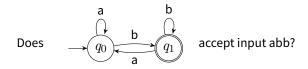
Decidability

CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN

Chinese University of Hong Kong

Fall 2016



We can formulate this question as a language

$$A_{\mathrm{DFA}} = \{\langle D, w \rangle \mid D \text{ is a DFA that accepts input } w\}$$

Is A_{DFA} decidable?

One possible way to encode a DFA $D=(\mathit{Q},\Sigma,\delta,\mathit{q}_0,\mathit{F})$ and input w

$$(\underbrace{(\mathsf{q0},\mathsf{q1})}_Q\underbrace{(\mathsf{a},\mathsf{b})}_\Sigma\underbrace{((\mathsf{q0},\mathsf{a},\mathsf{q0})(\mathsf{q0},\mathsf{b},\mathsf{q1})(\mathsf{q1},\mathsf{a},\mathsf{q0})(\mathsf{q1},\mathsf{b},\mathsf{q1}))}_\delta\underbrace{(\mathsf{q0})}_{q_0}\underbrace{(\mathsf{q1})}_F(\underbrace{\mathsf{abb}}_w)$$

$$A_{\mathrm{DFA}} = \{ \langle D, w \rangle \mid D \text{ is a DFA that accepts input } w \}$$

Pseudocode:

On input
$$\langle D,w\rangle$$
 , where $D=(Q,\Sigma,\delta,q_0,F)$

Set
$$q \leftarrow q_0$$

For $i \leftarrow 1$ to length (w)
 $q \leftarrow \delta(q, w_i)$
If $q \in F$ accept, else reject

TM description:

On input $\langle D,w\rangle$, where D is a DFA, w is a string

Simulate D on input w If simulation ends in an accept state, accept; else reject

$$A_{\mathrm{DFA}} = \{\langle D, w \rangle \mid D \text{ is a DFA that accepts input } w\}$$

Turing machine details:

Check input is in correct format (Transition function is complete, no duplicate transitions)

Perform simulation:

```
((q0,q1)(a,b)((q0,a,q0)(q0,b,q1)(q1,a,q0)(q1,b,q1))(q0)(q1))(abb)
((q0,q1)(a,b)((q0,a,q0)(q0,b,q1)(q1,a,q0)(q1,b,q1))(q0)(q1))(abb)
((q0,q1)(a,b)((q0,a,q0)(q0,b,q1)(q1,a,q0)(q1,b,q1))(q0)(q1))(abb)
((q0,q1)(a,b)((q0,a,q0)(q0,b,q1)(q1,a,q0)(q1,b,q1))(q0)(q1))(abb)
```

$$A_{\mathrm{DFA}} = \{\langle D, w \rangle \mid D \text{ is a DFA that accepts input } w\}$$

Turing machine details:

Check input is in correct format (Transition function is complete, no duplicate transitions)

Perform simulation: (very high-level)

Put markers on start state of ${\cal D}$ and first symbol of ${\cal w}$ Until marker for ${\cal w}$ reaches last symbol:

Update both markers

If state marker is on accepting state, accept; else reject

Conclusion: A_{DFA} is decidable

Acceptance problems about automata

$$A_{\rm DFA} = \{\langle D, w \rangle \mid D \text{ is a DFA that accepts input } w\} \qquad \checkmark$$

$$A_{\rm NFA} = \{\langle N, w \rangle \mid N \text{ is an NFA that accepts input } w\}$$

$$A_{\rm REX} = \{\langle R, w \rangle \mid R \text{ is a regular expression that generates } w\}$$

Which of these is decidable?

Acceptance problems about automata

$$A_{\mathrm{NFA}} = \{\langle N, w \rangle \mid N \text{ is an NFA that accepts input } w\}$$

The following TM decides $A_{\rm NFA}$: On input $\langle N,w\rangle$ where N is an NFA and w is a string

Convert N to a DFA D using the conversion procedure from Lecture 3 Run TM M for $A_{\rm DFA}$ on input $\langle D,w\rangle$ If M accepts, accept; else reject

Conclusion: A_{NFA} is decidable \checkmark

Acceptance problems about automata

 $A_{\mathsf{REX}} = \{\langle R, w \rangle \mid R \text{ is a regular expression that generates } w\}$

The following TM decides $A_{\rm REX}$ On input $\langle R,w\rangle$, where R is a regular expression and w is a string

Convert R to an NFA N using the conversion procedure from Lecture 4 Run the TM for $A_{\rm NFA}$ on input $\langle N,w\rangle$ If N accepts, accept; else reject

Conclusion: A_{REX} is decidable \checkmark

$$\begin{aligned} \mathsf{MIN}_{\mathsf{DFA}} &= \{\langle D\rangle \mid D \text{ is a minimal DFA}\} \\ \mathsf{EQ}_{\mathsf{DFA}} &= \{\langle D_1, D_2\rangle \mid D_1 \text{ and } D_2 \text{ are DFAs and } L(D_1) = L(D_2)\} \\ E_{\mathsf{DFA}} &= \{\langle D\rangle \mid D \text{ is a DFA and } L(D) \text{ is empty}\} \end{aligned}$$

Which of the above is decidable?

$$\operatorname{MIN}_{\operatorname{DFA}} = \{ \langle D \rangle \mid D \text{ is a minimal DFA} \}$$

The following TM decides MIN $_{\rm DFA}$ On input $\langle D \rangle,$ where D is a DFA

Run the DFA minimization algorithm from Lecture 7 If every pair of states is distinguishable, accept; else reject

