Nondeterministic Finite Automata CSCI 3130 Formal Languages and Automata Theory

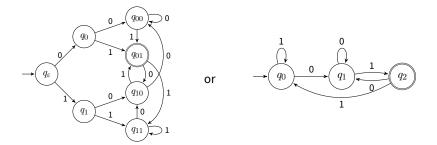
Siu On CHAN

Chinese University of Hong Kong

Fall 2016

Example from last lecture with a simpler solution

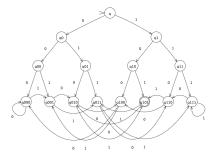
Construct a DFA over alphabet $\{0,1\}$ that accepts all strings ending in 01



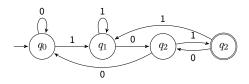
Three weeks later: DFA minimization

Another example from last lecture

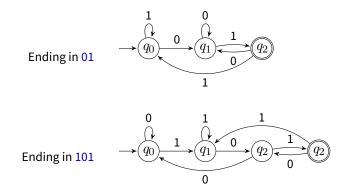
Construct a DFA over alphabet $\{0, 1\}$ that accepts all strings ending in 101



or



String matching DFAs

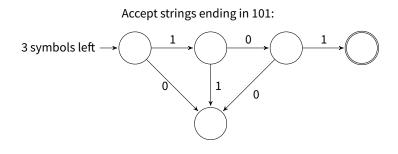


Fast string matching algorithms to turn a pattern into a string matching DFA and execute the DFA: Boyer–Moore (BM) and Knuth–Morris–Pratt (KMP) (won't cover in class)

Nondeterminism

Even easier with guesses

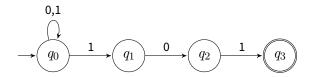
Suppose we could guess when the input string has only 3 symbols left



This is not a DFA!

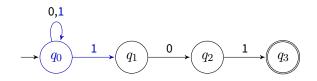
Nondeterministic finite automata

A machine that allows us to make guesses



Each state can have zero, one, or more outgoing transitions labeled by the same symbol

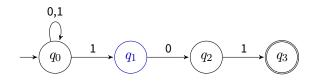
Choosing where to go



State q_0 has two transitions labeled 1

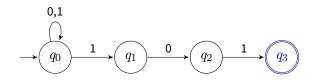
Upon reading 1, we have the choice of staying at q_0 or moving to q_1

Ability to choose



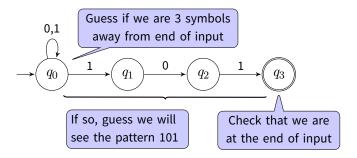
State q_1 has no transition labeled 1 Upon reading 1 at q_1 , die; upon reading 0, continue to q_2

Ability to choose

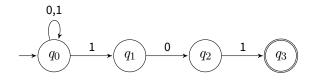


State q_1 has no transition going out Upon reading 0 or 1 at q_3 , die

Meaning of NFA



How to run an NFA



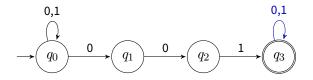
input: 01101

The NFA can have several active states at the same time NFA accepts if at the end, one of its active states is accepting

Construct an NFA over alphabet $\{0, 1\}$ that accepts all strings containing the pattern 001 somewhere

Example

Construct an NFA over alphabet $\{0,1\}$ that accepts all strings containing the pattern 001 somewhere



Definition

A nondeterministic finite automaton (NFA) is a $5\text{-tuple}~(\textit{Q}, \Sigma, \delta, \textit{q}_0, \textit{F})$ where

- Q is a finite set of states
- ▶ ∑ is an alphabet
- ▶ $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \rightarrow \text{subsets of } Q \text{ is a transition function}$
- $q_0 \in Q$ is the initial state
- $F \subseteq Q$ is a set of accepting states

Differences from DFA:

- transition function δ can go into several states
- ► allows *ε*-transitions

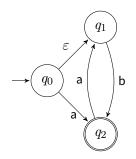
Language of an NFA

The NFA accepts string x if there is some path that, starting from q_0 , ends at an accepting state as x is read from left to right

The language of an NFA is the set of all strings accepted by the NFA

ε -transitions

 ε -transitions can be taken for free:



accepts a, b, aab, bab, aabab, ...

rejects ε , aa, ba, bb, ...

Example

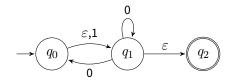
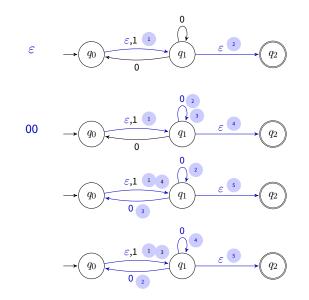


table of transition function δ

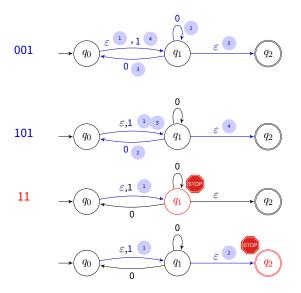
 $\begin{aligned} &\text{alphabet } \Sigma = \{\mathbf{0},\mathbf{1}\} \\ &\text{states } Q = \{q_0,q_1,q_2\} \\ &\text{initial state } q_0 \\ &\text{accepting states } F = \{q_2\} \end{aligned}$

		inputs		
		0	1	ε
states	q_0	Ø	$\{q_1\}$	$\{q_1\}$
	q_1	$\{q_0, q_1\}$	Ø	$\{q_2\}$
	q_2	Ø	Ø	Ø

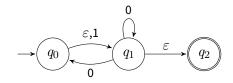
Running NFA



Running NFA



Language of this NFA



What is the language of this NFA?

Example of ε -transitions

Construct an NFA that accepts all strings with an even number of 0s or an odd number of 1s

Example of ε -transitions

Construct an NFA that accepts all strings with an even number of 0s or an odd number of 1s

