Tutorial 5. Mutation Models

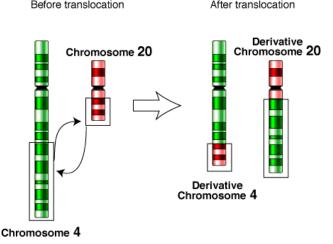
The Chinese University of Hong Kong BMEG3102 Bioinformatics TA: Yizhen Chen

Agenda

- DNA Mutation Models
 - Jukes-Cantor Model
 - Kimura Two-parameter Model
- Protein Mutation Models
 - PAM
 - BLOSUM
- Phylogenetic Tree

Mutation

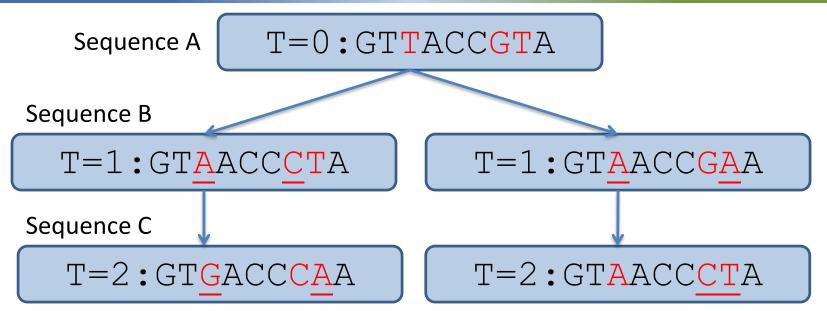
- Defined as the permanent change in the DNA
- Different types of mutation:
 - Small scale: affect one or several nucleotides
 - Point mutation: substitution, insertion, deletion
 - Large scale: usually affect the chromosomal structure
 - E.g., translocations, inversion



Consequences of point mutations

- Occurs in the coding region of a gene:
 - Synonymous (silent) mutation no change in protein sequence
 - Missense mutation substitution of one amino acid for another
 - Conservative function of protein is not affected
 - Non-conservative function of protein altered
 - Nonsense mutation substitution of one amino acid for a stop codon, leading to the truncated protein
- Occurs in the noncoding region:
 - Affect gene regulation, e.g., mutation in promoter or enhancer
 - Affect protein binding on DNA
 - Affect post-translational processing (e.g., defective splicing)

Introduction to Evolutionary Distance



- At one nucleotide, you can see:
 - There are no mutations, e.g. $G \rightarrow G \rightarrow G$
 - There is exactly one mutation, e.g. $G \rightarrow C \rightarrow C$
 - There are two mutations in which the latest mutation overrides an old mutation, e.g. $T \rightarrow A \rightarrow G$
 - There are two mutations in which the latest mutation changes the nucleotide back to the ancestor sequence (unobservable mutation), e.g. $T \rightarrow A \rightarrow T$

Introduction to Evolutionary Distance

- Evolutionary Distance
 - The number of observed and unobserved base substitutions per site that have occurred since the divergence of two sequences
- Problem difficulties
 - Some mutations are not observable
 - We don't have ancestor sequence (in most cases)
 - We don't know how long the sequences have diverged
- We will study
 - Expectation of Evolutionary Distance
 - The expectation is larger than the number of observed differences between sequences
 - The sequences are usually observed sequences at present, not including their ancestor sequence
 - We try to infer the expected changes after the divergence from T=0 time point
 - Variance of Evolutionary Distance

Jukes-Cantor model

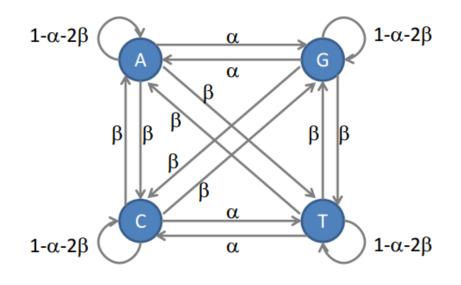
- Parameter: rate of substitution α
- Notation: P_{X→Y}(t) the probability that for a base that was X at time 0, it is Y at time t for any X and Y
- Estimation formulas: $1-3\alpha$ α G $-P_{X\to X}(t) = \frac{1}{4} + \frac{3}{4}e^{-4\alpha t}$ α α $- P_{X \to Y}(t) = \frac{1}{4} - \frac{1}{4}e^{-4\alpha t}$ α α α $- E[K_{sup}] = -\frac{3}{4} \ln(1 - \frac{4}{2}p_{diff})$ ά α **1-3**α $- Var[E[K_{sup}]] = \frac{p_{diff} - (p_{diff})^2}{n(1 - \frac{4}{2}p_{diff})^2}$ α $- p_{\text{diff}} = \frac{x}{n} = \frac{\text{number of observed substitutions}}{\text{lenghth of sequence}}$

