
Qi Dou

Email: qidou@cuhk.edu.hk

Office: Room 1014, 10/F, SHB

BMEG3102 Bioinformatics

The Chinese University of Hong Kong

BMEG3102 Bioinformatics

Lecture 3. Sequence Alignment
and Searching (2/2)

Lecture outline

1. Computational complexity of optimal alignment problems

2. Heuristic methods

– Dot plot

– Pairwise sequence alignment

• FASTA

- The FASTA file format

• BLAST

- Statistical significance

• Variations

– Multiple sequence alignment

Computational Complexity of Optimal Alignment Problems

Part 1

Computational complexity

• To align two sequences of lengths m and n by dynamic programming,
how much time and space do we need?

–O(mn)

–Can do better, but still expensive

• To find the sequence in a database with l length-n sequences that is
closest to a query sequence of length m, how much time and space do
we need?

–Suppose we consider the database sequences one by one

–O(lmn) time

–O(mn) space

4

Numbers in real situations

• Scenario 1: Whole-genome alignment between two species

–m, n (e.g., C. elegans and C. briggsae): ~ 100 x 106

–mn 1016

–If a computer can do 3 x 109 operations in a second, it would take ~3,000,000
seconds = 926 hours = 38.6 days

–Still ok if you can wait. But can we find a machine with 1016, i.e., 10PB RAM?

5

Image credit: wormbase.org

~1mm

Numbers in real situations

• Scenario 2: Searching for a gene from a database

–m (e.g., A human gene): ~3,000 on average

–l (e.g., GenBankv229): 211,281,415 sequences

–n (e.g., GenBank v229): 285,688,542,186 bases / 211,281,415 sequences = ~1,350

–mn = ~4,000,000 (manageable)

–lmn = ~857 x 1012

–If a computer can do 3 x 109 operations in a second, it would take ~286,000 seconds
= ~80 hours = ~3.3 days

–If you go to GenBank, it will take only a minute
• Don’t forget it serves many users at the same time

6

Heuristics

• How to perform alignment faster and with less memory?

1. Quickly identify regions with high similarity

- By inspection

- By considering short sub-sequences

2. Combine and refine these initial results

- The results may not be optimal in terms of alignment score, but the process is

usually much faster than dynamic programming

– These methods are called heuristic methods

7

Heuristic Methods

Part 2

Dot plot

• Consider an alignment that we studied before:

• If we remove the details but only light up the matched characters, what
are we going to see?

9

s

r

A C G G C G T

A

3 2 2 2 0 -2 -4 -6

T

1 2 3 3 1 -1 -3 -5

G

1 2 3 4 2 0 -2 -4

C

-1 0 1 2 3 1 -1 -3

G

-3 -2 -1 0 1 2 0 -2

T

-5 -4 -3 -2 -1 0 1 -1

-7 -6 -5 -4 -3 -2 -1 0

s

r

A C G G C G T

A

T

G

C

G

T

Diagonals

• We will see “diagonals”

• Each diagonal marks a local exact match

10

s

r

A C G G C G T

A

T

G

C

G

T

Dot plot

• In general, the dot plot gives us information about:

–Conserved regions

–Non-conserved regions

–Inversions

–Insertions and deletions

–Local repeats

–Multiple matches

–Translocations

11

Alignment types

• Information about the aligned sequences based on a dot plot

12

s

r

A T G A A C G

A

T

G

C

G

T

s

r

A C G T C G T

G

G

C

G

T

A

s

r

A A G G C C T

A

A

C

C

G

G

Insertion/deletion Duplication translocation

Resolution

• What we will see if we only highlight diagonal runs of length
at least 1, 3, and 5:

• Which one is the best?

