
1/31

NFA to DFA conversion and regular expressions
CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN

Chinese University of Hong Kong

Fall 2016



2/31

DFAs and NFAs are equally powerful

NFA can do everything a DFA can do
How about the other way?

Every NFA is equivalent to some DFA for the same language



3/31

NFA→ DFA in two easy steps

1. Eliminate ε-transitions

2. Convert simplified NFA to DFA
We will do this first



4/31

NFA→ DFA: intuition

NFA q0 q1 q21 0

0,1

DFA q0 q0 or q1 q0 or q21
0

0 1

1

0



5/31

NFA→ DFA: intuition

NFA q0 q1 q21 0

0,1

DFA q0 {q0, q1} {q0, q2}
1

0

0 1

1

0



6/31

NFA→ DFA: states

NFA q0 q1 q21 0

0,1

DFA

∅ {q1}

{q0}

{q2}

{q0, q1}

{q0, q2}

{q1, q2}

{q0, q1, q2}

1

DFA has a state for every subset of NFA states



7/31

NFA→ DFA: transitions

NFA q0 q1 q21 0

0,1

DFA

∅ {q1}

{q0}

{q2}

{q0, q1}

{q0, q2}

{q1, q2}

{q0, q1, q2}

0,1

0

1

0

1

1
0 1

01

0
0,1

0

1

DFA has a state for every subset of NFA states



8/31

NFA→ DFA: accepting states

NFA q0 q1 q21 0

0,1

DFA

∅ {q1}

{q0}

{q2}

{q0, q1}

{q0, q2}

{q1, q2}

{q0, q1, q2}

0,1

0

1

0

1

1
0 1

01

0
0,1

0

1

DFA accepts if it contains an NFA accepting state



9/31

NFA→ DFA: eliminate unreachable states

NFA q0 q1 q21 0

0,1

DFA

∅ {q1}

{q0}

{q2}

{q0, q1}

{q0, q2}

{q1, q2}

{q0, q1, q2}

0

1

0

1

1
0

1

At the end, youmay eliminate unreachable states



10/31

General conversion

NFA DFA
states q0, q1, . . . , qn ∅, {q0}, {q1}, {q0, q1}, . . . ,

{q0, . . . , qn}
one for each subset of states

initial state q0 {q0}
transitions δ δ′({qi1 , . . . , qik}, a) =

δ(qi1 , a) ∪ · · · ∪ δ(qik , a)
accepting F ⊆ Q F′ = {S | S contains some state inF}
states



11/31

NFA→ DFA in two easy steps

1. Eliminate ε-transitions

2. Convert simplified NFA to DFA 3



12/31

Eliminating ε-transitions

NFA: q0 q1 q2
ε,1

0

0

ε

How to transform the above NFA into one without ε’s?

New (equivalent) transitions
0 1

q0 {q0, q1, q2} {q1, q2}
q1 {q0, q1, q2} ∅
q2 ∅ ∅

New accepting states: q2, q1, q0



13/31

Eliminating ε-transitions

original NFA: q0 q1 q2
ε,1

0

0

ε

new transition:

0 1
q0 {q0, q1, q2} {q1, q2}
q1 {q0, q1, q2} ∅
q2 ∅ ∅

new NFA: q0 q1 q2
0,1

00

0 0

0

0,1



14/31

Eliminating ε-transitions: general rules

Paths with ε’s are replaced with a single transition

q5 q0 q2 q0 q3ε a ε ε

q5 q3a
q3

q5

q4

ε

a

ε

q3

a

States that can reach accepting state by ε are all accepting

q9 q7 q3 q2ε ε

ε



15/31

Regular expressions



16/31

Regular expressions

Advanced editors (e.g. Vim, Emacs) andmodern programming languages
(e.g. PERL, Python) support powerful string matching using

regular expressions (regex)

Example:
PERL regex colou?rmatches “color”/“colour”

PERL regex [A-Za-z]*ingmatches any word ending in “ing”

We will learn to parse complicated regex recursively
by building up from simpler ones

Also construct the languagematched by the expression recursively

Will focus on regular expressions in formal language theory
(notations differ from PERL/Python/POSIX regex)



