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Computational Complexity of Optimal Alignment Problems

Part 1



Computational complexity

• To align two sequences of lengths m and n by dynamic programming, 
how much time and space do we need?

–O(mn)

–Can do better, but still expensive

• To find the sequence in a database with l length-n sequences that is 
closest to a query sequence of length m, how much time and space do 
we need?

–Suppose we consider the database sequences one by one

–O(lmn) time

–O(mn) space
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Numbers in real situations

• Scenario 1: Whole-genome alignment between two species

–m, n (e.g., C. elegans and C. briggsae): ~ 100 x 106

–mn  1016

–If a computer can do 3 x 109 operations in a second, it would take ~3,000,000 
seconds = 926 hours = 38.6 days

–Still ok if you can wait. But can we find a machine with 1016, i.e., 10PB RAM?
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Numbers in real situations

• Scenario 2: Searching for a gene from a database

–m (e.g., A human gene): ~3,000 on average

–l (e.g., GenBankv229): 211,281,415 sequences

–n (e.g., GenBank v229): 285,688,542,186 bases / 211,281,415 sequences = ~1,350

–mn = ~4,000,000 (manageable)

–lmn = ~857 x 1012

–If a computer can do 3 x 109 operations in a second, it would take ~286,000 seconds 
= ~80 hours = ~3.3 days

–If you go to GenBank, it will take only a minute
• Don’t forget it serves many users at the same time
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Heuristics

• How to perform alignment faster and with less memory?

1. Quickly identify regions with high similarity

- By inspection

- By considering short sub-sequences

2. Combine and refine these initial results

- The results may not be optimal in terms of alignment score, but the process is 

usually much faster than dynamic programming

– These methods are called heuristic methods
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Heuristic Methods

Part 2



Dot plot

• Consider an alignment that we studied before:

• If we remove the details but only light up the matched characters, what 
are we going to see?
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Diagonals

• We will see “diagonals”

• Each diagonal marks a local exact match

10

s

r

A C G G C G T 

A

T

G

C

G

T





Dot plot

• In general, the dot plot gives us information about:

–Conserved regions

–Non-conserved regions

–Inversions

–Insertions and deletions

–Local repeats

–Multiple matches

–Translocations
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Alignment types

• Information about the aligned sequences based on a dot plot
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Resolution

• What we will see if we only highlight diagonal runs of length 
at least 1, 3, and 5:

• Which one is the best?
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Limitations

• Must be exact matches

–Possible to allow some mismatches, but more computations would be needed
• We will come back to this topic when we study BLAST

• The whole plot takes a lot of space

• Difficult to determine resolution

– Show even one base match: Too many dots

– Show only long matches: May miss important signals

• Mainly for visualization, not quantitative

We now study how the ideas of dot plot can help us perform database search
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Database search

• Problem: Given a query sequence r and a database D of sequences, find 
sequences in D that are similar to r

– For each identified sequence s, good to return a match score, sim(r, s)

– Good to list multiple sequences with high match scores instead of the 
best one only

–|D| is usually very large (dynamic programming is not quite feasible)
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Heuristic database search

• Two main steps, based on dot-plot ideas:

1. Instead of aligning the whole r with a whole sequence in D, we look for short 
sub-sequences of very high similarity using very quick methods

2. Combine and extend these initial results to get longer matches

• Notes:

— We will start with one sequence s in D

• To search for high-similarity matches from the whole database, one may 
simply repeat the two steps for every sequence in the database

• There are ways to make it faster, by using index structures

— The two steps do not guarantee to produce the best matches 

— We will cover the high-level ideas
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Popular methods

•We now study two popular methods

–FASTA

–BLAST

•Both use the mentioned ideas for performing local alignments, but in 
different ways
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FASTA

•First version for protein sequences (FASTP) proposed by David J. 
Lipman and William R. Pearson in 1985 (Lipman and Pearson, Rapid and 

Sensitive Protein Similarity Searches, Science 227(4693):1435-1441, 1985) 

•Pronounced as “Fast-A” (i.e., fast for all kinds of sequences)
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Overview of FASTA

• Step 1:

a) Find matches with stretches of at least k
consecutive exact matches. Find the best (e.g., 
10) matches using a simple scoring method.

b) Refine and re-evaluate the best matches using 
formal substitution matrices.

