
ENGG 2440A: Discrete Mathematics for Engineers Lecture 6
The Chinese University of Hong Kong, Fall 2015 19 and 28 October 2015

1 Paths and cycles

A path in a graph is a sequence of distinct vertices v0, . . . , v` such that {vi, vi+1} is an edge in
the graph for all 0 ≤ i < `. We can also describe a path as a sequence of the k − 1 edges
{v0, v1}, . . . , {v`−1, v`}. The vertices v0 and v` are the endpoints of the path; we also say that v0
is connected to v`. The number ` is the length of the path. (The definition allows paths of length
zero.)

For example, in the graph given by the following diagram, a, c, d is a path of length 2 and a, b, c, d
is a path of length 3. The sequence a, b, e is not a path because {b, e} is not an edge, and a, b, c, a
is not a path because vertex a occurs more than once.

a b

c d

e

A cycle in a graph is a cyclic sequence1 of distinct vertices v1, . . . , v` such that {v1, v2}, . . . ,
{v`−1, v`}, {v`, v1} are edges and they are all distinct. The number ` is called the length of the
cycle. For example, the above graph has only one cycle – the cycle a, b, c – and this cycle has length
3. (The definition does not allow cycles of length zero.)

If we do not make the requirement that v1, . . . , v` are all distinct, then we call v1, . . . , v` a closed
walk. Any graph with at least one edge has an infinite number of closed walks: If {u, v} is an edge,
then u, v; u, v, u, v; u, v, u, v, u, v, and so on are all closed walks.

2 Connectivity, trees, and forests

A graph is connected if for every pair of vertices u, v, u is connected to v. The above graph is not
connected because there exists no path from a to e.

A connected component of a graph G is a subgraph of G consisting of all vertices that are connected
to a given vertex and all edges incident to them. This graph has the following two connected

1By “cyclic”, we mean that the sequences (1) v1, v2, . . . , v`; (2) v2, . . . , v`, v1; and (3) v`, v`−1, . . . , v1 all represent
the same cycle.

1



2

components:

(V1, E1), where V1 = {a, b, c, d} and E1 = {{a, b}, {a, c}, {b, c}, {c, d}}
(V2, E2), where V2 = {e} and E2 = ∅.

It should be clear that there can be no edges between vertices that belong to different connected
components of the same graph.

A forest is a graph that has no cycles. A tree is a connected forest. A leaf in a forest is a node of
degree 1. Here is a diagram of a tree with four leaves:

a b c

d e f

Theorem 1. Every forest with n vertices and m edges has n−m connected components.

Proof. We prove the theorem by induction on m.

Base case m = 0: If a forest has no edges, every vertex is its own connected component, so there
are exactly n of them.

Inductive step: Assume that every forest with m edges has n−m connected components, where n
is the number of vertices. Let G be a forest with n vertices and m+ 1 edges. Remove an arbitrary
edge e from G (but leave its vertices alone). The resulting graph, call it G′, is a forest with n
vertices and m edges, so by our inductive assumption it has n−m connected components.

Both vertices of e cannot belong to the same connected component of G′, for then the path between
the endpoints of e together with e would form a cycle in G.

Therefore the vertices of G′ are in two different connected components of G′. All other connected
components of G′ except for these two stay the same in G, so G has one fewer connected component
than G′. Therefore G has exactly (n−m)− 1 = n− (m + 1) connected components.

Corollary 2. In a tree, the number of vertices equals the number of edges plus one.

A spanning tree of a connected graph G is a subgraph of G that is a tree. Here is a diagram of a
graph and one of its spanning trees. The edges of the spanning tree are marked by thick lines:



3

a b c

d e f

Theorem 3. Every connected graph has a spanning tree.

Proof. The proof is by induction on the number of edges. If the graph has no edges, then for it to
be connected it must consist of a single vertex. This vertex is then a spanning tree.

Now assume that every connected graph with m edges has a spanning tree. Let G be a graph with
m + 1 edges. We consider two cases. If G is a tree, then G is its own spanning tree. Otherwise, G
has a cycle. Take any edge e on this cycle and remove it. The remaining graph G′ is connected: If
any path between two vertices of G uses the edge e, it can be rerouted along the other edges of the
cycle. Since G′ has m edges, by the inductive hypothesis it has a spanning tree. Therefore G also
has a spanning tree.

