Advanced topic: Space complexity
CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN

Chinese University of Hong Kong

Fall 2016



Review: time complexity

We have looked at how long it takes to solve various problems

What about the amount of memory?
We measure memory usage (space) by the number of tape cells used

Questions one may ask:
If a problem can be solved quickly, can it be solved with little memory?
If a problem can be solved with little memory, can it be solved quickly?



Space complexity

The space complexity of a Turing machine M is the function spz(n):

sp(n) = maximum number of cells that M ever reads

on any input of length n

Example: L ={wtw | we {ab}*}

M: On input z, until you reach #
Read and cross of first a or b before #
Read and cross off first a or b after #
If mismatch, reject
If all symbols except # are crossed off, accept
space complexity: n+ 1

“+1” because M may scan the blank symbol after the input



Sublinear space

If we assume the Turing machine has two tapes

1. Inputtape: contains the input and is read-only

2. Work tape: initially empty, only the cells used here is counted
We will assume this in this lecture
Then L can be solved in O(log n) space
L= {wtw | we {a,b}*}

Idea: Keep a counter, storing the number of symbols matched so far
Counter can represent a number of size m in using O(log m) bits



Logarithmic space

Smallest reasonable amount of space used will be logarithmic in input
length

Just keeping one counter/pointer requires log n memory!

Alanguage Lisin L if L can be decided by a deterministic Turing machine
(with read-only input tape) in O(log n) space



Time vs space

If a Turing machine runs in time ¢/ (n), how much space can it use?

If a Turing machine uses space sy7(n), how long can it take?



Time vs space

If a Turing machine runs in time ¢/ (n), how much space can it use?

At most as much space as the number of time steps
su(n) < tu(n)

If a Turing machine uses space sy7(n), how long can it take?

At most exponential time in the amount of space used
tar(n) < 20(sm(n) if spr(n) > logn
Reason:
Constant number of possibilities (say K) for each tape symbol
n possible input head locations
spr(n) possible work head locations
Total number of configurations < nsM(n)K“"M(") < 20(sm(n)) i
su(n) = logn



PATH

PATH = {(G, s, t) | Directed graph G has a directed path

from node s to node ¢}

As we will see, an important problem for space complexity

How much space is required for solving PATH?
BFSor DFSuses > nspace (n = |V(G)|)
We don’t know how to solve PATH in O(log n) space, but we can solve it in
O((log n)?) space



PATH in (log n)? space

Main idea: Recursion!

If tis reachable from s, must be reachable within n — 1 steps
Solve the question “Is v reachable from u within k steps?” recursively

Try all intermediate nodes w and asks
“Is w reachable from u within & /2 steps?”
“Is v reachable from w within k/2 steps?”
If answer is YES to both sub-questions for some w, then v reachable from u
within & steps



Savitch’s algorithm

Recursively answer “Can u reach v within k steps?”

Algorithm 1 PATH(u, v, k)

if t = O then

return whetheru = v
elseif k. = 1 then

return whether (u,v) € E
end if
for every vertex w do

if PATH(u, w, | k/2]) and PATH(w, v, [k/2]) then

return true

end if
end for
return false




PATH in (log n)? space

Depth of recursion: O(log n)

Additional memory for each level: O(log n)
to remember the intermediate node for this level

unlike time, space can be reused!

Overall space used: O((log n)?)



Aside: repeated squaring

To compute A™, how many multiplications required?

To compute A™:
If n =0, return 1
If n is even, recursively compute B = A™/2 and return B2
If nis odd, retursively compute B = A("~1/2 and return B2 - B

O(log n) multiplications

When A is the adjacency matrix and not a scalar
repeated squaring is analogous to previous algorithm for PATH



Nondeterministic log-space

Why is PATH important?
Analogous to P vs NP, we can consider the nondeterministic analog of L

and asks L vs NL

Alanguage Lisin NL if L can be decided by a nondeterministic Turing
machine (with read-only input tape) in O(log n) space



NL-completeness

Alanguage B is NL-complete if
1. BisinNL;and

2. every language A in NL log-space reduces to B

We consider log-space reductions, because polynomial-time reductions are
too coarse

Theorem
PATH is NL-complete

AssumingL # NL



PATH is NL-complete

PATH isin NL:

Nondeterministic Turing machine guesses a path from sto ¢
More precisely, the machine remembers the current node on the path and
guesses the next node

PATH is NL-hard:

For any language A in NL
Let N be a log-space nondeterministic Turing machine for A
Construct the directed graph GG whose vertices are configurations of N
Let s be the initial configuration and ¢ be the accepting configuration



PATH is NL-hard: details

Listing all siy(n) nodes/configurations can be done with O(sy (7)) space

Checking whether one configuration leads to another (whether one node
has an edge to another) can be done in O(sy(n)) space