• Step 2: 

c) Combine the best matches with gaps allowed.

d) Use dynamic programming (DP) on the 
combined matches. Banded DP: Considering 
only a band in the DP table

Let’s study more details about a and c in the coming slides
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Overview of FASTA
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Finding local exact matches

• Finding diagonals of fixed length k
–Usually
•k=1-2 for protein sequences

•k=4-6 for DNA sequences

• Key: Building a lookup table

• Example (new):
–Sequence r: ACGTTGCT

–Sequence s in database D:
0        1

123456789012

GCGTGACTTTCT

–Let’s use k=2 here
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Length-2 subsequences of s Positions

AC 6

CG 2

CT 7, 11

GA 5

GC 1

GT 3

TC 10

TG 4

TT 8, 9

There are different types of lookup tables 
that can be used. Here we use one that 
includes every length-2 subsequence (the 
“2-mers”) of s sorted lexicographically.



Finding local exact matches

• Sequence r: ACGTTGCT

• Relevant sub-sequences:
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Note: The dot plot is for illustration only. The 
FASTA program does not need to construct it.
• Quick recap: Why is it not a good idea to 

construct the dot plot?
• How can the long matches be found without it?



Merging matches

• Merge matches on same diagonal (e.g., r[2,3]=s[2,3] and r[3,4]=s[3,4] 
imply r[2,4]=s[2,4])

–More advanced methods also allow gaps
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Remaining steps

• Keep some (e.g., 10) high-scoring matches

• Merge matches in different diagonals by allowing indels

• Perform local alignment by dynamic programming
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Missing the optimal alignment

• When will FASTA miss an optimal alignment?

–Good but not exact local matches (especially for protein sequences) 
Not included in the very first step

• k too large

• High-scored mismatches, especially for protein sequences

–Too many local candidates  The algorithm keeps only a few “best” 
ones, but it happens that they are not involved in the optimal alignment
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Time and space requirements

• How much space is needed?

–One entry per length-k sub-sequence. (n-k+1) of them for a sequence of length n

• How much time is needed?

–One table lookup per length-k sub-sequence

–In the worst case, it can still take O(mn) time

• Consider matching AAAAA with AAAAAAA

–In practice, usually it is much faster

• There are other types of lookup table that allows finding correct table entries efficiently

• When there are multiple sequences in the database, the lookup tables for 
different sequences can be combined. Need to record the original sequence 
of each subsequence in that case.
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Indexing multiple sequences

• Suppose we have the following 

two sequences s1 and s2

in the database D:

–s1:
0        1

123456789012

GCGTGACTTTCT

–s2:
0        1

1234567890

CTGGAGCTAC
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Length-2 subsequences Sequences and positions

AC s1:6, s2:9

AG s2:5

CG s1:2

CT s1:7, s1:11, s2:1, s2:7

GA s1:5, s2:4

GC s1:1, s2:6

GG s2:3

GT s1:3

TA s2:8

TC s1:10

TG s1:4, s2:2

TT s1:8, s1: 9

Lookup table:



Overview of FASTA

• Step 1:

a) Find matches with stretches of at least k
consecutive exact matches. Find the best (e.g., 
10) matches using a simple scoring method.

b) Refine and re-evaluate the best matches using 
formal substitution matrices.

• Step 2: 

c) Combine the best matches with gaps allowed.

d) Use dynamic programming (DP) on the 
combined matches. Banded DP: Considering 
only a band in the DP table

Let’s study more details about a and c in the coming slides
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The FASTA file format

• FASTA may not be the most frequently used heuristic sequence 
alignment method, but the FASTA file format is probably the most 
frequently used format for sequence data

• The format (see http://en.wikipedia.org/wiki/FASTA_format):

–Text-based

–Can store multiple sequences, one after another

–For each sequence:

• One line that starts with ‘>’, stating the metadata (e.g., ID) of the sequence

• One or more lines for the actual sequence. Usually, each line contains no more 
than 80 characters to fit screen width

–Can add comment lines that start with ‘;’
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Example
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Image credit: Wikipedia

