

LFKN PROTOGOL

PROVER HAS COMPLEXITY EXPOLENTIAL IN M VERIFIER HAS COMPLEXITY POly(4)

IDEA: REPRESENT THE NUMBER OF COLORINGS AS & POLYNOMIAL

 $P(x_1, ..., x_n) = \begin{cases} 1 & \text{IF COLORING IS VALID} \\ 0 & \text{IF NOT} \end{cases}$ COLORI COLORN

$$P(R_{1}G_{1}B) = ($$

$$P(R_{1}G_{1}B) = ($$

$$P(R_{1}G_{1}B) = 0$$

$$P(R_{1}B_{1}R) = 0$$

$$P(R_{2}B_{1}R) = 0$$

$$P(X_{1} \dots X_{n}) = \prod_{\substack{\{U,V\} \in D \in S}} P_{uv}(X_{u_{1}}X_{v})$$

$$WHERE$$

$$P_{uv}(X_{u_{1}}X_{v}) = \{1 \text{ IF } X_{1} \neq X_{v} = \{1 \text{ IF } X_{v} - X_{v} \in \{2,1\}\}$$

$$P_{uv}(X_{u_{1}}X_{v}) = \{0 \text{ IF } NOT. = \{0 \text{ IF } NOT$$

$$= (-((X_{u} - X_{v})^{2} - 1))((X_{u} - X_{v})^{2} - 4)$$

$$KEY: deg P = 4m \quad \text{WHICH } 1S \quad Low$$

$$V = \frac{\sum_{x_1,...,x_n} P(x_1,...,x_n)}{(NUHBER OF 3COLORINGS OF G)} P$$

SUM-CHECK PROTOCOL : GIVEN P ST. P,V CANS EVALUATE P (degP=d), PROVE $\sum_{x_1,\dots,x_n} \in [-1,9]S P(x_1,\dots,x_n) = S.$

$$P(1,0,-1) = 0 \text{ or } |$$

 $P(3,7,11) = 751$

ABILITY TO COMPUTE ON INPUTS THAT DO NOT REPRESENT COLORS IS IMPORTANT

P
P
V
Claim S =
$$E P(x_{1,...,X_{N}})$$

 $x_{1},y_{1} \in F(x_{1},...,x_{N})$
 $y_{2},y_{1} \in F(x_{1},...,x_{N})$
 $y_{2} = 3^{n}$.
DESCRIPTION OF r
BY ITS dH COEFFICIENTS
CHECK $r(-1)+r(0)+r(1) = S$
PROVE TIHAT
 $r(a_{1}) = \sum_{X_{1},...,X_{n}} P(a_{1}, X_{2}, ..., X_{N})$
FOR A DANDOTL a_{1} MODULD a_{1}
BASE Claim V $\neq P(a_{1},...,a_{N})$
NUMBERS MODULO a_{1} .
NUMBERS MODULO a_{2} .
V CAN CHECK ON HIS DINN.

SOUNDNESS Claim. IF
$$S \neq Z P(x_{1,...,x_{n}})$$
 THEN
VERIFIER REJECT WITH HIGH PROBABILITY.
 $P(x_{1}) = Z P(x_{1,...,x_{n}})$
ASSUMPTION $P(-1) + p(0) + p(1) \neq S$
BUT $r(-1) + r(0) + r(1) = S$
 $r \text{ AND } p \text{ ARE NOT THE}$
SAME POLYNOMIAL BUT
BOTH HAVE DEGREE SOL
 $r(x_{1}) = p(x_{1}) \text{ FOR AT MOST}$
 $d \text{ VALUES OF } x_{1}$
 $P[r(a_{n}) \neq p(a_{1})] \geq 1 - \frac{s_{1}}{q} \geq 1 - \frac{d}{3^{n}}$
UNION BOUND ALL PROVEL CLAIMS ARE
WRONG EXCEPT WITH PROP $\frac{dy}{q}$

$$\frac{E_{X, (2 \text{ COLORS})} P \frac{P(v, 0) + P(0, 1) + P(1, 0) + P(1, 1) = 3}{P(7, 0) + P(7, 1) = 11} V$$

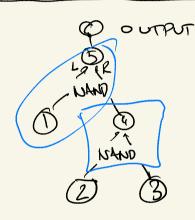
EFFICIENCY: VERIFIER O(d·n) = O(m·n) PROVER O(3") - COMPARABLE TO WORK IT TAKES JUST TO COMPUTE ANSWER

