
CSC 5170: Theory of Computational Complexity Lecture 9
The Chinese University of Hong Kong 15 March 2010

We now embark on a study of computational classes that are more general than NP. As these
classes will all contain NP, we do not believe that they represent realistic models of computation.
However, they play an important role in the study of several phenomena seemingly unrelated to
NP such as randomness, interaction, and counting.

To explain our object of study let’s go back to NP and coNP. Back in Lecture 2 we gave some intu-
ition as to why these two complexity classes are believed to be different: While short (polynomial-
time verifiable) proofs that, say, a boolean formula is satisfiable obviously exist (in the form of
the satisfying assignment), we cannot think of similarly short refutations that a formula has no
satisfying assignments. So it is reasonable to conjecture that such refutations do not exist, and
therefore NP 6= coNP.

1 Beyond NP and coNP

Is there anything interesting beyond NP and coNP? One kind of problem that is hard for both NP
and coNP (and therefore unlikely to be in either of them) is a problem that asks for both a proof
and a refutation. For example consider the following problem:

EXACTCNF: Given a boolean formula φ in CNF and a number k, is it true that the
optimum satisfying assignment of φ (the one that satisfies the most clauses) satisfies
exactly k clauses?

This problem is hard for both NP and coNP. The reason is that it is asks us to both prove something
(there exists an assignment that satisfies k clauses) and refute something (no assignment satisfies
k+ 1 clauses). However, notice that if P = NP, we can solve this problem in polynomial time: We
check if there exist assignments that satisfy at least k and k+ 1 clauses, respectively, and accept if
the first answer is “yes” but the second one is ”no”.

Here is another example. Suppose we are given a circuit C and we are interested if it is minimal –
if it is the smallest circuit (say in terms of number of gates) with the given functionality. Formally,
C is minimal if:

MINCKT: For every circuit C ′ that is smaller than C, there exists an input x such that
C ′(x) 6= C(x).

This is a universally quantified statement, so it seems to be of the coNP type: To refute this
statement, we need to provide a circuit C ′ that is smaller than C but has the same functionality.
However, we do not know how to efficiently verify that C and C ′ have the same functionality. It
seems that to do so, we need to go over all assignments of C and C ′, which takes exponential time.

1

2

The problem MINCKT is also hard for both NP and coNP, but it seems to involve even an extra
level of hardness not present in EXACTCNF: Here the universal and existential quantifiers are
nested, so the input x depends on the circuit C ′. So even if we assumed that P = NP, it is not
clear this would help us solve MINCKT.

It turns out that this can be done anyway. To show how let’s have some definitions.

2 The polynomial-time hierarchy

These problems MINCKT and EXACTCNF are examples of problems in the polynomial-time hi-
erarchy. We start describing come classes in the hierarchy:

Definition 1. The class Σ2 consists of those decision problems L for which there exists a polynomial-
time TM A and a polynomial p such that x ∈ L if and only if there exists y of length p(|x|) such
that for all z of length p(|x|), A(x, y, z) accepts.

The class Π2 consists of those decision problems L for which there exists a polynomial-time TM A
and a polynomial p such that x ∈ L if and only if for all y of length p(|x|) there exists a z of length
p(|x|) such that A(x, y, z) accepts.

It is obvious that MINCKT is in Π2. What about EXACTCNF? We can restate this problem as
follows:

(There exists x that satisfies k clauses of φ) and (for all y, y does not satisfy k + 1
clauses of φ).

Since the two quantifiers are independent, they can be nested in either way, so EXACTCNF is in
both Σ2 and Π2.

We can generalize the definitions of Σ2 and Π2 to obtain complexity classes Σk and Πk for larger
k. The class Σk consists of those decision problems L for which there exists a polynomial-time TM
A and a polynomial p such that

x ∈ L⇔ ∃y1∀y2 · · · ∃/∀yk A(x, y1, y2, · · · , yk) accepts, where |yi| = p(|x|), i = 1, · · · k

and Πk is defined in a similar way. The polynomial-time hierarchy consists of the union of all of
these classes. Most of our intuition about the polynomial-time hierarchy comes from NP (i.e. Σ1),
coNP (i.e. Π1), Σ2 and Π2, so we’ll focus on those.

