
1/29

Parsing
CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN

Chinese University of Hong Kong

Fall 2016

2/29

Context-free versus regular

Write a CFG for the language (0+ 1)∗111

S → U111

U → 0U | 1U | ε

Can you do so for every regular language?

Every regular language is context-free

regular
expression NFA DFA

2/29

Context-free versus regular

Write a CFG for the language (0+ 1)∗111

S → U111

U → 0U | 1U | ε

Can you do so for every regular language?

Every regular language is context-free

regular
expression NFA DFA

2/29

Context-free versus regular

Write a CFG for the language (0+ 1)∗111

S → U111

U → 0U | 1U | ε

Can you do so for every regular language?

Every regular language is context-free

regular
expression NFA DFA

3/29

From regular to context-free

regular expression ⇒ CFG

∅ grammar with no rules

ε S → ε

a (alphabet symbol) S → a

E1 + E2 S → S1 | S2

E1E2 S → S1S2

E∗
1 S → SS1 | ε

S becomes the new start variable

4/29

Context-free versus regular

Is every context-free language regular?

S → 0S1 L = {0n1n | n > 0}
Is context-free but not regular

regular

context-free

4/29

Context-free versus regular

Is every context-free language regular?

S → 0S1 L = {0n1n | n > 0}
Is context-free but not regular

regular

context-free

5/29

Ambiguity

6/29

Ambiguity

E → E+E | E*E | (E) | N
N → 1N | 2N | 1 | 2

1+2*2

*

+

1 2

2

7
= 6

+

1 *

2 2

= 5

A CFG is ambiguous if some string has more than one parse tree

7/29

Example

Is S → SS |x ambiguous?

Yes, because
S

S

S
x

S
x

S
x

S

S
x

S

S
x

S
x

Two ways to derive xxx

7/29

Example

Is S → SS |x ambiguous?

Yes, because
S

S

S
x

S
x

S
x

S

S
x

S

S
x

S
x

Two ways to derive xxx

8/29

Disambiguation

S → SS |x ⇒ S → Sx|x

S

S

S
x

x

x

Sometimes we can rewrite the grammar to remove ambiguity

9/29

Disambiguation

E → E+E | E*E | (E) | N
N → 1N | 2N | 1 | 2

+ and * have the same precedence!
Divide expression into terms and factors

2 * (1 + 2 * 2)
F F

TT

FT

10/29

Disambiguation

E → E+E | E*E | (E) | N
N → 1N | 2N | 1 | 2

An expression is a sum of one or more terms E → T | E+T

Each term is a product of one or more factors T → F | T*F

Each factor is a parenthesized expression or a number F → (E) | 1 | 2

11/29

Parsing example

E → T | E+T
T → F | T*F
F → (E) | 1 | 2

Parse tree for
2+(1+1+2*2)+1

E
E
T

T
F
2

+ F
(E
E

E
T
F
1

+ T
F
1

+ T
T
F
2

* F
2

)

+ T
F
1

12/29

Disambiguation

Disambiguation is not always possible because
There exists inherently ambiguous languages

There is no general procedure for disambiguation

In programming languages, ambiguity comes from the precedence rules,
and we can resolve like in the example

In English, ambiguity is sometimes a problem:

︸ ︷︷ ︸︷ ︸︸ ︷
I look at

︷ ︸︸ ︷
the dogwith one eye︸ ︷︷ ︸

12/29

Disambiguation

Disambiguation is not always possible because
There exists inherently ambiguous languages

There is no general procedure for disambiguation

In programming languages, ambiguity comes from the precedence rules,
and we can resolve like in the example

In English, ambiguity is sometimes a problem:

︸ ︷︷ ︸︷ ︸︸ ︷
I look at

︷ ︸︸ ︷
the dogwith one eye︸ ︷︷ ︸

13/29

Parsing

S → 0S1 | 1S0S | T
T → S | ε

input: 0011

Is 0011 ∈ L?
If so, how to build a parse tree with a program?

14/29

Parsing

S → 0S1 | 1S0S | T
T → S | ε

input: 0011

Try all derivations?

S

T
ε

S …

1S0S
…

10S10S …

0S1

0T1 …

01S0S1 …

00S11
00T11

00113

00S11
…

This is (part of) the tree of all derivations, not the parse tree

14/29

Parsing

S → 0S1 | 1S0S | T
T → S | ε

input: 0011

Try all derivations?