>SEQUENCE_1 

MTEITAAMVKELRESTGAGMMDCKNALSETNGDFDKAVQLLREKGLGKAAKKADRLAAEG 

LVSVKVSDDFTIAAMRPSYLSYEDLDMTFVENEYKALVAELEKENEERRRLKDPNKPEHK 

IPQFASRKQLSDAILKEAEEKIKEELKAQGKPEKIWDNIIPGKMNSFIADNSQLDSKLTL 

MGQFYVMDDKKTVEQVIAEKEKEFGGKIKIVEFICFEVGEGLEKKTEDFAAEVAAQL 

>SEQUENCE_2 

SATVSEINSETDFVAKNDQFIALTKDTTAHIQSNSLQSVEELHSSTINGVKFEEYLKSQI 

ATIGENLVVRRFATLKAGANGVVNGYIHTNGRVGVVIAAACDSAEVASKSRDLLRQICMH



BLAST

• Basic Local Alignment Search Tool

• Proposed by Altschul et al. in 1990 

(Altschul et al., J. Mol. Biol. 215(3):403-410, 1990)

• Probably the most frequently used (and most well-known) algorithm 

in bioinformatics

31



BLAST vs. FASTA

• BLAST also uses the two main ideas (finding local matches, then 

extending and combining them)

• Main differences between the original ideas of BLAST and FASTA:

1. FASTA considers exact matches in the first step. BLAST allows high-scoring 
inexact matches

2. BLAST tries to extend local matches regardless of the presence of local matches 
in the same diagonal

3. BLAST contains a way to evaluate statistical significance of matched sequences

• In later versions the two share more common ideas

• Let’s study these differences in more details
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1. Local matches

• Again, consider the query sequence r: ACGTTGCT

• Suppose k=3, the first sub-sequence (“word”) is ACG

• FASTA looks for the locations of ACG in the sequences in the 
database

• BLAST looks for the locations of ACG and other similar 
length-3 sequences

–If match has +1 score, mismatch has -1 score, and we only consider 
sub-sequences with score  1, we will consider these sub-sequences:
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Faster or slower?

• For the same word length, BLAST needs to search for more related sub-
sequences

• However, BLAST is usually faster than FASTA because

–BLAST uses a larger k, and so there are fewer matches (for DNA, usually BLAST uses 
11 while FASTA uses 6-8)

–Couldn’t FASTA also use a large k? No, because it only considers exact matches. 
Many local matches would be missed if k is too large
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2. Extending and combining matches

• For each local match, BLAST extends it by including the 
adjacent characters in the two ends until the match score 
drops below a threshold

• Second version of BLAST (BLAST2) also tries to combine 
matches on the same diagonal

35



3. Statistical significance

• Besides being faster, another main contribution of BLAST is evaluating the 

statistical significance of search results

• Statistical significance: the “E-value”
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3. Statistical significance

• Besides being faster, another main contribution of BLAST is evaluating the 

statistical significance of search results

• Statistical significance: the “E-value”

–Suppose the query sequence r has length m, a sequence s in the database has length n, 
and a match has score Q. What is the expected (i.e., mean) number of matches with 
score Q or larger for a pair of random sequences of lengths m and n respectively?

–What is the expected number in the whole database?

• This expected number in the whole database is called the E-value
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3. Statistical significance

• Besides being faster, another main contribution of BLAST is evaluating the 

statistical significance of search results

• Statistical significance: the “E-value”

–Suppose the query sequence r has length m, a sequence s in the database has length n, 
and a match has score Q. What is the expected (i.e., mean) number of matches with 
score Q or larger for a pair of random sequences of lengths m and n respectively?

–What is the expected number in the whole database?

• This expected number in the whole database is called the E-value

–A small E-value means it is unlikely to happen by chance, thus suggesting potential 
biological meaning

• Logic: There must be a reason behind this high similarity. For example, r and s may be 

evolutionarily or functional related.
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Statistical significance

• An illustration:
–r=A

–s=AC

–Best match: exact match, match score = 1
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Statistical significance

• An illustration:
–r=A

–s=AC

–Best match: exact match, match score = 1

• How many matches are there with score  1 for random r and s of lengths 1 
and 2, respectively?