By definition, Σk consists of those problems whose complements are in Πk, and we have the following
containments:

P ⊆ NP, coNP ⊆ Σ2,Π2 ⊆ Σ3,Π3 ⊆ · · · ⊆ EXP.

We believe that all of these containments are distinct, although we only know for sure that P 6= EXP.

3

3 Relations within the polynomial-time hierarchy

We are now in a position to show that if P = NP, then the whole polynomial-time hierarchy collapses
to P. We will just show this is true for Σ2. The generalization to higher levels is straightforward.

Theorem 2. If P = NP, then Σ2 = P

Proof. Take any L in Σ2. Then

x ∈ L⇔ ∃y∀z,A(x, y, z) accepts, |y| = |z| = p(|x|)

for some polynomial-time TM A and polynomial p. Now define the language L′ by

(x, y) ∈ L′ if ∀z, V (x, y, z) accepts, |z| = p(|x|).

Since P = NP, coNP = P, so L′ is in P. So there is a polynomial-time TM M for L′, and

x ∈ L⇔ ∃y,M(x, y) accepts, |y| = p(|x|)

and L is in NP. Since NP = P we get L ∈ P.

Using a very similar argument we can also show that if NP = coNP, then Σ2 = NP, and the whole
hierarchy collapses to NP. All these results extend to higher levels of the hierarchy. We summarize
them in this table:

P, NP, coNP PH
Beliefs NP 6= coNP Σk 6= Πk for all k
Facts P = NP⇒ coNP = P P = NP⇒ Σk = Πk = P, for all k

Σk = Πk ⇒ Σk′ = Πk′ = Σk, for k′ ≥ k

4 Oracles

An oracle in complexity theory is an imaginary subroutine. For example, an oracle for SAT is an
imaginary procedure that on input a boolean formula φ, outputs 1 if φ is satisfiable, and 0 otherwise.
We do not believe that such a procedure can be implemented efficiently; however imagining that
we have it allows us to study the power we could get from an efficient SAT solver, if it existed. In
general, an oracle can be an arbitrary function O : {0, 1}∗ → {0, 1}∗, and we are interested in what
we could possibly achieve if we had efficient access to the functionality of O.

An oracle Turing Machine is a Turing Machine which contains two special tapes, a query tape and
a (read-only) answer tape and has a special query state. The computation of this TM proceeds as
usual, except when the TM goes into the query state. Then the contents of the answer tape are
updated solely as a function of the query tape. This step takes one unit of computation time. The
TM then goes to some other state and the computation proceeds as usual.

The relationships between queries (specified on the query tape) and answers (provided on the
answer tape) is specified by the oracle O. When an oracle TM is instantiated with oracle O, if the

4

query tape contains the string q ∈ {0, 1}∗, going to the query state will result in the answer tape
being overwritten by the string a = O(q). We use the notation M? to describe an oracle TM, and
MO for oracle TM M? instantiated by the oracle O.

To think of oracle Turing Machines, consider the following scenario. You are writing some big
computer program, but you depend on the work on your partner, who has to write an important
subroutine. The functionality of your program is then not completely determined by your work, but
also by what your partner will provide. For different functionalities O provided by your partner,
your program MO will behave in a different way. This is what is captured by the notation MO.

We already saw a very special kind of oracle TM: reductions. For example when we showed that
CSAT reduces to SAT we showed how to transform an instance C of CSAT into one φ of SAT so
that an oracle that determines if φ ∈ SAT tells us immediately if C ∈ CSAT. So the reduction from
CSAT to SAT can be viewed as a polynomial-time oracle TM that, when given oracle access to
SAT, solves CSAT. However, not every oracle TM can be described as a reduction: A reduction is
special that it makes exactly one call to the oracle and outputs as its answer whatever was provided
by the oracle.

4.1 Oracle complexity classes

The main reason we are interested in oracles is that they will allow us to study how computations
behave when they are given some extraordinary power, for instance the ability to solve SAT. To
understand this power we need to talk not about single oracle TMs, but about all possible efficient
oracle TMs. This motivates the following definition.