The proof of this theorem tells us how to find a spanning tree in a connected graph: If the graph
is a tree already, we are done. Otherwise, it must contain a cycle. Remove one of the edges in this
cycle and recursively find a spanning tree in this subgraph. There are better algorithms for finding
spanning trees that you will learn about in CSCI 3160.

Here is a corollary of Theorem 3 and Theorem 1:

Corollary 4. Every graph with n vertices and m edges has at least n−m connected components.

Proof. Let G be a graph with n vertices and m edges. By Theorem 3, every connected component
of G has a spanning tree. Let F be the union of all these spanning trees. Then F is a forest with
n vertices, m′ ≤ m edges, and the same number of connected components as G. By Theorem 1, F
has n−m′ connected components, so G also has n−m′ connected components. Since m′ ≤ m, the
number of connected components of G is at least as large as n−m.

3 Bipartite graphs revisited

Recall that a graph is bipartite if its vertices can be partitioned into two sets L,R so that all edges
have one vertex in L and one vertex in R.

Theorem 5. A graph is bipartite if and only if it has no cycle of odd length.

Before we prove this theorem, let us look at two familiar examples.



4

a b

c d

e

a b c

d e f

The first graph is not bipartite and the cycle a, b, c has odd length. The “reason” this graph is not
bipartite is precisely the existence of this cycle: If we put vertex a on one side of the partition, b
goes on the other side and c is on the same side, so the edge {a, c} is inconsistent with the partition.
We will generalize this argument to rule out the possibility that a graph with a cycle of odd length
can be bipartite.

In contrast, the second graph has no cycles of odd length and it is bipartite. One way to find the
partition L,R is to start at an arbitrary vertex — say a — and put it in one set of the partition
— say L. Then its neighbours b and d must be in R, their neighbours c and e must be in L, and
their neighbour f must be in R again. We obtain the partition L = {a, c, e}, R = {b, d, f}. In the
proof, we will argue that as long as there are no odd length cycles, it is always possible to obtain
a valid partition in a similar manner.

The following simple lemma will be useful to have:

Lemma 6. If a graph has a closed walk of odd length, then it has a cycle of odd length.

Proof. We prove the lemma by strong induction of then length ` of the closed walk.

Base case ` = 1: There are no closed walks of length one, so the base case holds trivially.

Inductive step: Assume that if a graph has a closed walk of odd length up to `, then it has an
odd length cycle. Let v1, . . . , v`+1 be a closed walk of length ` + 1 and assume ` + 1 is odd. If all
the vertices in the closed walk are distinct, then v1, . . . , v`+1 is a cycle of odd length. Otherwise,
two of them must be the same, say vi and vj where 1 ≤ i < j ≤ ` + 1. Consider the closed walks:

vi, vi+1, . . . , vj−1 and vj , . . . , v`+1, v1, . . . , vi−1

The sum of the lengths of these two closed walks is ` + 1, so each one has length strictly less than
` + 1, Moreover, ` + 1 is an odd number, so one of them must have odd length. By the inductive
assumption, the existence of this walk implies the existence of an odd cycle.

Proof of Theorem 5. Assume the graph is bipartite with its vertices partitioned into L and R.
Suppose v1, . . . , v` is a cycle for some ` ≥ 2. We will show that ` is even. Without loss of generality,
we may assume v1 is in L; if not, we look at the sequence v2, . . . , v`, v1, which describes the same
cycle. Since v1 is in L, v2 must be in R, v3 must be in L again, and so on; so v` is in L if ` is odd
and in R if ` is even. Since {v`, v1} is an edge, v` must be in R, so ` is even.2

2If you want a very formal proof, you prove the proposition “For all 1 ≤ i ≤ `, vi ∈ L if and only if i is even” by
induction on i.



5

Now assume the graph, which we call G, has no cycles of odd length. We will prove that it is
bipartite.

Suppose that we can show every connected graph that has no cycles of odd length is bipartite. Now
take an arbitrary, not necessarily connected, graph G with no cycles of odd length. Then each
connected component C of G has no cycles of odd length, so its vertices can be partitioned into
two sets LC and RC so that there are no edges of C within either of LC and RC . Let L be the
union of all such LC and R be the union of all such RC . Then L,R is a partition of the vertices of
G. There are no edges within L and no edges within R, so G is bipartite.

