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Graphs are an especially popular object of study in discrete mathematics. They represent a finite
collection of objects and pairwise relationships between them. We already saw one example in
disguise: A “friendship graph”, which tells us which pairs of people within a collection are friends.

To define graphs, we’ll need a bit of set theory and notation, so let’s talk about sex — oops, I
meant sets; we’ll come back to sex shortly.

1 Sets

A set is an unordered collection of objects, called the elements of the set. Each element in the set
occurs exactly once. We can specify a set by listing its elements like this:

P = {Alice,Bob,Charlie}

This is the same set as {Bob,Alice,Charlie} – the elements are unordered. We denote set mem-
bership and non-membership like this:

Alice ∈ P Dave 6∈ P.

We can also have sets consisting of other sets. For example, the set F may indicate which pairs of
people within P are friends:

F = {{Alice,Bob}, {Alice,Charlie}}.

Every once in a while we will need to work with large or infinite sets. In such cases, listing all the
elements is not an option, so we specify membership in a set by a predicate that its elements must
satisfy.

For example, suppose we are talking about integers. Then the set E of all even numbers is the set
of all integers n that satisfy the predicate “n is even”. We write this as

E = {n : n is even}
= {n : There exists k such that n = 2k}.

Some sets have standard names, like ∅ for the empty set, Z for the integers, N for the positive
integers, R for the reals. The fact that we are talking about objects of a particular type can be
incorporated in the description of the set like this:

E = {n ∈ Z : n is even}.

Cardinality The cardinality |A| of a finite set A is the number of elements in A. In the above
examples, |P | = 3, |F | = 2, and |E| is not defined because E is infinite.
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Relations between sets and operations on sets We say A is a subset of B (denoted by
A ⊆ B) if every element of A is also an element of B. We call A a proper subset of B (denoted by
A ⊂ B) if A is a subset of B but they are not equal.

The union A ∪B of two sets A and B consists of those elements that are in A or in B:

A ∪B = {x : x ∈ A or x ∈ B}.

The intersection A ∩B consists of those elements that are in both A and B:

A ∩B = {x : x ∈ A and x ∈ B}.

A and B are disjoint if A∩B = ∅. The set difference A−B consists of those elements that are in
A but not in B:

A−B = {x : x ∈ A and x 6∈ B}.

Finally, the complement A of a set A consists of those elements that are not in A:

A = {x : x 6∈ A}.

For example, if we are talking about integers, the complement of the set of even numbers is the set
of odd numbers.

I suppose that you are quite familiar with this already so I won’t bore you with examples. If you
need clarification, please ask.

2 Graphs

A (simple) graph is a pair of sets (V,E), where V is a nonempty, finite set and E is a set of 2-element
subsets of V . Elements of V are called vertices; elements of E are called edges.

Notice that {v, v} cannot be an edge because {v, v} = {v} is a 1-element subset of V .

For example, G = (V,E) where

V = {a, b, c, d, e}
E = {{a, b}, {b, c}, {a, c}, {c, d}}

is a graph with 5 vertices and 4 edges. When the graph is small, like in this case, we can draw a
diagram of it. The positions of the vertices and the shapes of the edges don’t matter.

a b

c d

e
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We say vertex u is adjacent to vertex v, or u and v are neighbours, if {u, v} is an edge. The degree
deg(v) of a vertex v is the number of vertices adjacent to it. For example in G, a and b have degree
2, c has degree 3, d has degree 1, and e has degree 0.

Lemma 1. In every graph G, the sum of the degrees of all the vertices equals twice the number of
edges.

Indeed, G has 4 edges and the sum of its degrees is 8.

Proof. Make two copies of each edge {u, v} and assign one copy to u and the other one to v. Then
each vertex v is assigned exactly deg(v) edges, one for each of its neighbours. So the sum of the
degrees equals twice the number of edges.

3 Bipartite graphs

The textbook has examples of some interesting surveys about the sexual habits of Americans. One
of these, conducted by the U. S. National Center for Health Statistics and featured in the New
York Times found out that the average number of partners of the opposite gender one had had sex
with was seven for men and four for women. (I couldn’t find any such data about Hong Kong; go
forth and explore if you are looking for an exciting research topic!)

We will see that this data doesn’t make sense. It cannot possibly give an accurate picture of reality.

To do this we will look at a special kind of graph called a bipartite graph. We’ll need one more
set-related concept: We say sets S and T partition set U if S ∪ T = U and S ∩ T = ∅.