SHAMIR'S PROTOCOL: CAN CERTIFY ANY COMPUTATION THAT USES IN BITS OF MENDAY & RUNS IN TIME T VERIFIER COMPLEXITY = O(m. logT) PROVER COMPLEXITY COULD BE 20(M) DRAWBACKI: INEFFICIENT PROVER DRAWBACK2: IN ITSEF COULD BE VERY LARGE

PROTOCOL FOR GENEDAL COMPUTATION (LARGE TIME, LARGE METRORY)

IDEA: USE SUMCHECK-LIKE PLOTOCOL, NOT CLEAR HOW TO REPRESENT AS & POLYNOMIAL.

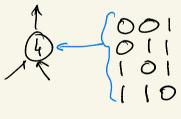
MODELING GENERAL COMPUTATION



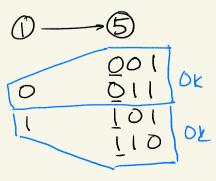
AS A COLORING PROBLEM VERTICES = GATES EDGES = WIRES

COLORS : INPUTS E { 0, 13

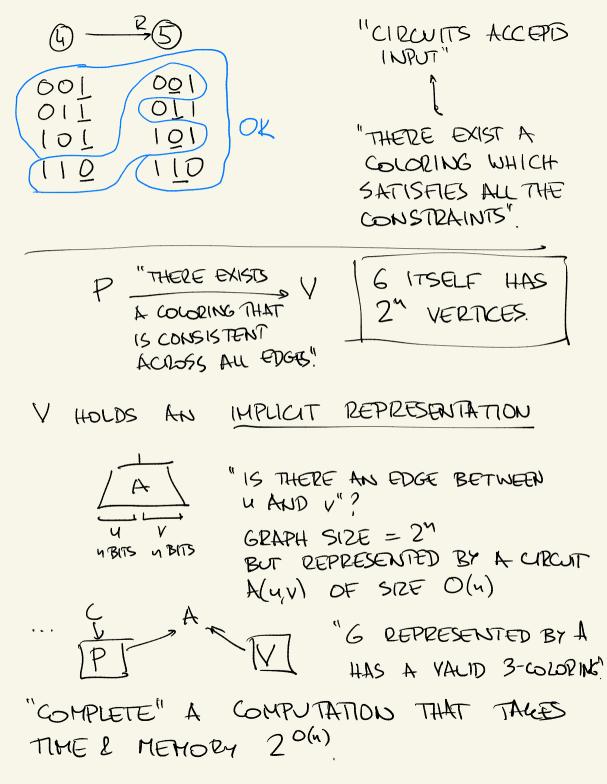
INTERNAL GATE GLOPS REPRESENT ASSIGNMENTS TO INPUT AND OUTPUT WIRES



001 011 COLORS FOR INTERNAL GATES



(O, IOI) NOT VALD



BOTH <u>COLORING</u> C AND <u>GRAPH</u> G ARE EXPONENTIANY LARGE,

 $\sum_{u,v \in \{q\}} ((C(u) - C(v))^2 - 1)^2 ((C(u) - C(v))^2 - 4)^2 A(u,v) = 0 \quad (*)$ C is A VALID 3 COLORING (C(u) $\in \{-1, q\}^2)$ IFF (*) HOLDS, $A(u,v) = 1 \longrightarrow C(u) \neq C(v)$.

- · C IS A "TABLE" OF 2" VALUES THAT VERTIFIED HAS NO CAPACITY TO STORE
- · IF WE WANT TO USE SUMCHECK IT BETTER BE THAT

 $((C(y) - C(y))^{2} - 1)((C(y) - C(y))^{2} - y) \cdot A(y, y)$

IS A LOW-DEGREE POLYNOMIAL IN YV. ENOUGH THAT A,C HAVE LOW DEGREE TURNS OUT A HAS SMALL SIZE (OG)) BUT ALSO LOW DEPTH -> AS AN <u>ARITHMETIC</u> CIRWIT A HAS DEGREE O(4),