13

s

r

A C G G C G T

A

T

G

C

G

T

s

r

A C G G C G T

A

T

G

C

G

T

s

r

A C G G C G T

A

T

G

C

G

T

Resolution: 1 character Resolution: 3 characters Resolution: 5 characters

Limitations

• Must be exact matches

–Possible to allow some mismatches, but more computations would be needed
• We will come back to this topic when we study BLAST

• The whole plot takes a lot of space

• Difficult to determine resolution

– Show even one base match: Too many dots

– Show only long matches: May miss important signals

• Mainly for visualization, not quantitative

We now study how the ideas of dot plot can help us perform database search

14

Database search

• Problem: Given a query sequence r and a database D of sequences, find
sequences in D that are similar to r

– For each identified sequence s, good to return a match score, sim(r, s)

– Good to list multiple sequences with high match scores instead of the
best one only

–|D| is usually very large (dynamic programming is not quite feasible)

15

Heuristic database search

• Two main steps, based on dot-plot ideas:

1. Instead of aligning the whole r with a whole sequence in D, we look for short
sub-sequences of very high similarity using very quick methods

2. Combine and extend these initial results to get longer matches

• Notes:

— We will start with one sequence s in D

• To search for high-similarity matches from the whole database, one may
simply repeat the two steps for every sequence in the database

• There are ways to make it faster, by using index structures

— The two steps do not guarantee to produce the best matches

— We will cover the high-level ideas

16

Popular methods

•We now study two popular methods

–FASTA

–BLAST

•Both use the mentioned ideas for performing local alignments, but in
different ways

17

FASTA

•First version for protein sequences (FASTP) proposed by David J.
Lipman and William R. Pearson in 1985 (Lipman and Pearson, Rapid and

Sensitive Protein Similarity Searches, Science 227(4693):1435-1441, 1985)

•Pronounced as “Fast-A” (i.e., fast for all kinds of sequences)

18

Overview of FASTA

• Step 1:

a) Find matches with stretches of at least k
consecutive exact matches. Find the best (e.g.,
10) matches using a simple scoring method.

b) Refine and re-evaluate the best matches using
formal substitution matrices.

• Step 2:

c) Combine the best matches with gaps allowed.

d) Use dynamic programming (DP) on the
combined matches. Banded DP: Considering
only a band in the DP table

Let’s study more details about a and c in the coming slides

19

Image credit: Wikipedia

http://en.wikipedia.org/wiki/File:Document_html_47f1ed1b.gif

Overview of FASTA

• Step 1:

a) Find matches with stretches of at least k
consecutive exact matches. Find the best (e.g.,
10) matches using a simple scoring method.

b) Refine and re-evaluate the best matches using
formal substitution matrices.

• Step 2:

c) Combine the best matches with gaps allowed.

d) Use dynamic programming (DP) on the
combined matches. Banded DP: Considering
only a band in the DP table

Let’s study more details about a and c in the coming slides

20

Image credit: Wikipedia

http://en.wikipedia.org/wiki/File:Document_html_47f1ed1b.gif

Finding local exact matches

• Finding diagonals of fixed length k
–Usually
•k=1-2 for protein sequences

•k=4-6 for DNA sequences

• Key: Building a lookup table

• Example (new):
–Sequence r: ACGTTGCT

–Sequence s in database D:
0 1

123456789012

GCGTGACTTTCT

–Let’s use k=2 here

21

Length-2 subsequences of s Positions

AC 6

CG 2

CT 7, 11

GA 5

GC 1

GT 3

TC 10

TG 4

TT 8, 9

There are different types of lookup tables
that can be used. Here we use one that
includes every length-2 subsequence (the
“2-mers”) of s sorted lexicographically.

Finding local exact matches

• Sequence r: ACGTTGCT

• Relevant sub-sequences:

22

s
r

G C G T G A C T T T C T

A

C

G

T

T

G

C

T

Length-2 subsequences of s Positions

AC 6

CG 2

CT 7, 11

GA 5

GC 1

GT 3

TC 10

TG 4

TT 8, 9

Note: The dot plot is for illustration only. The
FASTA program does not need to construct it.
• Quick recap: Why is it not a good idea to

construct the dot plot?
• How can the long matches be found without it?