We say a graph G = (V,E) is bipartite if the set of vertices V can be partitioned into two sets
M and W so that all edges have one vertex in M and one vertex in W . For example, the graph
represented by the following diagram is bipartite:

a b c

d e f

One partition is M = {a, c, e}, W = {b, d, f}. An easy way to see this graph is bipartite is to
redraw it in a way that groups the vertices of M (on top) and the vertices of W (at the bottom).
All edges go between M and W :
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a c e

b d f

In contrast, the graph G from the previous section is not bipartite: No matter how we partition
the vertices a, b, c between M and W , at most two of the edges {a, b}, {a, c}, {b, c} will have one
vertex in M and one vertex in W .

Bipartite graphs are useful for describing relations between two types of objects. For example,
we can model inter-gender sexual relations in America by a bipartite graph: M is the set of all
American men, W is the set of all American women, and we connect m and w (m ∈ M,w ∈ W )
by an edge if they have had sexual relations.

The average number of sexual partners of an American man is the average degree of a vertex in
M . This is the sum of the degrees of all vertices in M divided by the size of M :

average number of sexual partners of a man =

∑
m∈M deg(m)

|M |

and similarly,

average number of sexual partners of a woman =

∑
w∈W deg(w)

|W |
.

We can relate two of these numbers using the next lemma:

Lemma 2. Let G be a bipartite graph with partition (M,W ). Then the sum of the degrees of M
equals the sum of the degrees of W .

The proof is quite similar to the one of Lemma 1.

Proof. We count the edges of G like this: First, we choose a vertex in M , then we choose a neighbour
of this vertex. This counts every edge of G exactly once. On the other hand, each vertex m in
M is counted deg(m) times, so the sum of the degrees of M must equal the number of edges. By
the same reasoning, the sum of the degrees of W equals the number of edges. So the two sums are
equal to one another.

Now, if we divide the left-hand sides and right-hand sides of the two equations (assuming the
denominator is non-zero, i.e., at least one sexual relation has occurred) we get

average number of sexual partners of a man

average number of sexual partners of a woman
=
|W |
|M |

.
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In America the gender ratio is about 51% women and 49% men, so if the sample of survey was
representative, we would expect that

average number of sexual partners of a man

average number of sexual partners of a woman
≈ 51%

49%
= 1.041 . . .

It is impossible for a man to have 7 partners on average and for a woman to have only 4!

4 Bipartite matchings

A matching in a graph G is a subset of the edges of G no pair of which share a common vertex.
For example, {{a, b}, {c, d}} is a matching in in the following graph:

a b

c d

e

We say a vertex is matched in a given matching if there is an edge in the matching that contains v.
A matching is perfect if all vertices are matched. The matching in the above example is not perfect
because vertex e is not matched. For a perfect matching to possibly exist, the graph must have an
even number of vertices.

Let’s now look at a bipartite graph G. Here is an example:

Wanda Xena Yvette Zoe

Arnie Bob Chuck Dave Ernie

Can we match all girls to a suitable boy? I’ll let you figure this one out. Now let’s look at another
group. Here, the boys are in the minority.

Will Xavier Yoav Zoran

Ayumi Betty Chrissie Deepa Esther
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Unfortunately this is not possible and here is why. Look at Will, Yoav, and Zoran. They are all
into Betty and Deepa and don’t have interest in the other girls. We cannot match three boys to
two girls.

This is a general phenomenon. To explain it we need a bit of notation. For a graph G = (V,E)
and a subset S of the vertices, the neighbour set N(S) of S is the set of vertices that have at least
one neighbour in S:

N(S) = {v ∈ V : {v, s} is an edge for some s ∈ S}.

Theorem 3 (Hall’s Theorem). Let G be a bipartite graph with vertex partition (M,W ). There exists
a matching that matches all vertices in M if and only if for every subset S ⊆M , |N(S)| ≥ |S|.

So the reason why boys and girls cannot be matched is always the same: There is a subset of the
boys that is interested in a smaller number of girls.

Proof. First, suppose that all vertices of M can be matched. Let S be an arbitrary subset of M .
For every s in S, let v be s’s partner in the matching. All such v’s are distinct so there are |S|
of them. All are neighbors of vertices in S and therefore members of N(S). It follows that N(S)
must have at least |S| members, so |N(S)| ≥ |S|.

