
1/28

Formal Languages and Automata Theory

Siu On CHAN

Chinese University of Hong Kong

Fall 2016

2/28

Welcome to 3130

www.cse.cuhk.edu.hk/~siuon/csci3130

Tentative syllabus and schedule

Textbook
Introduction to the Theory of Computation, Michael Sipser

Please sign up on piazza.com and ask questions
Or come to our office hours

www.cse.cuhk.edu.hk/~siuon/csci3130
piazza.com

3/28

AI everywhere

▶ Japanese cucumber farmer
https:

//cloud.google.com/blog/big-data/2016/08/how-a-japanese-cucumber-farmer-is-using-deep-learning-and-tensorflow

▶ Georgia Tech’s Jill Watson
http://gizmodo.com/computer-science-students-fooled-by-artificially-intell-1775510179

https://cloud.google.com/blog/big-data/2016/08/how-a-japanese-cucumber-farmer-is-using-deep-learning-and-tensorflow
https://cloud.google.com/blog/big-data/2016/08/how-a-japanese-cucumber-farmer-is-using-deep-learning-and-tensorflow
http://gizmodo.com/computer-science-students-fooled-by-artificially-intell-1775510179

4/28

Music composition via Deep Learning

by Bob Sturm from

https://highnoongmt.wordpress.com/2015/08/11/deep-learning-for-assisting-the-process-of-music-composition-part-1/

Is there anything that a computer cannot do?

https://highnoongmt.wordpress.com/2015/08/11/deep-learning-for-assisting-the-process-of-music-composition-part-1/

5/28

Impossibilites

Why care about the impossible?

Example from Physics:

Since the Middle Ages, people tried to
design machines that use no energy

Later physical discoveries forbid
creating energy out of nothing

Perpetual motion is impossible

Understanding the impossible helps us to focus on the possible

6/28

Laws of computation

Just like laws of physics tell us what are (im)possible in nature…

∆U = Q + W dS =
δQ
T S − S0 = kB lnΩ

Laws of computation tell us what are (im)possible to do with computers
Part of computer science

To some extent, laws of computation are studied in automata theory

7/28

Exploiting impossibilities

Certain tasks are believed impossible to solve quickly on current computers

Given n = pq that is the product of two unknown primes, find p and q

Building block of cryptosystems

$
011001110110110

8/28

Candymachine

Machine takes $5 and $10 coins
A gumball costs $15
Actions: +5,+10, Release

$0 $5 $10

+5 +5 +5,+10

+5,+10

+10 +10

R

R R R

9/28

Slot machine

=
Why?

10/28

Different kinds of machines

$0 $5 $10

+5 +5 +5,+10

+5,+10

+10 +10

R

R R R

Only one example of a machine

We will look at different kinds of machines and ask

▶ what kind of problems can this kind of machines solve?

▶ What are impossible for this kind of machines?

▶ Is machineAmore powerful thanmachineB?

11/28

Some kinds of machines

finite automata Devices with a small amount of memory
These are very simple machines

push-down Devices with unboundedmemory that
automata can be accessed in a restricted way

Used to parse grammars
Turing machines Devices with unboundedmemory

These are actual computers
time-bounded Devices with unboundedmemory but
Turing Machines bounded running time

These are computers that run fast

12/28

Course highlights

▶ Finite automata
Closely related to pattern searching in text

Find (ab)∗(ab) in abracadabra

▶ Grammars
▶ Grammars describe the meaning of sentences in English, and the

meaning of programs in Java
▶ Useful for natural language processing and compilers

13/28

Course highlights

Turing machines

▶ General model of computers, capturing anything we could ever hope
to compute

▶ But there are many things that computers cannot do

Given the code of a program, tell if the program prints the string “3130”