Merging matches

• Merge matches on same diagonal (e.g., r[2,3]=s[2,3] and r[3,4]=s[3,4]
imply r[2,4]=s[2,4])

–More advanced methods also allow gaps

23

s
r

G C G T G A C T T T C T

A

C

G

T

T

G

C

T

s
r

G C G T G A C T T T C T

A

C

G

T

T

G

C

T

Remaining steps

• Keep some (e.g., 10) high-scoring matches

• Merge matches in different diagonals by allowing indels

• Perform local alignment by dynamic programming

24

s
r

G C G T G A C T T T C T

A

C

G

T

T

G

C

T

Possible final results:

Missing the optimal alignment

• When will FASTA miss an optimal alignment?

–Good but not exact local matches (especially for protein sequences)
Not included in the very first step

• k too large

• High-scored mismatches, especially for protein sequences

–Too many local candidates The algorithm keeps only a few “best”
ones, but it happens that they are not involved in the optimal alignment

25

http://ureply.mobi/mobile_index.php

Time and space requirements

• How much space is needed?

–One entry per length-k sub-sequence. (n-k+1) of them for a sequence of length n

• How much time is needed?

–One table lookup per length-k sub-sequence

–In the worst case, it can still take O(mn) time

• Consider matching AAAAA with AAAAAAA

–In practice, usually it is much faster

• There are other types of lookup table that allows finding correct table entries efficiently

• When there are multiple sequences in the database, the lookup tables for
different sequences can be combined. Need to record the original sequence
of each subsequence in that case.

26

Indexing multiple sequences

• Suppose we have the following

two sequences s1 and s2

in the database D:

–s1:
0 1

123456789012

GCGTGACTTTCT

–s2:
0 1

1234567890

CTGGAGCTAC

27

Length-2 subsequences Sequences and positions

AC s1:6, s2:9

AG s2:5

CG s1:2

CT s1:7, s1:11, s2:1, s2:7

GA s1:5, s2:4

GC s1:1, s2:6

GG s2:3

GT s1:3

TA s2:8

TC s1:10

TG s1:4, s2:2

TT s1:8, s1: 9

Lookup table:

Overview of FASTA

• Step 1:

a) Find matches with stretches of at least k
consecutive exact matches. Find the best (e.g.,
10) matches using a simple scoring method.

b) Refine and re-evaluate the best matches using
formal substitution matrices.

• Step 2:

c) Combine the best matches with gaps allowed.

d) Use dynamic programming (DP) on the
combined matches. Banded DP: Considering
only a band in the DP table

Let’s study more details about a and c in the coming slides

28

Image credit: Wikipedia

http://en.wikipedia.org/wiki/File:Document_html_47f1ed1b.gif

The FASTA file format

• FASTA may not be the most frequently used heuristic sequence
alignment method, but the FASTA file format is probably the most
frequently used format for sequence data

• The format (see http://en.wikipedia.org/wiki/FASTA_format):

–Text-based

–Can store multiple sequences, one after another

–For each sequence:

• One line that starts with ‘>’, stating the metadata (e.g., ID) of the sequence

• One or more lines for the actual sequence. Usually, each line contains no more
than 80 characters to fit screen width

–Can add comment lines that start with ‘;’

29

Example

30

Image credit: Wikipedia

>SEQUENCE_1

MTEITAAMVKELRESTGAGMMDCKNALSETNGDFDKAVQLLREKGLGKAAKKADRLAAEG

LVSVKVSDDFTIAAMRPSYLSYEDLDMTFVENEYKALVAELEKENEERRRLKDPNKPEHK

IPQFASRKQLSDAILKEAEEKIKEELKAQGKPEKIWDNIIPGKMNSFIADNSQLDSKLTL

MGQFYVMDDKKTVEQVIAEKEKEFGGKIKIVEFICFEVGEGLEKKTEDFAAEVAAQL

>SEQUENCE_2

SATVSEINSETDFVAKNDQFIALTKDTTAHIQSNSLQSVEELHSSTINGVKFEEYLKSQI

ATIGENLVVRRFATLKAGANGVVNGYIHTNGRVGVVIAAACDSAEVASKSRDLLRQICMH

BLAST

• Basic Local Alignment Search Tool

• Proposed by Altschul et al. in 1990

(Altschul et al., J. Mol. Biol. 215(3):403-410, 1990)