1-3α

 $1-3\alpha$

Kimura two-parameter model

- Parameters:
 - rate of transition α
 - rate of transversion β
 - $-\beta < \alpha$



• Estimation formulas:

$$-P_{X \to X}(t) = \frac{1}{4} + \frac{1}{4}e^{-4\beta t} + \frac{1}{2}e^{-2(\alpha+\beta)t}$$
$$-P_{\text{transition}}(t) = \frac{1}{4} + \frac{1}{4}e^{-4\beta t} - \frac{1}{2}e^{-2(\alpha+\beta)t}$$
$$-P_{\text{transversion}}(t) = \frac{1}{4} - \frac{1}{4}e^{-4\beta t}$$

Kimura two-parameter model

Estimation formulas (cont'):

$$- E[K_{sup}] = \frac{1}{2} ln \left(\frac{1}{1-2p_{diff1}-p_{diff2}}\right) + \frac{1}{4} ln \left(\frac{1}{1-2p_{diff2}}\right)$$

$$- Var[E[K_{sup}]]$$

$$= \frac{1}{n} \left[p_{diff1} \left(\frac{1}{1-2p_{diff1}-p_{diff2}}\right)^{2} + p_{diff2} \left(\frac{1}{2-4p_{diff1}-2p_{diff2}}\right)^{2} + \frac{1}{2-4p_{diff2}}\right)^{2} - \left(\frac{p_{diff1}}{1-2p_{diff1}-p_{diff2}}\right) + \frac{p_{diff2}}{2-4p_{diff1}-2p_{diff2}}\right)^{2} - p_{diff1} = \frac{number of transition}{lenghth sequence}, p_{diff2} = \frac{number of transverstion}{lenghth sequence}$$

Exercise 1: DNA mutation models

- You are given the current states of two sequences :
 - -A: GTGACCCAA $E[K_{sup}] = -\frac{3}{4}\ln(1 \frac{4}{3}p_{diff})$ -B: GTAACCCCA $E[K_{sup}] = \frac{1}{2}\ln\left(\frac{1}{1 - 2p_{diff1} - p_{diff2}}\right) + \frac{1}{4}\ln\left(\frac{1}{1 - 2p_{diff2}}\right)$
- Using Jukes-Cantor model and Kimura model, respectively, calculate the followings:
 - Observed differences;
 - Probability of observing differences at a site;
 - Expected substitutions per site;
 - Expected substitutions in total.

Answer of Exercise 1

- For Jukes-Cantor model:
 - -diff = 2
 - $-P_{diff} = 2/9$
 - $E[K_{sup}] = 0.26355$
 - Total = 0.26355 × 9 = 2.37195
- For Kimura model:
 - diff1 = 1, diff2 = 1
 - $-P_{diff1} = 1/9, P_{diff2} = 1/9$
 - $E[K_{sup}] = 0.26556$
 - Total = 0.26556 \times 9 = 2.39004

Exercise 2: DNA mutation models

- Using both Jukes-Cantor model (rate of substitution = α) and Kimura model (rate of transition = α , rate of transversion = β) respectively, express the exact value for $P_{C \rightarrow G}(2)$ in terms of the parameter(s).
- Hint: there are four possible paths:

 $- \{C \rightarrow A \rightarrow G, C \rightarrow T \rightarrow G, C \rightarrow C \rightarrow G, C \rightarrow G \rightarrow G\}$