17/31

String concatenation

s = abb
t = bab

st = abbbab
ts = bababb
ss = abbabb
sst = abbabbbab

s = x1 . . . xn, t = y1 . . . ym
⇓

st = x1 . . . xny1 . . . ym



18/31

Operations on languages

▶ Concantenation of languagesL1 andL2

L1L2 = {st : s ∈ L1, t ∈ L2}

▶ n-th power of languageL

Ln = {s1s2 . . . sn | s1, s2, . . . , sn ∈ L}

▶ Union ofL1 andL2

L1 ∪ L2 = {s | s ∈ L1 or s ∈ L2}



19/31

Example

L1 = {0, 01} L2 = {ε, 1, 11, 111, . . . }

L1L2 = {0, 01, 011, 0111, . . . } ∪ {01, 011, 0111, 01111, . . . }
= {0, 01, 011, 0111, . . . }

0 followed by any number of 1s

L2
1 = {00, 001, 010, 0101} L2

2 = L2

Ln
2 = L2 for any n ⩾ 1

L1 ∪ L2 = {0, 01, ε, 1, 11, 111, . . . }



20/31

Operations on languages

The star ofL are contains strings made up of zero or more chunks fromL

L∗ = L0 ∪ L1 ∪ L2 ∪ . . .

Example: L1 = {0, 01} andL2 = {ε, 1, 11, 111, . . . }
What isL∗

1? L∗
2?



21/31

Example

L1 = {0, 01}

L0
1 = {ε}

L1
1 = {0, 01}

L2
1 = {00, 001, 010, 0101}

L3
1 = {000, 0001, 0010, 00101, 0100, 01001, 01010, 010101}

Which of the following are inL∗
1?

00100001

Yes

00110001

No

10010001

No

L∗
1 contains all strings such that any 1 is preceded by a 0



21/31

Example

L1 = {0, 01}

L0
1 = {ε}

L1
1 = {0, 01}

L2
1 = {00, 001, 010, 0101}

L3
1 = {000, 0001, 0010, 00101, 0100, 01001, 01010, 010101}

Which of the following are inL∗
1?

00100001
Yes

00110001
No

10010001
No

L∗
1 contains all strings such that any 1 is preceded by a 0



21/31

Example

L1 = {0, 01}

L0
1 = {ε}

L1
1 = {0, 01}

L2
1 = {00, 001, 010, 0101}

L3
1 = {000, 0001, 0010, 00101, 0100, 01001, 01010, 010101}

Which of the following are inL∗
1?

00100001
Yes

00110001
No

10010001
No

L∗
1 contains all strings such that any 1 is preceded by a 0



22/31

Example

L2 = {ε, 1, 11, 111, . . . }
any number of 1s

L0
2 = {ε}

L1
2 = L2

L2
2 = L2

Ln
2 = L2 (n ⩾ 1)

L∗
2 = L0

2 ∪ L1
2 ∪ L2

2 ∪ . . .

= {ε} ∪ L2 ∪ L2 ∪ . . .

= L2

L∗
2 = L2



22/31

Example

L2 = {ε, 1, 11, 111, . . . }
any number of 1s

L0
2 = {ε}

L1
2 = L2

L2
2 = L2

Ln
2 = L2 (n ⩾ 1)

L∗
2 = L0

2 ∪ L1
2 ∪ L2

2 ∪ . . .

= {ε} ∪ L2 ∪ L2 ∪ . . .

= L2

L∗
2 = L2



23/31

Combining languages

We can construct languages by starting with simple ones, like {0} and {1},
and combining them

{0}({0} ∪ {1})∗ ⇒ 0(0+ 1)∗

all strings that start with 0

({0}{1}∗) ∪ ({1}{0}∗) ⇒ 01∗ + 10∗

0 followed by any number of 1s, or
1 followed by any number of 0s

0(0+ 1)∗ and 01∗ + 10∗ are regular expressions
Blueprints for combining simpler languages into complex ones



23/31

Combining languages

We can construct languages by starting with simple ones, like {0} and {1},
and combining them

{0}({0} ∪ {1})∗ ⇒ 0(0+ 1)∗

all strings that start with 0

({0}{1}∗) ∪ ({1}{0}∗) ⇒ 01∗ + 10∗

0 followed by any number of 1s, or
1 followed by any number of 0s

0(0+ 1)∗ and 01∗ + 10∗ are regular expressions
Blueprints for combining simpler languages into complex ones



23/31

Combining languages

We can construct languages by starting with simple ones, like {0} and {1},
and combining them

{0}({0} ∪ {1})∗ ⇒ 0(0+ 1)∗

all strings that start with 0

({0}{1}∗) ∪ ({1}{0}∗) ⇒ 01∗ + 10∗

0 followed by any number of 1s, or
1 followed by any number of 0s

0(0+ 1)∗ and 01∗ + 10∗ are regular expressions
Blueprints for combining simpler languages into complex ones