• Probably the most frequently used (and most well-known) algorithm

in bioinformatics

31

BLAST vs. FASTA

• BLAST also uses the two main ideas (finding local matches, then

extending and combining them)

• Main differences between the original ideas of BLAST and FASTA:

1. FASTA considers exact matches in the first step. BLAST allows high-scoring
inexact matches

2. BLAST tries to extend local matches regardless of the presence of local matches
in the same diagonal

3. BLAST contains a way to evaluate statistical significance of matched sequences

• In later versions the two share more common ideas

• Let’s study these differences in more details

32

1. Local matches

• Again, consider the query sequence r: ACGTTGCT

• Suppose k=3, the first sub-sequence (“word”) is ACG

• FASTA looks for the locations of ACG in the sequences in the
database

• BLAST looks for the locations of ACG and other similar
length-3 sequences

–If match has +1 score, mismatch has -1 score, and we only consider
sub-sequences with score 1, we will consider these sub-sequences:

33

ACG

CCG

GCG

TCG

AAG

AGG

ATG

ACA

ACC

ACT

Faster or slower?

• For the same word length, BLAST needs to search for more related sub-
sequences

• However, BLAST is usually faster than FASTA because

–BLAST uses a larger k, and so there are fewer matches (for DNA, usually BLAST uses
11 while FASTA uses 6-8)

–Couldn’t FASTA also use a large k? No, because it only considers exact matches.
Many local matches would be missed if k is too large

34

2. Extending and combining matches

• For each local match, BLAST extends it by including the
adjacent characters in the two ends until the match score
drops below a threshold

• Second version of BLAST (BLAST2) also tries to combine
matches on the same diagonal

35

3. Statistical significance

• Besides being faster, another main contribution of BLAST is evaluating the

statistical significance of search results

• Statistical significance: the “E-value”

36

3. Statistical significance

• Besides being faster, another main contribution of BLAST is evaluating the

statistical significance of search results

• Statistical significance: the “E-value”

–Suppose the query sequence r has length m, a sequence s in the database has length n,
and a match has score Q. What is the expected (i.e., mean) number of matches with
score Q or larger for a pair of random sequences of lengths m and n respectively?

–What is the expected number in the whole database?

• This expected number in the whole database is called the E-value

37

3. Statistical significance

• Besides being faster, another main contribution of BLAST is evaluating the

statistical significance of search results

• Statistical significance: the “E-value”

–Suppose the query sequence r has length m, a sequence s in the database has length n,
and a match has score Q. What is the expected (i.e., mean) number of matches with
score Q or larger for a pair of random sequences of lengths m and n respectively?

–What is the expected number in the whole database?

• This expected number in the whole database is called the E-value

–A small E-value means it is unlikely to happen by chance, thus suggesting potential
biological meaning

• Logic: There must be a reason behind this high similarity. For example, r and s may be

evolutionarily or functional related.

38

Statistical significance

• An illustration:
–r=A

–s=AC

–Best match: exact match, match score = 1

39

Statistical significance

• An illustration:
–r=A

–s=AC

–Best match: exact match, match score = 1

• How many matches are there with score 1 for random r and s of lengths 1
and 2, respectively?