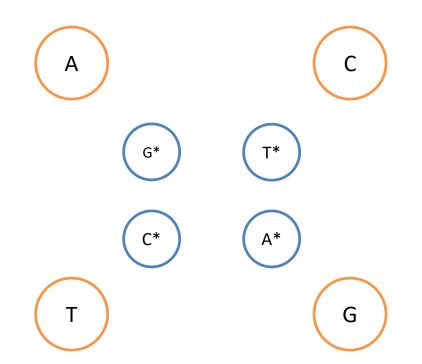
Answer of Exercise 2

- Possible paths: $- \{C \rightarrow A \rightarrow G, C \rightarrow T \rightarrow G, C \rightarrow C \rightarrow G, C \rightarrow G \rightarrow G\}$
- For Jukes-Cantor model: $-P_{C \to G}(2) = \alpha^{2} + \alpha^{2} + (1 - 3\alpha)\alpha + \alpha(1 - 3\alpha)$ $= 2\alpha - 4\alpha^{2}$
- For Kimura model:

$$\begin{aligned} -P_{C \to G}(2) &= \beta \alpha + \alpha \beta + (1 - \alpha - 2\beta)\beta + \\ \beta(1 - \alpha - 2\beta) \\ &= 2\beta - 4\beta^2 \end{aligned}$$

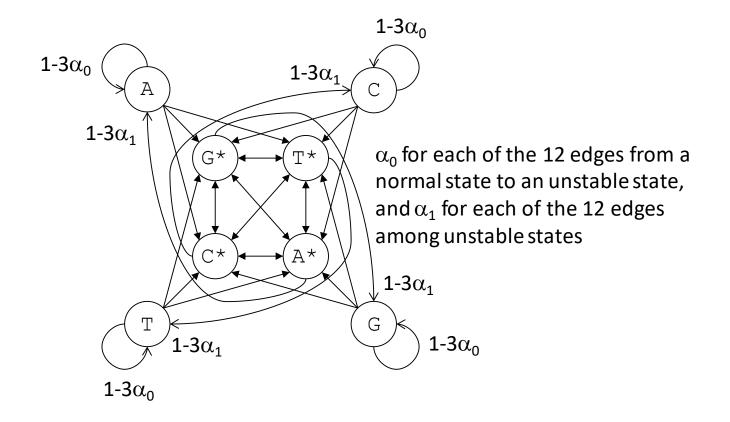
Exercise 3: DNA mutation models

- Suppose we want to develop a new mutation model for the following situation. A nucleotide can be in either a normal state, or an unstable state.
- In the <u>normal state</u>, in every time unit there is a probability of α_0 that it would mutate to each of the three other nucleotides, just like the Jukes-Cantor model, and enters the unstable state. Otherwise, it remains unmutated and stays in the normal state.
- When the nucleotide is in the <u>unstable state</u>, it has a probability of α_1 that it would mutate to each of the three other nucleotides and remains in the unstable state in every time unit, where $\alpha_1 > \alpha_0$. If it does not mutate to another nucleotide, it returns to the normal state.
- Draw the transition diagram for this mutation model. Explain any additional symbol you introduce in the diagram.



A, C, G and T correspond to the normal states, while A*, C*, G* and T* correspond to the unstable states.

Answer to Exercise 3



 A, C, G and T correspond to the normal states, while A*, C*, G* and T* correspond to the unstable states.

Substitution for amino acids

- Amino acid substitutions depend heavily on biochemical properties, and thus more difficult to model than DNA substitution
- Two common substitution matrices:
 - PAM (Point accepted mutation)
 - BLOSUM (<u>Blo</u>cks of amino acid <u>substitution</u> <u>matrix</u>)

Comparison between PAM and BLOSUM

	PAM	BLOSUM			
Definition	PAMx (x \ge 1): mutation rate is x substitutions per 100 amino acid. $S_{ij} = P_{i \rightarrow j}$ (probability)	BLOSUMy ($0 \le y \le 100$): local alignment involving sequences more than y% identical. $S_{ij} = \frac{1}{\lambda} \log \frac{p_{ij}}{p_i p_j}$ (log-odd score)			
Similarities	 Substitution matrix of amino acid (with dimension of 20 x 20) Obtained from taking sets of high-confidence alignments of many homologous proteins and assessing the frequencies of all substitutions. 				
Differences	 Each entry corresponds to a probability of substitution Asymmetric Based on global alignment of closely related proteins Larger x implies larger evolutionary distance 	 Each entry correspond to a log-odd of the observed substitutions and expectation Symmetric Based on local alignment of highly conserved regions of proteins Larger y implies smaller evolutionary distance 			

More on PAM and BLOSUM

- If two protein sequences are very similar, for each pair of matrices below, which one will you choose?
 - PAM100, PAM150 – BLOSUM50, BLOSUM62
- From biological aspect, what factors will contribute to the different values in PAM, or BLOSUM matrices?
 - Size, charge, hydrophobicity, etc

More on PAM and BLOSUM

• If we know PAM1, how to compute PAMx from PAM1?