S

T
ε

S …

1S0S
…

10S10S …

0S1

0T1 …

01S0S1 …

00S11
00T11

00113

00S11
…

This is (part of) the tree of all derivations, not the parse tree

14/29

Parsing

S → 0S1 | 1S0S | T
T → S | ε

input: 0011

Try all derivations?

S

T
ε

S …

1S0S
…

10S10S …

0S1

0T1 …

01S0S1 …

00S11
00T11

00113

00S11
…

This is (part of) the tree of all derivations, not the parse tree

14/29

Parsing

S → 0S1 | 1S0S | T
T → S | ε

input: 0011

Try all derivations?

S

T
ε

S …

1S0S
…

10S10S …

0S1

0T1 …

01S0S1 …

00S11
00T11

00113

00S11
…

This is (part of) the tree of all derivations, not the parse tree

15/29

Problems

1. Trying all derivations may take too long

2. If input is not in the language, parsing will never stop

Let’s tackle the 2nd problem

16/29

When to stop

S → 0S1 | 1S0S | T
T → S | ε

Idea: Stop when
|derived string| > |input|

Problems:

S ⇒ 0S1 ⇒ 0T1 ⇒ 01

Derived string may shrink
because of “ε-productions”

S ⇒ T ⇒ S ⇒ T ⇒ . . .

Derviation may loop because
of “unit productions”

Remove ε and unit productions

16/29

When to stop

S → 0S1 | 1S0S | T
T → S | ε

Idea: Stop when
|derived string| > |input|

Problems:

S ⇒ 0S1 ⇒ 0T1 ⇒ 01

Derived string may shrink
because of “ε-productions”

S ⇒ T ⇒ S ⇒ T ⇒ . . .

Derviation may loop because
of “unit productions”

Remove ε and unit productions

16/29

When to stop

S → 0S1 | 1S0S | T
T → S | ε

Idea: Stop when
|derived string| > |input|

Problems:

S ⇒ 0S1 ⇒ 0T1 ⇒ 01

Derived string may shrink
because of “ε-productions”

S ⇒ T ⇒ S ⇒ T ⇒ . . .

Derviation may loop because
of “unit productions”