Therefore, we can now assume without loss of generality that the graph G is connected in addition
to having no cycles of odd length. We will show that G is bipartite. Let v0 be an arbitrary vertex
and L and R be the following sets:

L = {w : there exists a path of even length with endpoints v0, w}
R = {w : there exists a path of odd length with endpoints v0, w}

Since G is connected, every vertex must be connected to v0, so it belongs to one of L or R. We will
now show that L ∩ R = ∅. The proof is by contradiction. Suppose there was a vertex u ∈ L ∩ R.
Since u is in L, there is an even length path from v0 to u:

v0, v1, . . . , vs = u, s is even

Since u is in R, there is an odd length path from v to v0. The reverse path is an odd length path
from u to v:

u = vs, vs+1, . . . , vs+t = v0, t is odd.

Let us look at the sequence v0, v1, . . . , vs+t−1. This is a closed walk of length s+ t, which is an odd
number. By Lemma 6, G has a cycle of odd length, which is a contradiction.

Therefore L,R is a partition of the vertices of G. It remains to show that there can be no edges
within L and no edges within R. We first show there are no edges within L. For contradiction,
suppose that there was an edge {u,w} such that u ∈ L and w ∈ L. By the definition of L, there
must exist even length paths from w to v0 and from u to v0. If we take the first path, then the second
path in reverse, and finally follow the edge u,w, we obtain a closed walk of even + even + 1 = odd
length. By Lemma 6, this contradicts our assumption. We now show there are no edges within R.
The proof is analogous; the only difference is that the two paths now have odd length. The length
of the resulting closed walk is now odd + odd + 1, which is still an odd number.

We state a corollary of this theorem that will be useful for us shortly.

Corollary 7. Let G be a graph whose edges are the union of two matchings. Then G is bipartite.

Proof. We show that G has no cycles of odd length. By Theorem 5, G must be bipartite.

For contradiction, assume that there exists an odd length cycle v1, v2, . . . , v` in G. Then the edge
{v1, v2} must belong to at least one of the two matchings whose union forms the edges of G. Call
this matching Ξ1. The edge {v2, v3} cannot belong to Ξ1 for otherwise Ξ1 would not be a matching,



6

so it must belong to Ξ2. Continuing the reasoning in this way, we conclude that for every 1 ≤ i < `,
{vi, vi+1} must be in Ξ1 if i is odd and in Ξ2 if i is even, so the edge {v`−1, v`} must be in Ξ2. But
then the edge {v`, v1} is in Ξ1, and so v1 has two neighbours in Ξ1 (v2 and v`). This contradicts
our assumption that Ξ1 is a matching.

4 Directed graphs

A simple directed graph (or digraph) G consists of a nonempty set of vertices V and a set of directed
edges E, each of which is an ordered pair of vertices (u, v) with u 6= v.

In a digraph, (u, v) and (v, u) represent different edges. One of them could be present in the graph,
or both, or neither. In a diagram, we represent them as arrows from u to v and from v to u,
respectively.

Here is a diagram of the digraph (V,E) where

V = {a, b, c, d} and E = {(a, b), (a, d), (b, c), (b, d), (c, b), (d, c)} :

a

b

c

d

The definitions of “path”, “closed walk”, and “cycle” in a digraph are identical to those for graphs.
For example, a, b, d, c is a path of length 4 in G and b, d, c is a cycle of length 3. G has also a cycle
of length 2, namely b, c. In contrast, a graph cannot have a cycle of length 2.

A topological sort of a digraph G is an ordering of all its vertices in a sequence so that for every
edge (u, v), vertex u comes before vertex v in the sequence. The above digraph does not have a
topological sort. The vertices b and c cannot be ordered because both b must come before c and
c must come before b in the sequence. This is impossible. In contrast, one topological sort of the
digraph in the following diagram is the sequence a, b, d, e, c:



7

a

b

c

d

e

Theorem 8. A digraph has a topological sort if and only if has no cycles.

We will need the following lemma. A sink is a vertex with no outgoing edge. Similarly, a source is
a vertex with no incoming edge, and a vertex is internal if it is neither a source nor a sink.

Lemma 9. A digraph with no cycles has a sink.

Proof. We prove the contrapositive: A digraph with no sink has a cycle. Assume that G has
no sink. Then every vertex in G has at least one outgoing edge. Visit vertices according to the
following procedure, starting from an arbitrary vertex v0: Keep moving to an adjacent vertex via
an outgoing edge. When you reach the first previously visited vertex, stop. Then the sequence of
visited vertices will have the following form:

v0, v1, . . . , vk−1, vk

where v0, . . . , vk−1 are all distinct and vk = vi for some i between 0 and k− 1. Then vi, . . . , vk−1 is
a cycle in G, so G has a cycle.