–0 matches:

• r=A, s=CC, CG, CT, GC, GG, GT, TC, TG, TT (9 cases)

–1 match:

• r=A, s=AC, AG, AT, CA, GA, TA (6 cases)

–2 matches:

• r=A, s=AA (1 case)

40

Statistical significance

• An illustration:
–r=A

–s=AC

–Best match: exact match, match score = 1

• How many matches are there with score 1 for random r and s of lengths 1 and 2,
respectively?
–0 matches:

• r=A, s=CC, CG, CT, GC, GG, GT, TC, TG, TT (9 cases)

–1 match:

• r=A, s=AC, AG, AT, CA, GA, TA (6 cases)

–2 matches:

• r=A, s=AA (1 case)

–Expected number assuming equal chance of all cases (due to symmetry, no need to consider r=C, r=G
and r=T):

• (0x9 + 1x6 + 2x1) / 16 = 0.5 – statistically not quite significant (usually call it significant if <0.05 or <0.01)

• In reality, need to estimate chance of each case from some large databases instead of assuming
uniform distribution

41

Computing statistical significance [optional]

• For large m and n, we cannot list all cases to find the expected number

• Fortunately, the match score of two sub-sequences is the maximum
score among all possible local alignments

–When m and n are large, the match score tends to follow an extreme
value distribution

–There are known formulas to compute E-values

• For a match between r and s from database D, the size of D (and the
length of its sequences) should be included in the calculation

–See http://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-1.html for some more details

42

Variations

• Depending on the type of sequences (query-database):

–Nucleotide-nucleotide BLAST (blastn)

–Protein-protein BLAST (blastp)

–Nucleotide 6-frame translation-protein BLAST (blastx)

• Perform 6-frame translation of nucleotide query, then compare with protein
sequences in database

–Protein-nucleotide 6-frame translation BLAST (tblastn)

• Compare query protein sequence with 6-frame translation of nucleotide
sequences in database

–Nucleotide 6-frame translation-nucleotide 6-frame translation BLAST (tblastx)

• Perform 6-frame translation of query and database nucleotide sequences, then
perform comparisons

43

Variations

44

Tool Query sequence Database sequences Comparison

blastn Nucleotide Nucleotide Nucleotide-nucleotide

blastp Protein Protein Protein-protein

blastx Nucleotide Protein 6FT-protein

tblastn Protein Nucleotide Protein-6FT

tblastx Nucleotide Nucleotide 6FT-6FT

Six-frame translation revisited

+3 L V R T

+2 T C S Y

+1 N L F V

5’-AACTTGTTCGTACA-3’

3’-TTGAACAAGCATGT-5’

-1 K N T C

-2 S T R V

-3 V Q E Y

45

Reading
frame

Variations

• When do you want to use blastn and when to use tblastx?

–blastn: If conservation is expected at nucleotide level (e.g., ribosomal RNA)

–tblastx: If conservation is expected at the protein level (e.g., coding exons)

46

Tool Query sequence Database sequences Comparison

blastn Nucleotide Nucleotide Nucleotide-nucleotide

blastp Protein Protein Protein-protein

blastx Nucleotide Protein 6FT-protein

tblastn Protein Nucleotide Protein-6FT

tblastx Nucleotide Nucleotide 6FT-6FT

Iterative database search

• Suppose you have a sequence and would want to find a group of similar
sequences in a database

• However, you are not sure whether your sequence has all the key
properties of the group

• You can do an iterative database search

47

Illustration

• Suppose there is a group of related sequences with two properties:
1. Mainly C’s in the first half

2. Mainly T’s in the second half

• You have one of the sequences
r: CCCCTATG

–It has perfect signature for #1, but not very clear for #2

• Suppose a database contains the following sequences from the same group:
s1: CCCCTTTT
s2: CCGCATTT
s3: GCTCTTTT
s4: AACCTTTT

–If we use r to query the database, probably we can only get the first one or two

48

How to get all four?

