Σ| − 1 and such that

q(a1, . . . , ak) = ϕ(a1, . . . , ak)

for all (a1, . . . , ak) ∈ Σk.

Proof. By induction on k. Suppose for every i ∈ Σ we have a polynomial qi(x2, . . . , xk) such that
the degree of every variable is at most |Σ| − 1 and

qi(a2, . . . , ak) = ϕ(i, a2, . . . , ak)

for all (a2, . . . , ak) ∈ Σk−1. We now define q by interpolation:

q(x1, . . . , xk) =
∑
i∈Σ

∏
j∈Σ−{i}(x1 − j)∏
j∈Σ−{i}(i− j)

qi(x2, . . . , xk).

It is easy to check that q has degree |Σ|−1 in all its variables and that q(a1, . . . , ak) = ϕ(a1, . . . , ak)
for all (a1, . . . , ak) ∈ Σk.

The polynomial q can be thought as a polynomial extension of ϕ. When the inputs fall inside
Σ, q says exactly whether ϕ is true or false. Outside Σ, q outputs some element in F which is
superficially meaningless, but will be crucial in the construction of the interactive protocol for L.

Applying Claim 3 to the predicate valid we obtain its polynomial extension qvalid where each variable
has degree less than |Σ|. We now define the arithmetization qt of ϕt by replacing valid with qvalid,
”exists” with ”plus”, and ”and” with ”times”.

qt+1(u, v) =
∑

w∈{0,1}s(n)

qt(u, w)× qt(w, v)

and

q1(u, v) =
s(n)∏
i=1

qvalid(ui−1, ui, ui+1, vi)

We argue that qt(u, v) and ϕt(u, v) take the same value when all ui and vi are in Σ. For q1 and
ϕ1 this is easy to check — products and ”and”s take the same value over a {0, 1} domain. For
qt+1 and ϕt+1 this is not so obvious. In general, when we replace an existential quantifier with
a sum, the formula and its corresponding arithmetized polynomial may no longer take the same
value. For instance, if the existential quantifier has two satisfying assignments then the value of
the corresponding sum will be two.

However, in our setting this will never happen; recall that ϕt+1(u, v) says whether v is reachable
from u in exactly 2t+1 steps. If this is the case, there will be a unique w such that w is reachable from

4

u in exactly 2t steps and v is reachable from w in exactly 2t steps. (Recall that M is deterministic
and never loops.) So for every pair (u, v), there will be either zero or one witnesses w in ϕt+1. It
follows that the value of the corresponding sum in qt+1 either 0 (when there is no w) or 1 (when
there is exactly one w).

We need one more technicality: For every t, the individual degree of every variable in qt is at most
4|Σ|. For q1, this is true because every variable appears in at most four instantiations qvalid, and for
larger t it can be seen by induction on t that the individual degree of every variable never increases.

Let’s now step back and recall what we are trying to do. In the end, given an input x of length n,
we want to know if M(x) accepts. This is the same as asking whether

qt(n)(startx, accept) = 1

where startx is the initial configuration of M(x), which we now think of as a string in Σs(n), and
accept is the (unique) accepting configuration of M .

Now qt(n) is a huge polynomial which we don’t even know how to write down explicitly. However we
have an implicit representation of qt(n) in terms of sums and products of simple polynomials q1. We
next turn to designing interactive protocols for evaluating such implicitly represented polynomials.

3 Sum and product protocols

The approach will be to start with qt(n) and repeatedly ”strip” the sums and products until we are
left with evaluating q1, which we can do easily.

To begin with, let’s suppose we have an implicit1 polynomial q(y) in m variables and we want to
evaluate q(a) + q(a′), where a and a′ are points in Fm. We show a simple interactive protocol that
reduces the problem to evaluating q(b) for some different b in Fm. Let’s see more precisely what
this means.

Lemma 4 (Sum protocol). There is a 1-round interactive protocol (P, V) with the following
behavior. The input to the protocol is an implicit polynomial q over F in m variables of total degree
d, two points a, a′ ∈ Fm, and a value α ∈ F. The output of the protocol is a point b ∈ Fm and a
value β ∈ F.

• If q(a) + q(a′) = α, then for the prover P , Pr[q(b) = β] = 1.

• If q(a) + q(a′) 6= α, then for every prover P ∗, Pr[q(b) = β] ≤ d/|F|.

We can now imagine the following interaction. The prover wants to prove that q(a) + q(a′) = α. If
this is true, the verifier has reduced the task to proving the simpler claim q(b) = β. If this is false,
then the prover must trick the verifier into accepting the simpler false claim that q(b) = β.

1Let’s not worry too much about what ”implicit” means exactly.