Since sy (n) = O(logn),
constructing (G, s, t) can be done in O(log n) space

By modifying IV, we may assume its accepting configuration is unique



Caveat and consequences

Recall: NP = set of languages having polynomial-time verifier
A similar definition (with log-space verifier) is not unlikely to be true for NL
Intuitively, NL machines do not have enough memory to remember all
nondeterministic choices

Since PATH is NL-complete and can be solved in O((log n)?) spaces
Every problem in NL can be solved in O((log n)?) space!
(Savitch’s theorem)

Even though we believe NP-complete problems takes exponential amount
of time compared to P problems, space is another story



Hierarchy theorems



Hierarchy theorem

Given more space, can Turing machines/algorithms solve more problems?

Are there problems solvable in n? space but not in n? space?

Given any “nice” function f : N — N, there is a language decidable in
O(f(n)) space but notin o(f(n)) space

For example, n3, log n, nlog n will be “nice”

(If a function does not always take integer values, such as log n, we
consider rounding down the output to an integer)



Space-constructible functions

Technical definition of “nice” is space-constructible

Afunction f : N — N, where f(n) > log n, is space-constructible if the
function mapping an input w of length n to the binary representation of
f(n) is computable by a Turing machine in space O(f(n)).

Space hierarchy theorem is therefore

Given any space-constructible function f : N — N, there is a language
decidable in O(f(n)) space butnotin o(f(n)) space



Corollary

Forany a < b, there are functions computable in space O(nb) but notin
space O(n®)

Statement is intuitive
Hardest part: proving that all Turing machines with less space fails to solve
a problem



The “difficult” problem

L = {(M, w) | Turing machine M rejects (M, w) in space < f(n)
n= (M, w)}

Need to show
1. L cannot be decided in space o(f(n))
2. L can be decided in space O(f(n))

An artifical problem

For technical reason, we assume the Turing machines M have
constant-sized tape alphabet (such as 4), independent of n



Not solvable in space o(f(n))

L = {(M,w) | Turing machine M rejects (M, w) in space < f(n)
n=|(M,w)|}

Proof by contradiction

Suppose L can be decided in space o(f(n)) by a Turing machine D
What happens if M = D and wis very long?

When w is very long, nis big, and o(f(n)) will be smaller than f(n)



Not solvable in space o(f(n))

L = {(M,w) | Turing machine M rejects (M, w) in space < f(n)
n=|(M,w)}

Case L: If D accepts (D, w)
then (D, w) € L (because D decides L)
hence D rejects (D, w) (by definition of L)

Case 2: If D rejects (D, w)
then (D, w) ¢ L (because D decides L)
hence D doesn’t reject (D, w) (by definition of L)
Since D decides L, D accepts (D, w)

Combining two cases = contradiction



Solvable in space O(f(n))

L = {(M,w) | Turing machine M rejects (M, w) in space < f(n)
n=[(M,w)}

Idea: simulate M
Since M is supposed to use only < f(n) space
Simulation can be done using O(f(n)) space
Keeping track of M’s states takes O(log n) space

If M tries to use more than f(n) space, aborts simulation and rejects

Here we use the assumption that f(n) is space-constructible
Simulator needs to know how much tape space to allocate for simulating
M



Solvable in space O(f(n))

L = {(M,w) | Turing machine M rejects (M, w) in space < f(n)
n=|(M,w)|}

Idea: simulate M

Challenge: M may infinite-loop on (M, w)
Solution:
Computation in space f(n) goes through 20U (7)) configurations
If the same configuration appears twice, M loops indefinitely

When simulating M, keeps track of the number of steps
If it exceeds 20(f(”)), simulator rejects
This counter takes up additional O(f(n)) space



Conclusion

L = {(M,w) | Turing machine M rejects (M, w) in space < f(n)
n=|(M,w)}

1. L cannot be decided in space o(f(n)) v
2. L canbe decided inspace O(f(n)) v

Why this artifical problem?



Diagonalization

L = {(M,w) | Turing machine M rejects (M, w) in space < f(n)
n= (M, w)}

Need a problem not solvable by all Turing machines that runs in o(f(n))
space

That’s why L involves Turing machines running in small space



Time hierarchy

Similar theorem for time complexity

Given any time-constructible function f : N — N there is a language
decidable in O(f(n)) time but notin o(f(n)/log n) time

Afunction f : N — N, where f(n) > nlog n, is time-constructible if the
function mapping an input w of length n to the binary representation of
f(n) is computable by a Turing machine in time O(f(n)).

L = {(M,w) | Turing machine M rejects (M, w) in < f(n)/log ntime
n=|(M,w)|}

Proof follows similar high-level strategy
1. L cannot be decided in o(f(n)/log n) time
2. L canbe decided in O(f(n)) time