Proof of Theorem 8. First we show that if a digraph has a topological sort, it cannot have a cycle.
For contradiction, suppose v1, . . . , v` is a cycle. Then v2 must come after v1 in the sequence, v3
must come after v2, and so on until v`. So v` must come after v1. Since (v`, v1) is an edge, v1 must
come after v`. Contradiction.

Now we show that if a digraph G has no cycles, then it must have a topological sort. We prove
this by induction on the number of vertices n.

Base case n = 1: If G has one vertex v, then the sequence v is a topological sort of G.

Inductive step: Assume every digraph with no cycles on n vertices has a topological sort. Let
G be a digraph with no cycles on n + 1 vertices. By Lemma 9, G has a sink t. Remove t and all
incoming edges from G. By the inductive assumption, the remaining graph has a topological sort
sequence v1, . . . , vn. Then v1, . . . , vn, s is a topological sort of G.

A digraph with no cycles is called an acyclic digraph or a DAG (directed acyclic graph).



8

5 Switching networks

A collection of paths is vertex disjoint if all vertices in all paths in the collection are distinct. A
switching network for N packets is an acyclic digraph with N sources and N sinks (and possibly
some internal vertices) so that for every possible pairing of sources and sinks there exists a vertex-
disjoint collection of paths from each source to the corresponding sink.

Here is a diagram of a switching network, which we’ll call B2, for 4 packets:

s00

s01

s10

s11

t00

t01

t10

t11

For example, suppose we pair up the sources and sinks like this:

{s00, t10}, {s01, t00}, {s10, t01}, {s11, t11}

The following diagram shows the existence of vertex-disjoint paths from every source to the corre-
sponding sink:

s00

s01

s10

s11

t00

t01

t10

t11

Here is how I found these paths. The subgraph connecting the middle nodes splits into a “top
component” and a “bottom component”. Among the packets 00 and 10, one must travel through
the top component and the other one through the bottom component, for otherwise they would
clash at the first intermediate vertex. The same conclusion holds for the packets 01 and 11. The two
packets that are supposed to arrive at t00 and t10 — these are the packets 01 and 00 — must also
travel through different middle components. Similarly, the packets 10 and 11, which are supposed
to reach t01 and t11, should be routed through different middle components.

We can represent this information in a constraint graph whose vertices are packets and whose edges
connect pairs that cannot be routed through the same middle component:



9

11

10

01

00

The constraint graph is bipartite: The vertices can be partitioned into the sets T = {00, 11} and
B = {10, 01}. We route the packets in T through the top component and the packets in B through
the bottom component. This uniquely specifies the first and last edge in each path (as in the above
example). The middle edges are then easy to figure out.

How can we know for sure that B2 is a switching network? We need to verify that all possible source-
sink pairings admit edge-disjoint paths. It turns out that B2 has a special, recursive structure that
guarantees this feature. To make this structure more apparent, we will show how to construct,
for every n ≥ 1, a switching network Bn with 2n sources and 2n sinks, provided we have already
constructed Bn−1. The digraph Bn is called the Beneš network (pronounced Benesh) after its
inventor.

The “base” digraph B1 looks like this:

s0

s1

t0

t1

Now we show how to construct the digraph Bn+1, assuming we have already constructed Bn. Recall
that Bn has 2n sources and 2n sinks:

1. Take two disjoint (no shared vertices or edges) copies of Bn, which we will call the top copy
and the bottom copy.

2. Label the sources of the top copy of Bn by the symbols u0x, where x ranges over all {0, 1}
strings of length n. Label the sources of the bottom copy of Bn by the symbols u1x, where x
ranges over all {0, 1} strings of length n. Label the sinks of the top and bottom copies of Bn

by the symbols v0x and v1x, respectively, where x ranges over all {0, 1} strings of length n.

3. Create 2n+1 sources sy and 2n+1 sinks ty for Bn+1, where y ranges over all {0, 1} strings of
length n + 1.

4. Add the edges (sax, ubx) and (vbx, tax) for every bit a ∈ {0, 1}, every bit b ∈ {0, 1}, and every
{0, 1} string x of length n.