1. First, use BLAST to get the highly similar sequences
(let’s say you get s1 and s2)

2. Then, construct a profile of these sequences
— E.g., CC[CG]C[AT][AT]T[GT]

3. Use the model to BLAST again
— Probably can get s3 and/or s4 now as the profile contains more T’s in the

second half than r

4. Repeat #2 and #3 above until no more new sequences are returned

• This is similar to the Position-Specific Iterative BLAST (PSI-BLAST) algorithm

49

r: CCCCTATG

s1: CCCCTTTT
s2: CCGCATTT
s3: GCTCTTTT
s4: AACCTTTT

Multiple sequence alignment (MSA)

• In general, given a set of sequences, we want to align them all at the same
time so that related characters are put in the same column

• As mentioned before, with 3 or more sequences, it quickly becomes
infeasible to get the optimal solution by dynamic programming

–Again, we need heuristics

• Now let’s study these topics:

–How to evaluate the goodness of a MSA (i.e., computing the alignment score of an MSA)

–How to form a good MSA

50

Alignment score

• Suppose we have already got an alignment with 3 or more sequences. We
want to evaluate how good it is. How can we compute an alignment score?

• Two possible ideas:

–All pairs (e.g. average of 1 vs. 2, 1 vs. 3 and 2 vs. 3)

–Compare each with a profile

• Consensus sequence

• Position weight matrix (PWM)

• ...

51

Example

• Suppose we have this alignment:
r1:ACGGCT
r2:GCGGTT
r3:TGGG_T
r4:TCGG_T

• Match: +1 score, mismatch/indel: -1 score

52

All pairs

• Scoring matrix:

•Average alignment score = (2 + 0 + 0 + 2 + 2 + 3) / 6 = 9 / 6 = 1.5

• Note: the alignment between sequences r3 and r4 involves a “gap only”
column – we simply ignore it

53

r1 r2 r3 r4

r1 6 2 0 2

r2 2 6 0 2

r3 0 0 5 3

r4 2 2 3 5

r1:ACGGCT
r2:GCGGTT
r3:TGGG_T
r4:TCGG_T

Consensus sequence

• Suppose we represent the alignment by
the consensus sequence TCGGCT

• Alignment scores between each input
sequence and consensus:

–r1: 4

–r2: 2

–r3: 2

–r4: 4

–Average = (4 + 2 + 2 + 4) / 4 = 12 / 4 = 3

54

r1:ACGGCT
r2:GCGGTT
r3:TGGG_T
r4:TCGG_T

Performing multiple sequence alignment

•Many methods:

–Clustal (ClustalW, ClustalX, Clustal Omega, etc.)

–T-Coffee

–MAFFT

–MUSCLE

–...

•We will study the main ideas behind Clustal

55

Clustal

• First proposed by Giggins and Sharp in 1988

• The popular version ClustalW (Clustal weighted) was proposed by
Thompson et al in 1994

• Main steps:

–Compute distance matrix between all pairs of sequences

–Construct a tree that captures the relationship between the sequences
according to the distance matrix

–Progressively align the sequences based on the tree

56

Distance matrix

• Distance matrix: similar to a scoring matrix, but larger number
means more dissimilar

• Let’s say we use Needleman-Wunsch to get optimal alignment and
distance = length of alignment – alignment score

–Here we only have the raw sequences and don’t have the MSA yet

57

r1 r2 r3 r4

r1 0 4 6 4

r2 4 0 6 4

r3 6 6 0 2

r4 4 4 2 0

r1:ACGGCT

r2:GCGGTT

r3:TGGGT

r4:TCGGT

From distance matrix to tree

• Tree: Close sequences are put close to each other in the tree, branch
length indicates distance

• Forming a tree (one possible way): repeatedly group the two closest
sequences together (hierarchical clustering)

–We will study more about tree construction later

58

r1 r2 r3 r4

r1 0 4 6 4

r2 4 0 6 4

r3 6 6 0 2

r4 4 4 2 0

From distance matrix to tree

• A possible tree:

59

r1:ACGGCT

r2:GCGGTT

r3:TGGGT

r4:TCGGT

r1 r2 r3 r4

r1 0 4 6 4

r2 4 0 6 4

r3 6 6 0 2

r4 4 4 2 0

r1:ACGGCT

r2:GCGGTT

r3:TGGGT

r4:TCGGT

A complete example

• r1 = ATT, r2 = CGT, r3 = ATGT
• Match: 1; mismatch: -1; indel: -2
• Best alignment between r1 and r2:
ATT
CGT
(score = -1, distance = 4)