Does the program

#include <stdio.h>
main(t,_,a)char *a;{return!0<t?t<3?main(-79,-13,a+main(-87,1-_,
main(-86,0,a+1)+a)):1,t<_?main(t+1,_,a):3,main(-94,-27+t,a)&&t==2?_<13?
main(2,_+1,”%s %d %d\n”):9:16:t<0?t<-72?main(_,t,
”@n’+,#’/*{}w+/w#cdnr/+,{}r/*de}+,/*{*+,/w{%+,/w#q#n+,/#{l,+,/n{n+,/+#n+,/#\
;#q#n+,/+k#;*+,/’r :’d*’3,}{w+K w’K:’+}e#’;dq#’l \
q#’+d’K#!/+k#;q#’r}eKK#}w’r}eKK{nl]’/#;#q#n’){)#}w’){){nl]’/+#n’;d}rw’ i;# \
){nl]!/n{n#’; r{#w’r nc{nl]’/#{l,+’K {rw’ iK{;[{nl]’/w#q#n’wk nw’ \
iwk{KK{nl]!/w{%’l##w#’ i; :{nl]’/*{q#’ld;r’}{nlwb!/*de}’c \
;;{nl’-{}rw]’/+,}##’*}#nc,’,#nw]’/+kd’+e}+;#’rdq#w! nr’/ ’) }+}{rl#’{n’ ’)# \
}’+}##(!!/”)
:t<-50?_==*a?putchar(31[a]):main(-65,_,a+1):main((*a==’/’)+t,_,a+1)

:0<t?main(2,2,”%s”):*a==’/’||main(0,main(-61,*a,
”!ek;dc i@bK’(q)-[w]*%n+r3#l,{}:\nuwloca-O;m .vpbks,fxntdCeghiry”),a+1);} print “3130”?

Formal verification of software must fail on corner cases

14/28

Course highlights

Time-bounded Turing machines

▶ Many problems can be solved on a computer in principle, but takes too
much time in practice

▶ Traveling salesperson: Given a list of cities, find the shortest way to
visit them all and return home

Seoul

Hong Kong

Shanghai

Manila

Tokyo

Bangkok

Taipei

▶ For 100 cities, takes 100+ years to solve even on the fastest computer!

15/28

Problems we will look at

CanmachineA solve problemB?

▶ Examples of problems we will consider
▶ Given a word s, does it contain “to” as a subword?
▶ Given a number n, is it divisible by 7?
▶ Given two words s and t, are they the same?

▶ All of these have “yes/no” answers (decision problems)

▶ There are other types of problems, like “Find this” or “Howmany of
that” but we won’t look at them

16/28

Alphabets and Strings

▶ Strings are a common way to talk about words, numbers, pairs of
numbers
Which symbols can appear in a string? As specified by an alphabet

An alphabet is a finite set of symbols

▶ Examples
Σ1 = {a, b, c, d, . . . , z}: the set of English letters
Σ2 = {0, 1, 2, . . . , 9}: the set of digits (base 10)
Σ3 = {a, b, c, . . . , z, #}: the set of letters plus the special symbol #

17/28

Strings

An input to a problem can be represented as a string

A string over alphabetΣ is a finite sequence of symbols inΣ

axyzzy is a string overΣ1 = {a, b, c, . . . , z}
3130 is a string overΣ2 = {0, 1, . . . , 9}

ab#bc is a string overΣ3 = {a, b, . . . , z, #}
▶ The empty string will be denoted by ε

(What you get using ”” in C, Java, Python)

▶ Σ∗ denotes the set of all strings overΣ
All possible inputs using symbols fromΣ only

18/28

Languages

A language is a set of strings (over the same alphabet)

Languages describe problems with “yes/no” answers:

L1 = All strings containing the substring “to” Σ1 = {a, . . . , z}

stop, to, toe are inL1

ε, oyster are not inL1

L1 = {x ∈ Σ∗
1 | x contains the substring “to”}

19/28

Examples of languages

L2 = {x ∈ Σ∗
2 | x is divisible by 7} Σ2 = {0, 1, . . . , 9}

L2 contains 7, 14, 21, …

L3 = {s#s | s ∈ {a, . . . , z}∗} Σ3 = {a, b, . . . , z, #}

Which of the following are inL3?