 $- PAMx = (PAM1)^x$ (matrix multiplication)

- In BLOSUM, there are zeros, positive and negative numbers, what do they mean?
 - Zero: Two amino acids have no preference for or against substituting to the other
 - Positive: Two amino acids are more similar, and the alignment of them is found more often in the database
 - Negative: Two amino acids are less similar, and the alignment of them is found less often in the database

Exercise 4: PAM and BLOSUM

- To simplify the question, here we use DNA sequence instead of protein sequence.
- Suppose we have a database containing some similar DNA sequences (diverged from a common ancestor) and performed optimal local sequence alignment. The counts for all kinds of matches/mismatches are summarized as follows (alignments of reversed complementary strands are also considered):

consideredy.	Match/mismatch	Number of sites	
"X-Y" means you see	C-C, G-G	250 ←	— This means we have
"X" aligned with "Y" in the alignment	A-A, T-T	150	250 C-C and 250 G-G
in the anglittent	A-G <i>,</i> C-T	50	
	A-C, A-T, C-G, G-T	25	

Exercise 4: PAM and BLOSUM

- a) Suppose on average there are x substitutions in 100 nucleotides at this moment. Construct the substitution matrix PAMx that summarizes the observed substitutions between the DNA sequence pairs.
- b) Suppose there is a given period of time equivalent to the time having 2x mutations per 100 nucleotides.
 Construct the substitution matrix PAM2x.
- c) [optional] Suppose there is a given period of time equivalent to the time having 0.5x mutations per 100 nucleotides. Construct the substitution matrix PAM0.5*x*.
- d) Construct BLOSUM, with scale factor $\lambda = 1$.

Answer of Exercise 4(a)			Match/mismatch		Number of sites		
× 7				C-C, G-G		250	
$S_{ij} = P_{i \to j}$				A-A, T-T		150	
				A-G, C-T		50	
			A-C, A-T, C-G, G-T		25		
	А	С	G		т		
	2(150)	25	$\frac{50}{2(150) + 50 + 25 + 25} = \frac{1}{8}$		25		
Α	$=\frac{2(150) + 50 + 25 + 25}{\frac{3}{4}}$	$\overline{2(150) + 50 + 25 + 25} = \frac{1}{16}$			$\overline{2(150) + 50 + 25 + 25} = \frac{1}{16}$		
С	$\frac{25}{2(250) + 50 + 25 + 25} = \frac{1}{24}$	$\frac{2(250)}{2(250) + 50 + 25 + 25} = \frac{5}{6}$	$\frac{25}{2(250) + 50 + 25 + 25} = \frac{1}{24}$	- 25		$ \frac{50}{2(250) + 50 + 25 + 25} = \frac{1}{12} $	
G	$50 \\ \hline 2(250) + 50 + 25 + 25 \\ = \frac{1}{12}$	$\frac{25}{2(250) + 50 + 25 + 25} = \frac{1}{24}$	$\frac{2(250)}{2(250) + 50 + 25 + 50} = \frac{5}{6}$	- 25	$\frac{25}{2(250) + 50} = \frac{1}{24}$		
т	$\frac{25}{2(150) + 50 + 25 + 25} = \frac{1}{16}$	$50 = \frac{1}{2(150) + 50 + 25 + 25} = \frac{1}{8}$	$\frac{25}{2(150) + 50 + 25} = \frac{1}{16}$	+ 25	$=\frac{2(15)}{2(150)+50}$ $=\frac{3}{4}$		