–0 matches:

• r=A, s=CC, CG, CT, GC, GG, GT, TC, TG, TT (9 cases)

–1 match:

• r=A, s=AC, AG, AT, CA, GA, TA (6 cases)

–2 matches:

• r=A, s=AA (1 case)
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Statistical significance

• An illustration:
–r=A

–s=AC

–Best match: exact match, match score = 1

• How many matches are there with score  1 for random r and s of lengths 1 and 2, 
respectively?
–0 matches:

• r=A, s=CC, CG, CT, GC, GG, GT, TC, TG, TT (9 cases)

–1 match:

• r=A, s=AC, AG, AT, CA, GA, TA (6 cases)

–2 matches:

• r=A, s=AA (1 case)

–Expected number assuming equal chance of all cases (due to symmetry, no need to consider r=C, r=G
and r=T):

• (0x9 + 1x6 + 2x1) / 16 = 0.5 – statistically not quite significant (usually call it significant if <0.05 or <0.01)

• In reality, need to estimate chance of each case from some large databases instead of assuming 
uniform distribution
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Computing statistical significance [optional]

• For large m and n, we cannot list all cases to find the expected number

• Fortunately, the match score of two sub-sequences is the maximum 
score among all possible local alignments

–When m and n are large, the match score tends to follow an extreme 
value distribution

–There are known formulas to compute E-values

• For a match between r and s from database D, the size of D (and the 
length of its sequences) should be included in the calculation

–See http://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-1.html for some more details
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Variations

• Depending on the type of sequences (query-database):

–Nucleotide-nucleotide BLAST (blastn)

–Protein-protein BLAST (blastp)

–Nucleotide 6-frame translation-protein BLAST (blastx)

• Perform 6-frame translation of nucleotide query, then compare with protein 
sequences in database

–Protein-nucleotide 6-frame translation BLAST (tblastn)

• Compare query protein sequence with 6-frame translation of nucleotide 
sequences in database

–Nucleotide 6-frame translation-nucleotide 6-frame translation BLAST (tblastx)

• Perform 6-frame translation of query and database nucleotide sequences, then 
perform comparisons
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Variations
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Tool Query sequence Database sequences Comparison

blastn Nucleotide Nucleotide Nucleotide-nucleotide

blastp Protein Protein Protein-protein

blastx Nucleotide Protein 6FT-protein

tblastn Protein Nucleotide Protein-6FT

tblastx Nucleotide Nucleotide 6FT-6FT



Six-frame translation revisited

+3     L  V  R  T

+2    T  C  S  Y

+1   N  L  F  V

5’-AACTTGTTCGTACA-3’

3’-TTGAACAAGCATGT-5’

-1       K  N  T  C

-2      S  T  R  V

-3     V  Q  E  Y

45

Reading
frame



Variations

• When do you want to use blastn and when to use tblastx?

–blastn: If conservation is expected at nucleotide level (e.g., ribosomal RNA)

–tblastx: If conservation is expected at the protein level (e.g., coding exons)
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Tool Query sequence Database sequences Comparison

blastn Nucleotide Nucleotide Nucleotide-nucleotide

blastp Protein Protein Protein-protein

blastx Nucleotide Protein 6FT-protein

tblastn Protein Nucleotide Protein-6FT

tblastx Nucleotide Nucleotide 6FT-6FT



Iterative database search

• Suppose you have a sequence and would want to find a group of similar 
sequences in a database

• However, you are not sure whether your sequence has all the key 
properties of the group

• You can do an iterative database search
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Illustration

• Suppose there is a group of related sequences with two properties:
1. Mainly C’s in the first half

2. Mainly T’s in the second half

• You have one of the sequences
r: CCCCTATG

–It has perfect signature for #1, but not very clear for #2

• Suppose a database contains the following sequences from the same group:
s1: CCCCTTTT
s2: CCGCATTT
s3: GCTCTTTT
s4: AACCTTTT

–If we use r to query the database, probably we can only get the first one or two
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How to get all four?