IN CONTRAST C: Eq13" - 9-1,913 CAN BE AN ARBITPARY FUNCTION

P CAN REPRESENT C AS A MULTILINEAR
POLYNOMIAN (EVERY VAR HAS DEG <1)

$$\neg$$
 deg C \leq n.
EX. n=2 V={0,13² \textcircled{O} \textcircled{O} \textcircled{O}
COME UP WITH 10^{\bigcirc} \textcircled{O} \textcircled{O}
 $C(x,y) = a + bx + cy + dxy$
S.T. C(0,0) = 0 C(0,1) = 1 C(1,0) = -1 C(1,1) = 1
 $q = 0$ $q + c = 1$ $q + b = -1$ Soure
 $c = 1$ $b = -1$ Soure
H) GERNERAL CAN SOUVE FOR 2^M GEFFIGENB

IN GERVERAL CAN SOLVE FOR 2' WEFFIGENS IN TIME O(n.2")

EXPECTED BEHAVIOR OF HONEST POVER

• CREATE C OF TOTAL DEGREE < THAT REPRESENTS & VALID 3-COLORING OF G.

$$\frac{1}{2} \left(\sum_{u_2 \dots u_n V} \left((C(u) - C(v))^2 - 1 \right)^2 ((C(u) - C(v))^2 - 4)^2 A(u, v) \right) = 0$$

$$\frac{1}{2} \left(\sum_{u_2 \dots u_n V} \left((C(u) - C(v))^2 - 1 \right)^2 ((C(u) - C(v))^2 - 4)^2 A(u, v) \right) = 0$$

$$\frac{C(11,5,7) = ? C(3,0,21) = ?}{75 33}$$

FOR SOUNDNESS NEED TWO EXTRA LIFUS

- C IS A 3-COLORING WHEN RESTRICTED TO $\{0, 1\}^{n}$: $\forall x \in \{0, 1\}^{n}$: $C(x) \in \{-1, 0, 1\}$

MOTHER SUNCHEON

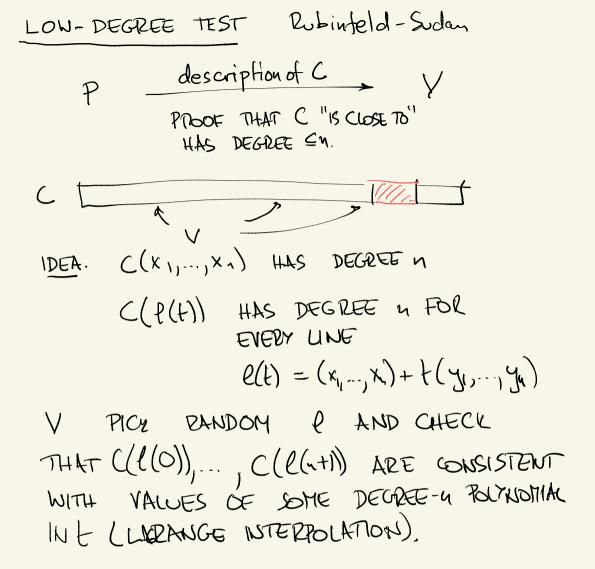
$$\sum_{x \in \{q_i\}} r^{x} C(x) (C(x)^{2} - 1) = 0 \quad (B) \leftarrow r^{x} = r^{x_1 + 2x_2 + \dots + 2^{n-1}x_n}$$

Claim. (A)
$$\longrightarrow$$
 (B)
(A) FAILS \longrightarrow (B) FAILS $W|P \ge |-\frac{27}{9}$

(B) AS A deg-n POLYNOMIAL IN X:

$$r^{X} = r^{X_{1}+2X_{2}+...+2^{n-1}X_{n}}$$

= $r^{X_{1}} (r^{2})^{X_{2}} ... (r^{2^{n-1}})^{X_{n}}$
= $(1 - x_{1} + x_{1}r) ... (1 - x_{n} + x_{n}r^{2^{n-1}}).$



Kilian'S IMPLEMENTATION OF BEL PROTOCOL

P SUCCINCT COMMITMENT OF C V
(IF V WANTS PO KNOW C(X)
ASK P FOR VALUE + CERTIFICATE) CONSISTENCY
SUMCHEUR
$$\Sigma r^{x} C(x)(c(x)^{2}-1) = 0$$
 ACTUAL COLORS
ARE USED
LOW-DECREE TEST C IS A LOW-DEC
POLY
SUMUHEUR $\Sigma (c(u)^{2}-1)^{2} A(u, x) = 0$ C IS A
VALID 3COL
OF G.