Now we prove that if for every subset S ⊆M , |N(S)| ≥ |S|, then all vertices in M can be matched.
The proof is by strong induction on the size of M , which we denote by n.

Base case n = 1: M has size 1, and so N(M) has size at least 1. So the unique vertex m ∈ M
has a neighbor in W , to whom it can be matched.

Inductive step: Assume the proposition is true for all M of size 1 up to n. Let G be a bipartite
graph in which M has size n + 1. We assume that |N(S)| ≥ |S| for every S ⊆M and consider two
cases:

• Case 1: For every proper subset X of M , |N(X)| ≥ |X|+ 1. Take an arbitrary m ∈M and
match it with an arbitrary neighbor w ∈W . Remove s and w from the graph. Since only one
vertex from W was removed, |N(X)| must stay at least as large as |X| for every X ⊆M . By
the inductive hypothesis, all vertices in M − {m} can be matched. None of them is matched
to w because w was removed, so all vertices of M are matched.

• Case 2: |N(X)| = |X| for some proper subset X of M . All subsets X ′ of X satisfy |N(X ′)| ≥
|X ′|, so by our inductive hypothesis, all vertices in X can be matched. Remove all vertices in
X and N(X) from the graph. We will show that all remaining subsets of vertices Y ⊆M−X
have at least |Y | remaining neighbours in W − N(X). By the inductive hypothesis, it will
follow that all vertices in M −X can be matched to vertices in W −N(X). Putting the two
matchings together, we obtain one that matches all vertices in M .

It remains to show that all subsets Y ⊆ M −X have at least |Y | neighbours outside N(X).
The proof is by contradiction. Suppose there exists a subset Y ⊆M −X with fewer than |Y |
neighbours outside N(X). Then the vertices in X ∪ Y must have fewer than |N(X)| + |Y |
neighbours. Since |N(X)| = |X|, it follows that

|N(X ∪ Y )| < |X|+ |Y | = |X ∪ Y |
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because X and Y are disjoint. This contradicts our assumption that |N(S)| ≥ |S| for every
S ⊆M .

It follows by induction that the proposition is true for all m ≥ 1.

5 Stable matchings

We now have a group of n men and a group of n women. The objective is to marry them off one
to one. Every man ranks all the women in order of preference, and every woman does the same
for the men. We can represent this information by a complete bipartite graph (a bipartite graph
in which all possible edges are present) with labels like in this example. Here 1 stands for “most
desirable” and 3 stands for “least desirable.”

Xavier Yoav Zoran

Ayumi Betty Chrissie

1 2 3 2 1 3 1 2 3

2 1 3 1 2 3 1 2 3

In this example, Ayumi is Xavier’s first choice, but Xavier is Ayumi’s second choice.

We are seeking a perfect matching between the men and the women that is stable with respect to
their preferences. A matching is stable if it is not unstable. A matching is unstable if there exist
two pairs (m,w∗), (m∗, w) so that m is matched to w∗, m∗ is matched to w, m prefers w to w∗, and
w prefers m to m∗. For example, the matching (Xavier,Chrissie), (Yoav,Betty), (Zoran,Ayumi) is
unstable: Xavier prefers Betty to Chrissie, and Betty prefers Xavier to Yoav. Xavier and Betty are
a rogue couple: They would both rather run off with each other than stay with their partners in
the matching.

Xavier Yoav Zoran

Ayumi Betty Chrissie

1 2 3 2 1 3

1 2 3 1 2 3

♥

In contrast, the matching (Xavier,Betty), (Yoav,Ayumi), (Zoran,Chrissie) is stable: There are no
rogue couples in this matching.
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Xavier Yoav Zoran

Ayumi Betty Chrissie

1 2 3 2 1 3 1 2 3

2 1 3 1 2 3 1 2 3

By now you must be burning with the need to know the answer to the next question:

Given any n men, n women, and complete lists of n preferences for each person, is it
always possible to match the men and women so there are no rogue couples?

Not only is it possible, but there is a simple way to do it. The procedure is called the Gale-Shapley
algorithm after its inventors.

Repeat the following in rounds until all women have at most one proposal:
Each man proposes to the most desirable woman on his list that has not yet rejected him.
Each woman rejects all proposals except her most desirable one.

Let’s see how this plays out in our example. In the first round, Xavier proposes to Ayumi, Yoav
proposes to Betty, and Zoran also proposes to Ayumi.