You can check that our digraph B2 was indeed constructed from B1 according to this specification.

Theorem 10. For every n ≥ 1, the digraph Bn is a switching network.



10

Proof. We prove the theorem by induction on n. In the base case n = 1, there are two possibilities:
The source-sink matching is either {s0, t0}, {s1, t1} or {s0, t1}, {s1, t0}. In either case, there are
vertex disjoint paths from each source to the corresponding sink.

For the inductive step, we assume that Bn is a switching network. We will show that Bn+1 is also
a switching network. Let Π be a pairing of the 2n+1 sources sy and the 2n+1 sinks ty in Bn+1. We
need to show that all pairs in Π can be connected by edge-disjoint paths.

We define an undirected “constraint” graph G as follows. The vertices of G are all the 2n+1 {0, 1}
strings of length n+ 1. The edges of G are the union of two perfect matchings. The first matching
consists of all the edges {0x, 1x}, where x ranges over all {0, 1} strings of length n. The second
matching consists of all the edges {y, y′} such that sy’s and sy′ ’s partners in Π differ only in their
first coordinate (that is, they are t0x and t1x for some x). You can easily verify that this is a
matching.

By Corollary 7, the graph G is bipartite. Let T,B be a partition of its vertices so there are no
edges within T or within B. We now describe the edge-disjoint paths from sources to sinks of Π.
We will specify each path by describing its first edge, its last edge, and its middle edges. We will
do the middle edges later:

1. First edge: For every vertex sbx (where b is a bit and x is a string of length n), take the
edge from sbx to u0x if bx ∈ T ; take the edge from sbx to u1x if bx ∈ B.

2. Last edge: For every vertex tbx, Let sy be tbx’s partner vertex in Π. Take the edge from v0x
to tbx if y ∈ T ; take the edge from v1x to tbx if y ∈ B.

We will now show three properties: (1) the set of first edges Φ1 is a matching; (2) the set of last
edges Φ2 is a matching; and (3) For every pair {sy, ty′} in Π, sy’s match in Φ1 and ty′ ’s match in
Φ2 both belong to the same copy of Bn.

Once we have these properties, our inductive assumption about Bn guarantees the existence of
edge-disjoint paths from sy’s match in Φ1 to ty′ ’s match in Φ2 for every pair {sy, ty′} in Π. These
paths form the middle edges from the sources to the sinks of Π. Together with the first and
last edges, they describe a collection of edge-disjoint paths between all source-sink pairs of Π, the
existence of which is what we wanted to prove.

So it remains to show properties (1), (2), and (3). We show (1) first. For contradiction, assume Φ1

is not a matching. Then two of the first edges share the same vertex ubx. The only two edges that
share this vertex are (s0x, ubx) and (s1x, ubx). This is not possible because {0x, 1x} is an edge in
(the first matching of) G, and so one of the two must be in T and the other one in B. So one of
the edges must point to u0x and the other one must point to u1x, a contradiction.

The proof of (2) is similar: If Φ2 is not a matching, two of the last edges must share the same
vertex vbx. These are the edges (vbx, t0x) and (vbx, t1x). So the partners of t0x and t1x in Π, which
form an edge in (the second matching of) G, must both be in the same set of the partition T,B, a
contradiction.

Property (3) is immediate: If sy is paired to ty′ in Π, then both sy’s match in Φ1 and ty′ ’s match
in Φ2 are in the top copy of Bn if y is in T and the bottom one if y is in B. In either case, they



11

are in the same copy of Bn.

The vertex-disjoint paths in our example were obtained by following the procedure described in
the proof. To check your understanding, it is a good idea to walk though the steps of the proof
keeping this example in mind.

References

This lecture is based on Chapters 5 and 6 and Section 7.7 of the text Mathematics for Computer
Science by E. Lehman, T. Leighton, and A. Meyer.

The textbook has a detailed discussion about the advantages and disadvantages of various types
of switching networks. There is yet another type of network, called a superconcentrator, that
(according to the measures in the book) outperforms the Beneš network when the number of
packets is large. If you are interested, you can read the fascinating story of superconcentrators in
Section 1.1 of the survey Expander graphs and their applications by Hoory, Linial, and Wigderson.

http://www.cs.huji.ac.il/~nati/PAPERS/expander_survey.pdf

	Paths and cycles
	Connectivity, trees, and forests
	Bipartite graphs revisited
	Directed graphs
	Switching networks