5

Proof. Let l(t) = ta+(1− t)a′ be the line going through a and a′. The protocol relies on the simple
observation that r(t) = q(l(t)) is a univariate polynomial of degree at most d. We now give the
protocol.

1. Prover: Send the description of a univariate polynomial r̂(t) = c0 + c1t + · · ·+ cdt
d of degree

d by giving its coefficients c0, . . . , cd. The honest prover P sends the coefficients of r(t).

2. Verifier: Check that r̂(0) + r̂(1) = α. Choose a random t0 ∈ F and output the pair b = l(t0),
β = r̂(t0).

If q(a) + q(a′) = α, then the prover sends r̂(t) = r(t), and no matter which t0 the verifier chooses,
β = r(t0) = q(b).

Now suppose that q(a)+q(a′) 6= α and the prover sends r̂(t). If r̂(0)+ r̂(1) 6= α, the verifier rejects.
Otherwise, r̂(0) + r̂(1) = α 6= r(0) + r(1), so r(t) and r̂(t) must be different polynomials of degree
at most d. Then r(t)− r̂(t) is a nonzero polynomial of degree at most d, and it has at most d zeros.
It follows that for a random t0,

Prt0 [q(b) = β] = Prt0 [r(t0) = r̂(t0)] = Prt0 [r(t0)− r̂(t0) = 0] ≤ d/|F|.

Replacing addition with multiplication, we obtain a completely analogous product protocol.

4 Interactive proofs for qt

Let us now fix the field F to be of size Θ(s(n)2t(n)).

We now apply the sum and product protocols to the polynomials qt. Suppose the prover claims
that qt+1(u, v) = α. We can write

qt+1(u, v) = h1(u, v, 0) + h1(u, v, 1)

where
h1(u, v, w1) =

∑
w2,...,ws(n)

qt(u, w1, w2, . . . , ws(n))× qt(w1, w2, . . . , ws(n), v).

Since in qt, each variable has individual degree at most 4|Σ| = O(1), h has total degree at most
O(s(n)). Applying the sum protocol to h on inputs (u, v, 0), (u, v, 1) and α, we obtain a new pair
(u′, v′, w′

1) and β such that

• If qt+1(u, v) = α, then h(u′, v′, w′
1) = α′

• If qt+1(u, v) 6= α, then h(u′, v′, w′
1) 6= α′ with probability at least 1−O(s(n)/|F|).

Continuing in the same manner, we reduce the claim h1(u′, v′, w′
1) = α′ to h2(u′′, v′′, w′′

1 , w′′
2) = α′′,

where
h2(u, v, w1, w2) =

∑
w3,...,ws(n)

qt(u, w1, w2, . . . , ws(n))× qt(w1, w2, . . . , ws(n), v)

6

and so on until we are down to the claim hs(n)(u′′′, v′′′, w′′′
1 , . . . , w′′′

s(n)) = α′′′, where

hs(n)(u, v, w1, . . . , wn) = qt(u, w1, w2, . . . , ws(n))× qt(w1, w2, . . . , ws(n), v).

Adding the errors from the intermediate sum protocols, we have that

• If qt+1(u, v) = α, then hs(n)(u′′′, v′′′, w′′′
1 , . . . , w′′′

s(n)) = α′′′,

• If qt+1(u, v) = α, then hs(n)(u′′′, v′′′, w′′′
1 , . . . , w′′′

s(n)) 6= α′′′ with probability at least 1 −
O(s(n)2/|F|).

We can now apply the product protocol to qt on inputs (u′′′, w′′′), (w′′′, v′′′) and α′′′ to obtain outputs
u′′′′, v′′′′ and α′′′′ such that

• If qt+1(u, v) = α, then qt(u′′′′, v′′′′) = α′′′′

• If qt+1(u, v) 6= α, then qt(u′′′′, v′′′′) 6= α′′′′ with probability at least 1−O(s(n)2/|F|).

Now, using induction on t, we obtain a protocol that, on input startx, accept, 1 outputs u∗, v∗ and
α∗ such that

• If qt(n)(startx, accept) = 1, then q1(u∗, v∗) = α∗

• If qt(n)(startx, accept) = 0, then q1(u∗, v∗) 6= α∗ with probability 1−O(s(n)2t(n)/|F|) ≥ 2/3.

The verifier can now check the claim q1(u∗, v∗) = α∗ in polynomial-time. Putting everything
together, we have that for some prover P (whose job is to send the description of a polynomial in
every step)

• If M(x) accepts, then (P, V)(x) accepts with probability 1,

• If M(x) rejects, then for every prover P ∗, (P ∗, V)(x) rejects with probability at least 2/3,

so L ∈ IP.