Definition 3. Let O an oracle. The class PO consists of all decision problems that are decided by
some polynomial-time oracle TM M? when M? is instantiated with the oracle O.

Similarly, we can define the class NPO: This is the class of decision problems that are decided by
some nondeterministic polynomial-time oracle TM M? when M? is instantiated with the oracle O.
Now for the same reason that P is contained in NP, we get that PO is contained in NPO.

We can do this for other complexity classes too: Any time we have a complexity class C which is
the class of problems solved by some class of Turing Machines and O is an oracle, we can define the
analogous class CO which is solved by oracle Turing Machines of the same type when instantiated
with the oracle O.

Let’s play with oracles for a bit to get a feel about what they do. For instance, what is PMATCHING?
This is just P, since any call to the oracle can be simulated by the polynomial-time machine making
the call. What about NPMATCHING? Again, any call to the oracle can be simulated by the machine,
so NPMATCHING = NP.

Let’s now try some more powerful oracles that solve harder problems. What about PSAT? A
polynomial-time machine with a SAT oracle can solve any NP question: first reduce to SAT, then
ask the question. But it can also solve any coNP question: reduce to SAT, ask the question,
then output the opposite answer. Therefore PSAT contains both ⊇ NP and coNP. The problem
EXACTSAT is an example of a problem in PSAT.

5

4.2 Oracles and the polynomial-time hierarchy

How does PSAT relate to Σ2 and Π2? The answer is given by the following theorem:

Theorem 4. NPSAT = Σ2

Since PSAT ⊆ NPSAT, we get that PSAT ⊆ Σ2. But PSAT is closed under complement, so we also
get PSAT ⊆ Π2.

Proof. We first show that Σ2 ⊆ NPSAT. Let L be a Σ2 problem and let A be a polynomial-time
TM such that

x ∈ L⇔ ∃y∀z A(x, y, z) accepts, |y| = |z| = p(|x|)

for some polynomial p. To show that L ∈ NPSAT, we will simulate the computation of A by
an oracle NP machine N? (which expects a SAT oracle). The nondeterministic tape of N will
correspond to the string y. So, given x and y, N? needs to check if for all z, A(x, y, z) accepts. To
do so, N wants to ask its oracle the question “Does A(x, y, z) reject for some z?” and output the
opposite answer. Since this is an NP-type question, it can be posed to a SAT oracle.

More formally, N? does the following: On input x and nondeterminism y, it constructs a TM Qx,y
that on input z accepts iff A(x, y, z) rejects. It converts Qx,y into a CNF formula φ via the Cook-
Levin reduction (which can be implemented in polynomial time) and asks its oracle the query φ.
N? then outputs the opposite answer from the one received by the oracle (since the oracle tells it
if for some z, A(x, y, z) rejects, and N? wants to tell if for all z, it accepts.)

We now argue that NPSAT ⊆ Σ2. Now let L ∈ NPSAT and let N? be an oracle TM that, when
given access to a SAT oracle, solves L. We will now construct the NTM A. Let’s think of the three
parts of the input to A as being divided into an x-tape, a y-tape, and a z-tape. The y-tape of
A will contain the nondeterminism of N . As N? starts its computation, A will follow along. The
question is what happens when N? makes an oracle call.

Since A cannot make oracle calls, it will do the following. When N? makes its ith oracle call with
the query φi, A will remember φi and will guess the answer bi to φi on its y-tape. It will then
proceed pretending that the answer was correct. At the end of the computation, it will need to
check that SAT(φi) = bi for all the queries asked. For those bi = 1, this involves asking if there
exists some assignment ai such that φi(ai) = 1. For those bi = 0, it involves asking if for all
assignments a′i, φi(a

′
i) = 0. So the guesses for ai can be included on the y-tape, while those for a′i

can be included on the z-tape of A.

Reformulating, A checks the following: Does there exist a string y, bits b1, . . . , bn, and strings
a1, . . . , an such that for all strings a′1, . . . , a

′
n it holds that, N? accepts on nondeterminism y, queries

φi and answers bi and either bi = 1 and φi(ai) = 1 or bi = 0 and φi(a′i) = 0?