BMEG3012 Bioinformatics Tutorial Notes | Spring 2021

Answer of Exercise 4(b)

$$PAMx = \begin{bmatrix} \frac{3}{4} & \frac{1}{16} & \frac{1}{8} & \frac{1}{16} \\ \frac{1}{24} & \frac{5}{6} & \frac{1}{24} & \frac{1}{12} \\ \frac{1}{24} & \frac{5}{6} & \frac{1}{24} & \frac{1}{12} \\ \frac{1}{12} & \frac{1}{24} & \frac{5}{6} & \frac{1}{24} \\ \frac{1}{16} & \frac{1}{8} & \frac{1}{16} & \frac{3}{4} \end{bmatrix}$$

$$PAM2x = PAMx \times PAMx = \begin{bmatrix} \frac{3}{4} & \frac{1}{16} & \frac{1}{8} & \frac{1}{16} \\ \frac{1}{24} & \frac{5}{6} & \frac{1}{24} & \frac{1}{12} \\ \frac{1}{12} & \frac{1}{24} & \frac{5}{6} & \frac{1}{24} \\ \frac{1}{12} & \frac{1}{24} & \frac{5}{6} & \frac{1}{24} \\ \frac{1}{16} & \frac{1}{8} & \frac{1}{16} & \frac{3}{4} \end{bmatrix}^2 = \begin{bmatrix} \frac{445}{768} & \frac{43}{384} & \frac{157}{768} & \frac{5}{48} \\ \frac{43}{43} & \frac{817}{23} & \frac{23}{288} & \frac{157}{1152} \\ \frac{576}{1152} & \frac{23}{288} & \frac{157}{1152} \\ \frac{157}{23} & \frac{817}{238} & \frac{43}{1152} & \frac{576}{576} \\ \frac{5}{48} & \frac{157}{768} & \frac{43}{384} & \frac{445}{768} \end{bmatrix}$$

Ideas of Exercise 4(c) [optional]

- Method 1: Solving system of equations
 - Let PAM0.5x be a 4×4 matrix of 16 unknowns
 - We know that PAM0.5x × PAM0.5x = PAMx, then, we will get a system of 16 quadratic equations of 16 unknowns
 - After solving the equations, we will find the PAM0.5x
- Method 2: Diagonalize the PAM*x* matrix
 - We diagonalize PAMx into QDQ⁻¹, where D is a diagonal matrix, Q is a collection of eigenvectors of PAMx
 - $PAM0.5x = QD^{1/2}Q^{-1}$

Answer of Exercise 4(d)			Match/mismatch		Number of sites	
			C-C, G-G		250	
$S_{ij} = \frac{1}{\lambda} \log \frac{p_{ij}}{p_i p_j}$				A-A, T-T	150	
			A-G, C-T		50	
$\lambda p_i p_j$		A-C, A-T, C-G, G-T		25		
	Α	С	G		Т	
A	$\frac{150/1000}{1000 \times 200/1000} = 1.9069$	$\frac{\frac{25}{1000}}{\frac{200}{1000} \times \frac{300}{1000}} = -1.2630$	$\frac{\frac{50}{1000}}{\frac{200}{1000} \times \frac{300}{2}} = -0.2630$	1000	$\frac{25}{100} \frac{100}{200} = -0.6781$	1000 × ²⁰⁰ / ₁₀₀₀
С	$\frac{\frac{25}{1000}}{\frac{300}{1000} \times \frac{200}{1000}} = -1.2630$	$log \frac{\frac{250}{1000}}{\frac{300}{1000} \times \frac{300}{1000}} = 1.4739$	$\frac{\frac{25}{1000}}{\frac{300}{1000} \times \frac{300}{2}} = -1.8480$	1000	$\frac{50}{1000} = -0.2630$	1000 × ²⁰⁰ / ₁₀₀₀
	$\frac{\frac{50}{1000}}{\frac{300}{1000} \times \frac{200}{1000}} = -0.2630$					
	$\frac{\frac{25}{1000}}{\frac{200}{1000} \times \frac{200}{1000}} = -0.6781$					

Introduction to phylogenetic tree

- Given a set of DNA/protein sequences
- Construct a phylogenetic tree such that it presents the historical evolutionary events based on observable sequences