• Best alignment between r1 and r3:
AT_T
ATGT
(score = 1, distance = 3)

• Best alignments between r2 and r3:
C_GT _CGT
ATGT and ATGT
(score = -1, distance = 5)

• Consensus between r1 and r3:
r13 = ATT or ATGT

• Best alignments between r13 and r2:
ATT ATGT ATGT
CGT or C_GT or _CGT
(for ATT) (for ATGT)

60

r1:ATT

r3:ATGT

r2:CGT

Resulting tree:

AT_T

ATGT

ATT

CGT

or
ATGT

C_GT

or
ATGT

_CGT

Multiple sequence alignments:
AT_T AT_T AT_T

CG_T C_GT _CGT
ATGT orATGT orATGT

r1 AT_T

r2 C_GT

r3 ATGT

Case Study, Summary and Further Readings

Epilogue

Case study: High-impact work

• The 1990 BLAST paper by Altschul et al. has been cited 38,000 times,
ranked 12th in the most highly-cited papers of all time by ISI Web of
Science in 2014

–PSI-BLAST was the 14th, with ~36,000 citations

–(Check out more details about the list by yourself at
http://www.nature.com/news/the-top-100-papers-1.16224)

• The method itself is one of the most used ones in bioinformatics.

–The work is not only well-received in academia, but also heavily

used in practice.

62

http://www.nature.com/news/the-top-100-papers-1.16224

Case study: High-impact work

• Why the success?

– Exponential growth in the amount of sequencing data

– Optimal methods are too slow

• BLAST is much faster

• Seldom necessary to find “optimal” solution – mathematically optimal
does not guarantee biological significance

– E-value

• Interpretability: What cutoff score would we use to define a “good”
alignment?

• Statistical basis

63

Case study: High-impact work

• Some ingredients of high-impact work:

– Real needs

• Not only now, but also future

• No good solutions exist yet

– Balance between theoretical elegance and practicality

– User-friendliness

• Easy-to-interpret inputs and outputs

– Availability, stability and scalability

– An appropriate name

64

Summary

• We need heuristic alignment methods because dynamic programming is
infeasible for very long sequences and/or many sequences

• For pairwise alignment, FASTA and BLAST first find local matches, then
extend/combine them to get longer matches

– There are ways to evaluate statistical significance of matches

• For multiple sequence alignment, one way is to perform a series of
pairwise alignments in a greedy manner

65

Further readings

• Chapter 4 of Algorithms in Bioinformatics: A Practical Introduction

–More about E-values of BLAST

–Additional searching algorithms

–Free slides available

• Chapter 5 of Algorithms in Bioinformatics: A Practical Introduction

–More details and additional methods

–Free slides available

• Chapter 6 of Algorithms in Bioinformatics: A Practical Introduction

–Methods for aligning whole genomes

–Free slides available

66

http://www.comp.nus.edu.sg/~ksung/algo_in_bioinfo/slides/Ch5_database.pdf
http://www.comp.nus.edu.sg/~ksung/algo_in_bioinfo/slides/Ch6_MSA.pdf
http://www.comp.nus.edu.sg/~ksung/algo_in_bioinfo/slides/Ch4_genome_alignment.pdf

Further readings

• Kent, BLAT – The BLAST-like Alignment Tool. Genome Research 12(4):

656-664, (2002)

– Claimed to be 500 times faster for aligning DNA/mRNA and 50 times faster for

aligning proteins than existing tools at that time

– Due to indexing all non-overlapping k-mers in the genome and keeping it in memory

– Major differences from BLAST:

• BLAST indexes the query sequence, BLAT indexes the database

• BLAST extends only when there are two proximal hits, BLAT can extend on any
number of perfect or near-perfect hits

• BLAST returns each local alignment separately, BLAT tries to stitch them together
into a larger alignment

– Particularly useful for handling exons and introns

67