This argument gives an alternate characterization of the polynomial hierarchy using oracle ma-
chines, and it can be extended to higher levels of the hierarchy too.

6

5 Circuits and the polynomial-time hierarchy

When we talked about boolean circuits, we said that while circuits are more powerful than Turing
Machines, we do not think this power is at all useful for solving NP problems. Indeed, proving that
NP 6⊆ P and the more general NP 6⊆ P/poly are regarded as having a similar level of difficulty. One
way to formalize this would be to say that if NP ⊆ P/poly, then NP = P. While we cannot say
this, we can prove a related statement regarding the polynomial-time hierarchy:

Theorem 5. If NP ⊆ P/poly, then Σ2 = Π2.

To prove this theorem, it will be convenient to use the following Π2-complete problem. Its com-
pleteness for Π2 follows directly from the fact that SAT is complete for NP:

∀2SAT = {φ : φ is a CNF s.t. ∀y∃z : φ(y, z)}.

Proof. We will assume that NP ⊆ P/poly and prove that ∀2SAT is in Σ2.

The assumption NP ⊆ P/poly says that there is a polynomial-size circuit family {Cn} that decides
SAT. What we will need is a polynomial-size circuit family for the search version of SAT: This
is a family of circuits {Sn} with multiple bits of output so that on input a CNF φ of length n,
Sn(φ) outputs some satisfying assignment for φ, if one exists (and is allowed to output anything
otherwise).

We can deduce the existence of the polynomial-size circuit family {Sn} by a search-to-decision
reduction similar to the one from Homework 1: On input φ of length n, Sn produces CNFs φ0 and
φ1 by setting the first input bit x1 to 0 and 1, respectively. It then uses the appropriate circuit
from {Cn} to determine if φ0 or φ1 are satisfiable. If either one of them is satisfiable, say φb, then
it outputs b as the first bit of a satisfying assignment and continues the same process to recover
the rest of the assignment. If neither is satisfiable, Sn can output an arbitrary output.

Now let φa(z) be the CNF obtained by fixing y to the value a in φ(y, z). If φa(z) (assume its length
is n) is satisfiable, then Sn(φa) will output a satisfying assignment for it. In other words, for any
y = a we have that

∃z : φ(a, z) if and only if φ(a, Sn(φa)) is true.

Since the value of a is arbitrary, it follows that

∀a∃z : φ(a, z) if and only if ∀a : φ(a, Sn(φa)) is true.

And therefore
φ ∈ ∀2SAT ⇐⇒ ∀a : φ(a, Sn(φa)).

We are making progress: We got rid of an existential quantifier! In fact the last statement looks like
a coNP statement. However it is not: It is unclear how the condition φ(a, Sn(φa)) can be checked
in polynomial time because Sn is a circuit.

7

While we do not know the circuit Sn, we know it must exist and have size p(n) for some polynomial
p. So we can try to guess it nondeterministically: Let’s try all circuits of size p(n) and see which
one of them works:

φ ∈ ∀2SAT ⇐⇒ ∃C of size p(n) ∀a : φ(a,C(φa))

If the formula φa is satisfiable for all a, then the circuit Sn will be guessed on some computation
path so Sn(φa) will produce a satisfying assignment z for φ(a, z). If φa is not satisfiable for some
a, then φ(a, z) is false for all z, so no matter which C we choose, C(φa) will be false.

6 Randomness and the polynomial-time hierarchy

Theorem 5 in particular implies that if NP ⊆ BPP, then Σ2 = Π2, giving more evidence to our
belief that randomness is not too powerful: Unless the polynomial-time hierarchy collapses, NP-
complete problems do not have efficient randomized algorithms. But are there problems outside
NP that can be solved by randomized algorithms?

In Lecture 6 we saw that assuming certain circuit lower bounds, we can in fact show that BPP = P,
so in particular BPP is contained in NP. However, BPP ⊆ NP appears to be a weaker statement
than BPP = P. Can we prove it without making any assumptions? This is not known; but once
we go one level up the polynomial-time hierarchy things get easier:

Theorem 6. BPP ⊆ Σ2 ∩Π2.

It is in fact sufficient to prove that BPP ⊆ Σ2, since BPP is closed under complementation.