Xavier Yoav Zoran

Ayumi Betty Chrissie

1 2 3 2 1 3 1 2 3

2 1 3 1 2 3 1 2 3

Ayumi has two proposals. Zoran’s is the less desirable one so she rejects him. Betty and Chrissie
receive at most one proposal so they issue no rejections.

Xavier Yoav Zoran

Ayumi Betty Chrissie

1 2 3 2 1 3 2 3

2 1 1 2 3 1 2 3

Now Xavier and Yoav still go for their first choices, but Zoran must move to his second choice
Betty:
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Xavier Yoav Zoran

Ayumi Betty Chrissie

1 2 3 2 1 3 2 3

2 1 1 2 3 1 2 3

Betty now has two suitors; she rejects the lower ranked Zoran. Ayumi and Chrissie issue no
rejections. In the next round, Xavier proposes to Ayumi, Yoav to Betty, and Zoran is only left
with Chrissie.

Xavier Yoav Zoran

Ayumi Betty Chrissie

1 2 3 2 1 3 3

2 1 1 2 1 2 3

We obtain a stable matching: Xavier to Ayumi, Yoav to Betty, and Zoran to Chrissie. You can
check that there are no rogue couples.

Theorem 4. Given any preference lists as input the Gale-Shapley algorithm terminates with a
stable matching.

Let’s first prove the following lemma:

Lemma 5. For every woman w and every round r of proposals, if w receives at least one proposal
in round r, then she receives at least one proposal in round r + 1. Moreover, the best proposal w
receives in round r + 1 is at least as desirable to her as the best proposal she receives in round r.

Proof. Let m be the highest ranked man on w’s list among the ones that propose to w in round
r. Then w was m’s best available choice and m was not rejected by w in round r. Therefore m
proposes to w in round r + 1.

Proof of Theorem 4. First we show that the algorithm terminates. Each woman can issue at most
n rejections, so at most n2 rejections can happen throughout the algorithm. In every round, at
least one rejection must happen; otherwise, every woman has at most one suitor. Therefore the
algorithm must terminate within at most n2 rounds.

Next we show that the algorithm produces a matching. We argue by contradiction. Suppose it
didn’t. Then there must exist a man m who was not matched. The only way this can happen is
that if m proposed to all women and was rejected by every single one of them. If every woman
rejected m, that means every woman must have received at least one proposal. By Lemma 5, every
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woman must have a proposal when the algorithm terminates. Since m is not proposing, there are
at most n− 1 men giving out n proposals at termination. This is a contradiction.

We now show that the resulting matching is stable. Again, we argue by contradiction. Suppose
there is a rogue couple (m,w) in the final matching. Then m must have proposed to w in some
round because w is higher ranked on m’s list than his final partner w∗. So m must have been
rejected by w. The reason w has rejected m is because she received a proposal from someone
higher ranked on her list. By Lemma 5, w’s future best proposals may become only more and more
desirable to her. So her final partner m∗ is more desirable to her than m is. It follows that (m,w)
is not a rogue couple, contradicting our assumption.

Is it better to be a man or better to be a woman in this algorithm? It looks like women may be
better off as they do all the choosing. In fact, the opposite is true: It is the men who end up with
their best possible choices!

Theorem 6. For every man m and woman w, if w ever rejects m, then (m,w) are not part of any
stable matching.

If a man was ever served a rejection by a woman, there is not even a one in a million chance that
the two might be a stable couple!

Proof. We prove the theorem by strong induction on the round r in which w rejects m.

Base case r = 1: If w rejects m in the first round, it means she had at least two proposals from
m and m∗, both of whom rank w first on their list. So any matching in which m is matched to w
and m∗ is matched to some other woman w∗ cannot be stable as (m∗, w) would be a rogue couple:
w is m∗’s first choice and w likes m∗ better than m.

Inductive step: Assume that every man-woman pair for which a rejection was served in rounds 1
up to r are not part of any stable matching. Now suppose w rejects m in round r + 1. Assume, for
contradiction, that there exists a stable matching Ξ in which m is matched to w. Since w rejected
m, she must have been proposed to by some m∗ that is higher on her list than m. By the inductive
hypothesis, Ξ cannot match m∗ to any of the women he proposed to up to round r because they all
rejected him and so Ξ wouldn’t be stable. Therefore Ξ must match m∗ to a woman w∗ that is less
desirable to him than w. But then (m∗, w) are a rogue couple in Ξ, contradicting our assumption
that Ξ is stable.
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