ab#ab

Yes

ab#ba

No

a##a#

No

19/28

Examples of languages

L2 = {x ∈ Σ∗
2 | x is divisible by 7} Σ2 = {0, 1, . . . , 9}

L2 contains 7, 14, 21, …

L3 = {s#s | s ∈ {a, . . . , z}∗} Σ3 = {a, b, . . . , z, #}

Which of the following are inL3?

ab#ab

Yes

ab#ba

No

a##a#

No

19/28

Examples of languages

L2 = {x ∈ Σ∗
2 | x is divisible by 7} Σ2 = {0, 1, . . . , 9}

L2 contains 7, 14, 21, …

L3 = {s#s | s ∈ {a, . . . , z}∗} Σ3 = {a, b, . . . , z, #}

Which of the following are inL3?

ab#ab
Yes

ab#ba
No

a##a#
No

20/28

Finite Automata

21/28

Example of a finite automaton

$0 $5 $10 go

+5 +5 +5,+10

+5,+10

+10 +10

R

R R R

▶ There are states $0, $5, $10, go

▶ The start state is $0

▶ Takes inputs from {+5,+10, R}
▶ The state go is an accepting state

▶ There are transitions specifying where to go to for every state and
every input symbol

22/28

Deterministic finite automaton

A finite automaton (DFA) is a 5-tuple (Q,Σ, δ, q0,F)where
▶ Q is a finite set of states

▶ Σ is an alphabet

▶ δ : Q × Σ → Q is a transition function

▶ q0 ∈ Q is the initial state

▶ F ⊆ Q is the set of accepting states (or final states)

In diagrams, the accepting states will be denoted by double circles

23/28

Example

q0 q1 q2

0

1

1

0

0,1

alphabetΣ = {0, 1}
statesQ = {q0, q1, q2}
initial state q0
accepting statesF = {q0, q1}

table of transition
function δ

inputs

0 1

st
at
es

q0 q0 q1
q1 q2 q1
q2 q2 q2

24/28

Language of a DFA

A DFA accepts a string x if starting from the initial state and following the
transition as x is read from left to right, the DFA ends at an accepting state

q0 q1 q2

0

1

1

0

0,1

The DFA accepts 0 and 011 but not 10 and 0101

The language of a DFA is the set of all strings x accepted by the DFA

0 and 011 are in the language 10 and 0101 are not

25/28

The languages of these DFAs?

Σ = {a, b}

q0 q1

b
a

a

b

Σ = {a, b}

q0

q1

q2

q3

q4

a
a

ba

b

b

b

ab

a

q0 q1 q2

0

1

1

0

0,1

Σ = {0, 1}

26/28

Examples

Construct a DFA over alphabet {0, 1} that accepts all strings with at most
three 1s

q0 q1 q2 q3 q4+

0

1

0

1

0

1

0

1

0,1

26/28

Examples

Construct a DFA over alphabet {0, 1} that accepts all strings with at most
three 1s

q0 q1 q2 q3 q4+

0

1

0

1

0

1

0

1

0,1

27/28

Examples

Construct a DFA over alphabet {0, 1} that accepts all strings ending in 01

Hint: The DFAmust “remember” the last 2 bits of the input string

qε

q0

q1

q00

q01

q10

q11

0

0

1

1 0

1

0

1

01

1

0

1

0

27/28

Examples

Construct a DFA over alphabet {0, 1} that accepts all strings ending in 01
Hint: The DFAmust “remember” the last 2 bits of the input string

qε

q0

q1

q00

q01

q10

q11

0

0

1

1 0

1

0

1

01

1

0

1

0

27/28

Examples

Construct a DFA over alphabet {0, 1} that accepts all strings ending in 01
Hint: The DFAmust “remember” the last 2 bits of the input string

qε

q0

q1

q00

q01

q10

q11

0

0

1

1 0

1

0

1

01

1

0

1

0

28/28

Examples

Construct a DFA over alphabet {0, 1} that accepts all strings ending in 101