To explain the proof of this theorem, let’s recall the Nisan-Wigderson pseudorandom generator.
This is a device that we can use to simulate the randomness of any randomized algorithm M that
runs in time p(n) for any polynomial p(n). We assumed that we have a “hard” family of functions
{fm : {0, 1}m → {0, 1}} where fm can be computed in time 2O(m), but no circuit of size 2δm can
compute fm correctly even on a 1/2 + 2−δm fraction of inputs, where δ > 0 is some constant. The
randomized simulation operates as follows: On input x of length n, we extract p(n) pseudorandom
bits by running the Turing Machine that computes fm on some carefully chosen collection of sub-
strings from some “input seed” s of size O(log n). Notice that m = O(log n). Then we proved that
from the point of view of M , for any fixed input x, the bits we extracted in this way behave almost
like random bits (with error strictly less than 1/6), so by enumerating over all 2O(logn) choices for
s, we can determine whether M(x) accepts or rejects for more than 2/3 values of the randomness.

Now suppose we dropped the assumption that {fm : {0, 1}m → {0, 1}} is computable in time 2O(m).
Then it turns out that we can get the second assumption for free:

Lemma 7. There is a constant δ > 0 such that for sufficiently large m, there exists a function
f : {0, 1}m → {0, 1} such that every circuit C on m inputs of size 2δm, Prx∼{0,1}m [C(x) = f(x)] ≤
1/2 + 2−δm.

Proof. Let f be a random function from {0, 1}m → {0, 1}. We show that Prx∼{0,1}m [C(x) = f(x)] ≤
1/2+2−δm for every C with nonzero probability over the choice of f . Let’s first look at a particular

8

C. Since f is random, the events C(x) = f(x) have probability 1/2 each and are independent as
x ranges over {0, 1}m. The expected number of x such that C(x) = f(x) is exactly 2m/2. Using
the Chernoff bound, the probability that C(x) = f(x) for more than (1 + ε)2m/2 values of x is at
most 2−ε

2·2m/3. Setting ε = 2 · 2−δm we get that

Prf
[
Prx∼{0,1}m [C(x) = f(x)] > 1/2 + 2−δm

]
≤ 2−2(1−2δ)m

.

Recall that the number of circuits of size s is at most 2s
2
. For s = 2δm we get that

Prf
[
Prx∼{0,1}m [C(x) = f(x)] > 1/2 + 2−δm for some C

]
≤ 2−2(1−2δ)m · 222δm

< 1

as long as δ < 1/4.

Can we simulate the randomness of M using this assumption only? Here is one idea: On input x
of length n, set m = c log n where c is a sufficiently large constant (depending on the running time
p(n) of M) and try to find some hard function f : {0, 1}m → {0, 1}. We can describe this function
as a table of values f(x) for all x ∈ {0, 1}m. If we manage to get hold of such a function, then we
can turn this function into a pseudorandom generator via the Nisan-Wigderson construction and
use it to simulate the randomness of M(x).

But how much time does it take to find the “hard” function fm? This may involve potentially
searching over all 22m functions from {0, 1}m to {0, 1}. Although m = O(log n), this process may
still take time exponential in n.

However, remember that we are not aiming to show that BPP = P, but the weaker statement
BPP ⊆ Σ2. And the function fm can be described using a “Σ2-sentence”:

There exists f : {0, 1}m → {0, 1} such that for every C of size at most 2δm, the number
of inputs z such that C(z) = f(z) is at most 2m−1 · (1/2 + 2−δm).

Since m = O(log n), the size of both f and C are at most poly(n), so this sentence looks exactly
like a Σ2 type computation. To finish up the proof, the Σ2-simulation of M can be described like
this:

On input x of length n, set m = c log n and accept iff there exists f : {0, 1}m → {0, 1}
such that for every C of size at most 2δm, the number of z such that C(z) = f(z)
is at most 2m−1 · (1/2 + 2−δm), and M(x,G(z)) accepts for more than half of the
strings G(z), z ∈ {0, 1}O(m), where G is the Nisan-Wigderson pseudorandom generator
construction based on f .

There is also a different proof of this theorem that does not make use of the Nisan-Wigderson
generator.