24/31

Syntax of regular expressions

A regular expression overΣ is an expression formed by the following rules

▶ The symbols ∅ and ε are regular expressions

▶ Every symbol a inΣ is a regular expression

▶ IfR asd S are regular expressions, so areR + S,RS andR∗

Examples:
∅

0(0+ 1)∗

01∗ + 10∗

ε
1∗(ε+ 0)

(0+ 1)∗01(0+ 1)∗

A language is regular if it is represented by a regular expression



25/31

Understanding regular expressions

Σ = {0, 1}

01∗ = 0(1)∗ represents {0, 01, 011, 0111, . . . }
0 followed by any number of 1s

01∗ is not (01)∗



26/31

Understanding regular expressions

0+ 1 yields {0, 1} strings of length 1

(0+ 1)∗ yields {ε, 0, 1, 00, 01, 10, 11, . . . } any string

(0+ 1)∗010 any string that ends in 010

(0+ 1)∗01(0+ 1)∗ any string containing 01



27/31

Understanding regular expressions

What language does the following represent?
((0+ 1)(0+ 1))∗ + ((0+ 1)(0+ 1)(0+ 1))∗

strings whose length is even or a multiple of 3
= strings of length 0, 2, 3, 4, 6, 8, 9, 10, 12, . . .

((0+ 1)(0+ 1))∗

strings of even length

(0+ 1)(0+ 1)
strings of length 2

((0+ 1)(0+ 1)(0+ 1))∗

strings whose length is a
multiple of 3

(0+ 1)(0+ 1)(0+ 1)
strings of length 3



27/31

Understanding regular expressions

What language does the following represent?
((0+ 1)(0+ 1))∗ + ((0+ 1)(0+ 1)(0+ 1))∗

strings whose length is even or a multiple of 3
= strings of length 0, 2, 3, 4, 6, 8, 9, 10, 12, . . .

((0+ 1)(0+ 1))∗

strings of even length

(0+ 1)(0+ 1)
strings of length 2

((0+ 1)(0+ 1)(0+ 1))∗

strings whose length is a
multiple of 3

(0+ 1)(0+ 1)(0+ 1)
strings of length 3



27/31

Understanding regular expressions

What language does the following represent?
((0+ 1)(0+ 1))∗ + ((0+ 1)(0+ 1)(0+ 1))∗

strings whose length is even or a multiple of 3
= strings of length 0, 2, 3, 4, 6, 8, 9, 10, 12, . . .

((0+ 1)(0+ 1))∗

strings of even length

(0+ 1)(0+ 1)

strings of length 2

((0+ 1)(0+ 1)(0+ 1))∗

strings whose length is a
multiple of 3

(0+ 1)(0+ 1)(0+ 1)

strings of length 3



27/31

Understanding regular expressions

What language does the following represent?
((0+ 1)(0+ 1))∗ + ((0+ 1)(0+ 1)(0+ 1))∗

strings whose length is even or a multiple of 3
= strings of length 0, 2, 3, 4, 6, 8, 9, 10, 12, . . .

((0+ 1)(0+ 1))∗

strings of even length

(0+ 1)(0+ 1)
strings of length 2

((0+ 1)(0+ 1)(0+ 1))∗

strings whose length is a
multiple of 3

(0+ 1)(0+ 1)(0+ 1)
strings of length 3



27/31

Understanding regular expressions

What language does the following represent?
((0+ 1)(0+ 1))∗ + ((0+ 1)(0+ 1)(0+ 1))∗

strings whose length is even or a multiple of 3
= strings of length 0, 2, 3, 4, 6, 8, 9, 10, 12, . . .

((0+ 1)(0+ 1))∗

strings of even length

(0+ 1)(0+ 1)
strings of length 2

((0+ 1)(0+ 1)(0+ 1))∗

strings whose length is a
multiple of 3

(0+ 1)(0+ 1)(0+ 1)
strings of length 3



27/31

Understanding regular expressions

What language does the following represent?
((0+ 1)(0+ 1))∗ + ((0+ 1)(0+ 1)(0+ 1))∗

strings whose length is even or a multiple of 3
= strings of length 0, 2, 3, 4, 6, 8, 9, 10, 12, . . .