Remove ε and unit productions

17/29

Removing ε-productions

Goal: remove allA → ε rules for every non-start variableA

If S is the start variable and the
rule S → ε exists

Add a new start variableT
Add the ruleT → S

For every ruleA → εwhereA is
not the (new) start variable

1. Remove the ruleA → ε

2. If you seeB → αAβ
Add a new ruleB → αβ

S → ACD
A → a
B → ε
C → ED | ε
D → BC | b
E → b

D → C
S → AD
D → ε

C → E
S → A

Removing → ε

17/29

Removing ε-productions

Goal: remove allA → ε rules for every non-start variableA

If S is the start variable and the
rule S → ε exists

Add a new start variableT
Add the ruleT → S

For every ruleA → εwhereA is
not the (new) start variable

1. Remove the ruleA → ε

2. If you seeB → αAβ
Add a new ruleB → αβ

S → ACD
A → a
����B → ε
C → ED | ε
D → BC | b
E → b

D → C

S → AD
D → ε

C → E
S → A

RemovingB → ε

17/29

Removing ε-productions

Goal: remove allA → ε rules for every non-start variableA

If S is the start variable and the
rule S → ε exists

Add a new start variableT
Add the ruleT → S

For every ruleA → εwhereA is
not the (new) start variable

1. Remove the ruleA → ε

2. If you seeB → αAβ
Add a new ruleB → αβ

S → ACD
A → a
����B → ε
C → ED | �ε
D → BC | b
E → b

D → C
S → AD

D → ε

C → E
S → A

RemovingC → ε

17/29

Removing ε-productions

Goal: remove allA → ε rules for every non-start variableA

If S is the start variable and the
rule S → ε exists

Add a new start variableT
Add the ruleT → S

For every ruleA → εwhereA is
not the (new) start variable

1. Remove the ruleA → ε

2. If you seeB → αAβ
Add a new ruleB → αβ

S → ACD
A → a
����B → ε
C → ED | �ε
D → BC | b
E → b

D → C
S → AD
D → ε

C → E
S → A

RemovingC → ε

17/29

Removing ε-productions

Goal: remove allA → ε rules for every non-start variableA

If S is the start variable and the
rule S → ε exists

Add a new start variableT
Add the ruleT → S

For every ruleA → εwhereA is
not the (new) start variable

1. Remove the ruleA → ε

2. If you seeB → αAβ
Add a new ruleB → αβ

S → ACD
A → a
����B → ε
C → ED | �ε
D → BC | b
E → b

D → C
S → AD
����D → ε

C → E

S → A

RemovingD → ε

17/29

Removing ε-productions

Goal: remove allA → ε rules for every non-start variableA

If S is the start variable and the
rule S → ε exists

Add a new start variableT
Add the ruleT → S

For every ruleA → εwhereA is
not the (new) start variable

1. Remove the ruleA → ε

2. If you seeB → αAβ
Add a new ruleB → αβ

S → ACD
A → a
����B → ε
C → ED | �ε
D → BC | b
E → b

D → C
S → AD
����D → ε

C → E
S → A

RemovingD → ε

18/29

Eliminating ε-productions

For everyA → ε rule whereA is not the start variable

1. Remove the ruleA → ε

2. If you seeB → αAβ
Add a new ruleB → αβ

Do 2. every timeA appears

B → αAβAγ yields
B → αβAγ B → αAβγ

B → αβγ

B → A becomesB → ε

IfB → εwas removed earlier,
don’t add it back

18/29

Eliminating ε-productions

For everyA → ε rule whereA is not the start variable

1. Remove the ruleA → ε

2. If you seeB → αAβ
Add a new ruleB → αβ

Do 2. every timeA appears

B → αAβAγ yields
B → αβAγ B → αAβγ

B → αβγ

B → A becomesB → ε

IfB → εwas removed earlier,
don’t add it back

19/29

Eliminating unit productions

A unit production is a production of the form
A → B

Grammar:

S → 0S1 | 1S0S | T
T → S | R | ε
R → 0SR

Unit production graph:

S T

R

20/29

Removing unit productions

1 If there is a cycle of unit productions

A → B → · · · → C → A

delete it and replace everything withA

S → 0S1 | 1S0S | T
T → S | R | ε
R → 0SR

S T

R

S → 0S1 | 1S0S
S → R | ε
R → 0SR

ReplaceT by S

20/29

Removing unit productions

1 If there is a cycle of unit productions

A → B → · · · → C → A

delete it and replace everything withA

S → 0S1 | 1S0S |��T
��T → �S | R | ε
R → 0SR

S T

R

S → 0S1 | 1S0S
S → R | ε
R → 0SR

ReplaceT by S

21/29

Removal of unit productions

2 replace any chain

A → B → · · · → C → α

by A → α, B → α, . . . , C → α

S → 0S1 | 1S0S
| R | ε

R → 0SR

S

R

S → 0S1 | 1S0S
| 0SR | ε

R → 0SR

Replace S → R → 0SR by S → 0SR, R → 0SR

21/29

Removal of unit productions

2 replace any chain

A → B → · · · → C → α

by A → α, B → α, . . . , C → α

S → 0S1 | 1S0S
| R | ε

R → 0SR

S

R

S → 0S1 | 1S0S
| 0SR | ε

R → 0SR

Replace S → R → 0SR by S → 0SR, R → 0SR

22/29

Recap

Problems:

1. Trying all derivations may take too long

2. If input is not in the language, parsing will never stop 3

Solution to problem 2:

1. Eliminate ε productions

2. Eliminate unit productions

Try all possible derivations but stop parsing when
|derived string| > |input|

23/29

Example

S → 0S1 | 0S0S | T
T → S | 0

=⇒ S → 0S1 | 0S0S | 0

input: 0011

S

0S0S
00S0S0S too long

00S10S too long

000S
0000S0S too long

0000S1 too long

0000 7

0S1

00S0S1 too long

00S11 too long

001 7
0 7

Conclusion: 0011 /∈ L

23/29

Example

S → 0S1 | 0S0S | T
T → S | 0

=⇒ S → 0S1 | 0S0S | 0

input: 0011

S

0S0S
00S0S0S too long

00S10S too long

000S
0000S0S too long

0000S1 too long

0000 7

0S1

00S0S1 too long

00S11 too long

001 7
0 7

Conclusion: 0011 /∈ L

23/29

Example

S → 0S1 | 0S0S | T
T → S | 0

=⇒ S → 0S1 | 0S0S | 0

input: 0011

S

0S0S
00S0S0S too long

00S10S too long

000S
0000S0S too long

0000S1 too long

0000 7

0S1

00S0S1 too long

00S11 too long

001 7
0 7

Conclusion: 0011 /∈ L

24/29

Problems

1. Trying all derivations may take too long

2. If input is not in the language, parsing will never stop

25/29

Preparations

A faster way to parse:

Cocke–Younger–Kasami algorithm

To use it wemust perprocess the CFG:

Eliminate ε productions
Eliminate unit productions

Convert CFG to Chomsky Normal Form

26/29

Chomsky Normal Form

A CFG is in Chomsky Normal Form if
every production has the form

A → BC or A → a
where neitherB norC is the start variable

but we also allow S → ε for start variable S
Noam Chomsky

Convert to Chomsky Normal Form:

A → BcDE =⇒
replace
terminals
with new
variables

A → BCDE
C → c

=⇒
break up
sequences
with new
variables

A → BX
X → CY
Y → DE
C → c

27/29

Cocke–Younger–Kasami algorithm

S → AB | BC
A → BA | a
B → CC | b
C → AB | a

Input: x = baaba

let
x[i, `] = xixi+1 . . . xi+`−1 b a a b a

i

`

1 2 3 4 5

1

2

3

4

5

B A|C A|C B A|C
S |A B S |C S |A

For every substring x[i, `], remember all variablesR that derive x[i, `]
Store in a tableT [i, `]

27/29

Cocke–Younger–Kasami algorithm

S → AB | BC
A → BA | a
B → CC | b
C → AB | a

Input: x = baaba

let
x[i, `] = xixi+1 . . . xi+`−1 b a a b a

i

`

1 2 3 4 5

1

2

3

4

5

B

A|C A|C B A|C
S |A B S |C S |A

For every substring x[i, `], remember all variablesR that derive x[i, `]
Store in a tableT [i, `]

27/29

Cocke–Younger–Kasami algorithm

S → AB | BC
A → BA | a
B → CC | b
C → AB | a

Input: x = baaba

let
x[i, `] = xixi+1 . . . xi+`−1 b a a b a

i

`

1 2 3 4 5

1

2

3

4

5

B A|C A|C B A|C

S |A B S |C S |A

For every substring x[i, `], remember all variablesR that derive x[i, `]
Store in a tableT [i, `]

27/29

Cocke–Younger–Kasami algorithm

S → AB | BC
A → BA | a
B → CC | b
C → AB | a

Input: x = baaba

let
x[i, `] = xixi+1 . . . xi+`−1 b a a b a

i

`

1 2 3 4 5

1

2

3

4

5

B A|C A|C B A|C
S |A

B S |C S |A

For every substring x[i, `], remember all variablesR that derive x[i, `]
Store in a tableT [i, `]

27/29

Cocke–Younger–Kasami algorithm

S → AB | BC
A → BA | a
B → CC | b
C → AB | a

Input: x = baaba

let
x[i, `] = xixi+1 . . . xi+`−1 b a a b a

i

`

1 2 3 4 5

1

2

3

4

5

B A|C A|C B A|C
S |A B S |C S |A

For every substring x[i, `], remember all variablesR that derive x[i, `]
Store in a tableT [i, `]

28/29

ComputingT [i, `] for ` > 2

To computeT [2, 4]

Try all possible ways to split x[2, 4] into two substrings

b a a b a

1
A|C B

2
B S |A

3
B A|C

Look up entries regarding shorter substrings previously computed

S → AB | BC
A → BA | a
B → CC | b
C → AB | a

T [2, 4] = S |A|C

28/29

ComputingT [i, `] for ` > 2

To computeT [2, 4]

Try all possible ways to split x[2, 4] into two substrings

b a a b a

1
A|C B

2
B S |A

3
B A|C

Look up entries regarding shorter substrings previously computed

S → AB | BC
A → BA | a
B → CC | b
C → AB | a

T [2, 4] = S |A|C

28/29

ComputingT [i, `] for ` > 2

To computeT [2, 4]

Try all possible ways to split x[2, 4] into two substrings

b a a b a

1
A|C B

2
B S |A

3
B A|C

Look up entries regarding shorter substrings previously computed

S → AB | BC
A → BA | a
B → CC | b
C → AB | a

T [2, 4] = S |A|C

29/29

Cocke–Younger–Kasami algorithm

S → AB | BC
A → BA | a
B → CC | b
C → AB | a

Input: x = baaba

b a a b a

i

`

1 2 3 4 5

1

2

3

4

5

B A|C A|C B A|C

AS | B S |C S |A

- B B

- S |A|C

S|A|C

Get parse tree by tracing back derivations