Conclusion: MIN_{DFA} is decidable ✓

$$\mathsf{EQ}_\mathsf{DFA} = \{\langle D_1, D_2 \rangle \mid D_1 \text{ and } D_2 \text{ are DFAs and } L(D_1) = L(D_2) \}$$

The following TM decides EQ_{DFA} On input $\langle D_1,D_2\rangle$, where D_1 and D_2 are DFAs

Run the DFA minimization algorithm from Lecture 7 on D_1 to obtain a minimal DFA D_1^\prime

Run the DFA minimization algorithm from Lecture 7 on ${\cal D}_2$ to obtain a minimal DFA ${\cal D}_2'$

If $D_1' = D_2'$, accept; else reject

Conclusion: EQ_{DFA} is decidable ✓

$$E_{\mathrm{DFA}} = \{\langle D \rangle \mid D \text{ is a DFA and } L(D) \text{ is empty}\}$$

The following TM $\,T$ decides E_{DFA} On input $\langle D \rangle$, where D is a DFA

Run the TM S for EQ_{DFA} on input $\langle D, \longrightarrow \rangle$ If S accepts, T accepts; else T rejects

Conclusion: E_{DFA} is decidable \checkmark

$$A_{\rm CFG}=\{\langle\,G,w\rangle\mid G\text{ is a CFG that generates }w\}$$

$$L\text{ where }L\text{ is a context-free language}$$

$$\mathrm{EQ}_{\mathrm{CFG}}=\{\langle\,G_1,\,G_2\rangle\mid\,G_1,\,G_2\text{ are CFGs and }L(G_1)=L(G_2)\}$$

Which of the above is decidable?

$$A_{\mathsf{CFG}} = \{\langle G, w \rangle \mid G \text{ is a CFG that generates } w\}$$

The following TM $\,V$ decides $\,A_{\rm CFG}$ On input $\,\langle\,G,\,w\,\rangle$, where $\,G$ is a CFG and $\,w$ is a string

Eliminate the arepsilon- and unit productions from G Convert G into Chomsky Normal Form G' Run Cocke-Younger-Kasami algorithm on $\langle\,G',\,w\,\rangle$ If the CYK algorithm finds a parse tree, $\,V$ accepts; else $\,V$ rejects

Conclusion: A_{CFG} is decidable \checkmark

${\cal L}$ where ${\cal L}$ is a context-free language

Let L be a context-free language There is a CFG G for L

The following TM decides ${\cal L}$ On input ${\it w}$

Run TM $\,V$ from the previous slide on input $\langle\,G,w\rangle$ If $\,V$ accepts, accept; else reject

Conclusion: every context-free language L is decidable

$$\mathsf{EQ}_{\mathsf{CFG}} = \{\langle \mathit{G}_1, \mathit{G}_2 \rangle \mid \mathit{G}_1, \mathit{G}_2 \text{ are CFGs and } \mathit{L}(\mathit{G}_1) = \mathit{L}(\mathit{G}_2) \}$$
 is not decidable

What's the difference between EQ_{DFA} and EQ_{CFG}?

To decide EQ_{DFA} we minimize both DFAs

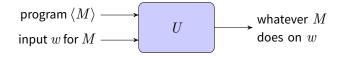
But there is no method that, given a CFG or PDA, produces a unique equivalent minimal CFG or PDA

Turing Machines versus computers

A computer is a machine that manipulates data according to a list of instructions

How does a Turing machine take a program as part of its input?

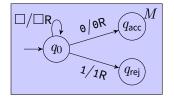
The universal Turing machine



The universal TM $\,U$ takes as inputs a program $\,M$ and a string $\,x$, and simulates $\,M$ on $\,w$

The program ${\cal M}$ itself is specified as a TM

Turing machines as strings



A Turing machine is $(Q, \Sigma, \Gamma, \delta, \mathit{q}_0, \mathit{q}_{\mathrm{acc}}, \mathit{q}_{\mathrm{rej}})$

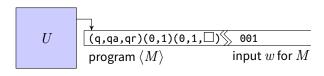
This Turing machine can be described by the string

$$\langle M \rangle = (\mathsf{q},\mathsf{qa},\mathsf{qr})(\mathsf{0},\mathsf{1})(\mathsf{0},\mathsf{1},\square)$$

$$((\mathsf{q},\mathsf{q},\square/\square \mathsf{R})(\mathsf{q},\mathsf{qa},\mathsf{0}/\mathsf{0R})(\mathsf{q},\mathsf{qr},\mathsf{1}/\mathsf{1R}))$$

$$(\mathsf{q})(\mathsf{qa})(\mathsf{qr})$$

The universal Turing machine



U on input $\langle M, w \rangle$:

Simulate M on input w If M enters accept state, U accepts If M enters reject state, U rejects

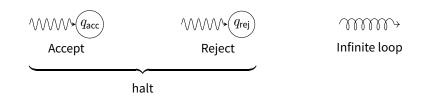
Acceptance of Turing machines

$$A_{\rm TM} = \{\langle M,w\rangle \mid M \text{ is a TM that accepts } w\}$$

$$U \text{ on input } \langle M,w\rangle \text{ simulates } M \text{ on input } w$$

TM U recognizes A_{TM} but does not decide A_{TM}

Recognizing versus deciding



The language recognized by a TM ${\cal M}$ is the set of all inputs that ${\cal M}$ accepts

A TM decides language ${\cal L}$ if it recognizes ${\cal L}$ and halts on every input

A language ${\cal L}$ is decidable if some TM decides ${\cal L}$