((0+ 1)(0+ 1))∗

strings of even length

(0+ 1)(0+ 1)
strings of length 2

((0+ 1)(0+ 1)(0+ 1))∗

strings whose length is a
multiple of 3

(0+ 1)(0+ 1)(0+ 1)
strings of length 3



28/31

Understanding regular expressions

What language does the following represent?
((0+ 1)(0+ 1) + (0+ 1)(0+ 1)(0+ 1))∗

strings that can be broken into blocks, where each block has length 2 or 3

(0+ 1)(0+ 1) + (0+ 1)(0+ 1)(0+ 1)
strings of length 2 or 3

(0+ 1)(0+ 1)
strings of length 2

(0+ 1)(0+ 1)(0+ 1)
strings of length 3



28/31

Understanding regular expressions

What language does the following represent?
((0+ 1)(0+ 1) + (0+ 1)(0+ 1)(0+ 1))∗

strings that can be broken into blocks, where each block has length 2 or 3

(0+ 1)(0+ 1) + (0+ 1)(0+ 1)(0+ 1)

strings of length 2 or 3

(0+ 1)(0+ 1)
strings of length 2

(0+ 1)(0+ 1)(0+ 1)
strings of length 3



28/31

Understanding regular expressions

What language does the following represent?
((0+ 1)(0+ 1) + (0+ 1)(0+ 1)(0+ 1))∗

strings that can be broken into blocks, where each block has length 2 or 3

(0+ 1)(0+ 1) + (0+ 1)(0+ 1)(0+ 1)

strings of length 2 or 3

(0+ 1)(0+ 1)

strings of length 2

(0+ 1)(0+ 1)(0+ 1)

strings of length 3



28/31

Understanding regular expressions

What language does the following represent?
((0+ 1)(0+ 1) + (0+ 1)(0+ 1)(0+ 1))∗

strings that can be broken into blocks, where each block has length 2 or 3

(0+ 1)(0+ 1) + (0+ 1)(0+ 1)(0+ 1)

strings of length 2 or 3

(0+ 1)(0+ 1)
strings of length 2

(0+ 1)(0+ 1)(0+ 1)
strings of length 3



28/31

Understanding regular expressions

What language does the following represent?
((0+ 1)(0+ 1) + (0+ 1)(0+ 1)(0+ 1))∗

strings that can be broken into blocks, where each block has length 2 or 3

(0+ 1)(0+ 1) + (0+ 1)(0+ 1)(0+ 1)
strings of length 2 or 3

(0+ 1)(0+ 1)
strings of length 2

(0+ 1)(0+ 1)(0+ 1)
strings of length 3



28/31

Understanding regular expressions

What language does the following represent?
((0+ 1)(0+ 1) + (0+ 1)(0+ 1)(0+ 1))∗

strings that can be broken into blocks, where each block has length 2 or 3

(0+ 1)(0+ 1) + (0+ 1)(0+ 1)(0+ 1)
strings of length 2 or 3

(0+ 1)(0+ 1)
strings of length 2

(0+ 1)(0+ 1)(0+ 1)
strings of length 3



29/31

Understanding regular expressions

What language does the following represent?
((0+ 1)(0+ 1) + (0+ 1)(0+ 1)(0+ 1))∗

strings that can be broken into blocks, where each block has length 2 or 3

Which are in the language?

ε

3

1

7

01

3

011

3

00110

3

011010110

3

The regular expression represents all strings except 0 and 1



29/31

Understanding regular expressions

What language does the following represent?
((0+ 1)(0+ 1) + (0+ 1)(0+ 1)(0+ 1))∗

strings that can be broken into blocks, where each block has length 2 or 3

Which are in the language?

ε
3

1
7

01
3

011
3

00110
3

011010110
3

The regular expression represents all strings except 0 and 1



30/31

Understanding regular expressions

What language does the following represent?

(1+ 01+ 001)∗︸ ︷︷ ︸
at most two 0s between two consecutive 1s

ends in at most two 0s︷ ︸︸ ︷
(ε+ 0+ 00)

Never three consecutive 0s

The regular expression represents strings not containing 000

Examples:

ε 00 0110010110 0010010



30/31

Understanding regular expressions

What language does the following represent?

(1+ 01+ 001)∗︸ ︷︷ ︸
at most two 0s between two consecutive 1s

ends in at most two 0s︷ ︸︸ ︷
(ε+ 0+ 00)

Never three consecutive 0s

The regular expression represents strings not containing 000

Examples:

ε 00 0110010110 0010010



30/31

Understanding regular expressions

What language does the following represent?

(1+ 01+ 001)∗︸ ︷︷ ︸
at most two 0s between two consecutive 1s

ends in at most two 0s︷ ︸︸ ︷
(ε+ 0+ 00)

Never three consecutive 0s

The regular expression represents strings not containing 000

Examples:

ε 00 0110010110 0010010



31/31

Writing regular expressions

Write a regular expression for all strings with two consecutive 0s

(anything)00(anything)

(0+ 1)∗00(0+ 1)∗



31/31

Writing regular expressions

Write a regular expression for all strings with two consecutive 0s

(anything)00(anything)

(0+ 1)∗00(0+ 1)∗