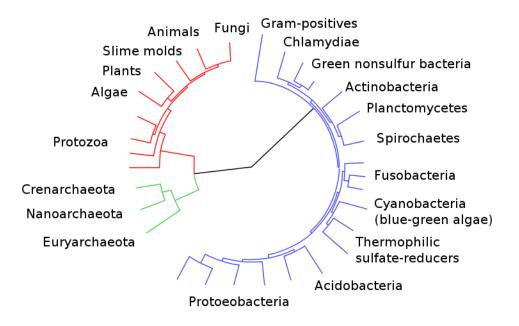


Image credit: wikipedia

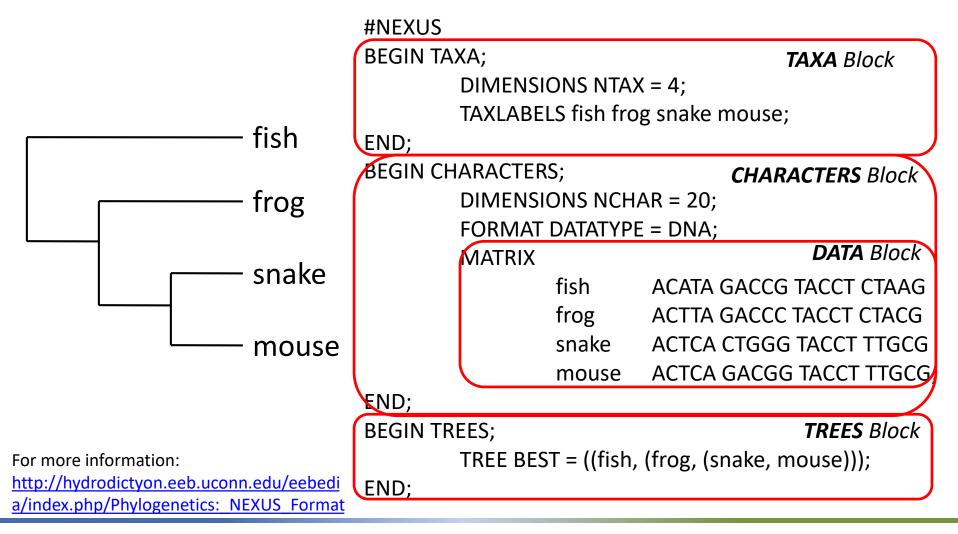
Newick file format

- Nested brackets with distance
- E.g.,

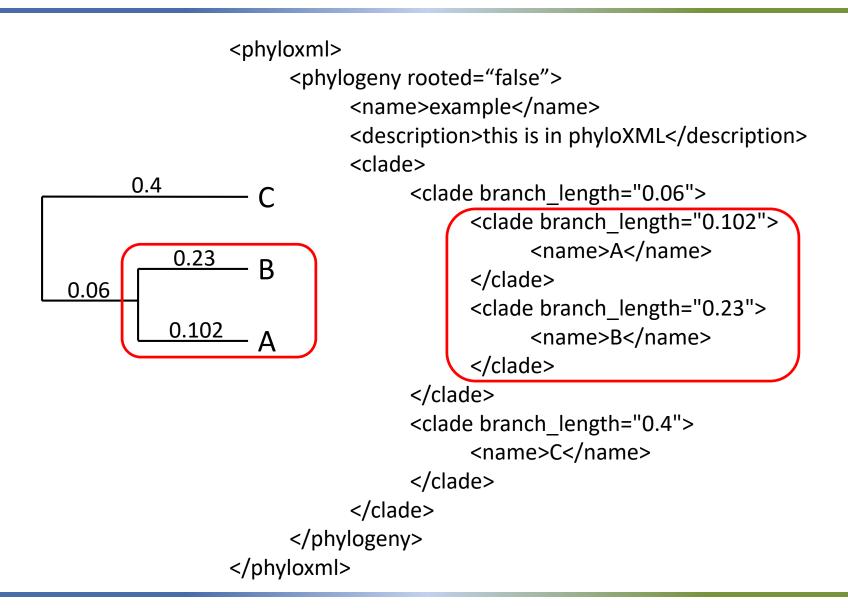
(A:0.1,B:0.2,(C:0.3,D:0.4):0.5);

NEXUS file format

• Giving short IDs to sequences, with more metadata



PhyloXML file format



Check list

- What are the assumptions for the Jukes-Cantor model and Kimura model?
- How can we estimate the expected number of substitutions based on current observations?
- What are the similarities and differences between PAM and BLOSUM?
- What does each entry of PAM and BLOSUM represent?
- What are the meanings of the numbers in PAM150 and BLOSUM62?
- How can we represent a phylogenetic tree?