1. First, use BLAST to get the highly similar sequences 
(let’s say you get s1 and s2)

2. Then, construct a profile of these sequences
— E.g., CC[CG]C[AT][AT]T[GT]

3. Use the model to BLAST again
— Probably can get s3 and/or s4 now as the profile contains more T’s in the 

second half than r

4. Repeat #2 and #3 above until no more new sequences are returned

• This is similar to the Position-Specific Iterative BLAST (PSI-BLAST) algorithm
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r: CCCCTATG

s1: CCCCTTTT
s2: CCGCATTT
s3: GCTCTTTT
s4: AACCTTTT



Multiple sequence alignment (MSA)

• In general, given a set of sequences, we want to align them all at the same 
time so that related characters are put in the same column

• As mentioned before, with 3 or more sequences, it quickly becomes 
infeasible to get the optimal solution by dynamic programming

–Again, we need heuristics

• Now let’s study these topics:

–How to evaluate the goodness of a MSA (i.e., computing the alignment score of an MSA)

–How to form a good MSA
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Alignment score

• Suppose we have already got an alignment with 3 or more sequences. We 
want to evaluate how good it is. How can we compute an alignment score?

• Two possible ideas:

–All pairs (e.g. average of 1 vs. 2, 1 vs. 3 and 2 vs. 3)

–Compare each with a profile

• Consensus sequence

• Position weight matrix (PWM)

• ...
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Example

• Suppose we have this alignment:
r1:ACGGCT
r2:GCGGTT
r3:TGGG_T
r4:TCGG_T

• Match: +1 score, mismatch/indel: -1 score
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All pairs

• Scoring matrix:

•Average alignment score = (2 + 0 + 0 + 2 + 2 + 3) / 6 = 9 / 6 = 1.5

• Note: the alignment between sequences r3 and r4 involves a “gap only” 
column – we simply ignore it
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r1 r2 r3 r4

r1 6 2 0 2

r2 2 6 0 2

r3 0 0 5 3

r4 2 2 3 5

r1:ACGGCT
r2:GCGGTT
r3:TGGG_T
r4:TCGG_T



Consensus sequence

• Suppose we represent the alignment by 
the consensus sequence TCGGCT

• Alignment scores between each input 
sequence and consensus:

–r1: 4

–r2: 2

–r3: 2

–r4: 4

–Average = (4 + 2 + 2 + 4) / 4 = 12 / 4 = 3
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r1:ACGGCT
r2:GCGGTT
r3:TGGG_T
r4:TCGG_T



Performing multiple sequence alignment

•Many methods:

–Clustal (ClustalW, ClustalX, Clustal Omega, etc.)

–T-Coffee

–MAFFT

–MUSCLE

–...

•We will study the main ideas behind Clustal
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Clustal

• First proposed by Giggins and Sharp in 1988

• The popular version ClustalW (Clustal weighted) was proposed by 
Thompson et al in 1994

• Main steps:

–Compute distance matrix between all pairs of sequences

–Construct a tree that captures the relationship between the sequences 
according to the distance matrix

–Progressively align the sequences based on the tree
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Distance matrix

• Distance matrix: similar to a scoring matrix, but larger number 
means more dissimilar

• Let’s say we use Needleman-Wunsch to get optimal alignment and 
distance = length of alignment – alignment score

–Here we only have the raw sequences and don’t have the MSA yet
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r1 r2 r3 r4

r1 0 4 6 4

r2 4 0 6 4

r3 6 6 0 2

r4 4 4 2 0

r1:ACGGCT

r2:GCGGTT

r3:TGGGT

r4:TCGGT



From distance matrix to tree

• Tree: Close sequences are put close to each other in the tree, branch 
length indicates distance

• Forming a tree (one possible way): repeatedly group the two closest 
sequences together (hierarchical clustering)

–We will study more about tree construction later
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r1 r2 r3 r4

r1 0 4 6 4

r2 4 0 6 4

r3 6 6 0 2

r4 4 4 2 0



From distance matrix to tree

• A possible tree:
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r1:ACGGCT

r2:GCGGTT

r3:TGGGT

r4:TCGGT

r1 r2 r3 r4

r1 0 4 6 4

r2 4 0 6 4

r3 6 6 0 2

r4 4 4 2 0

r1:ACGGCT

r2:GCGGTT

r3:TGGGT

r4:TCGGT



A complete example

• r1 = ATT, r2 = CGT, r3 = ATGT
• Match: 1; mismatch: -1; indel: -2
• Best alignment between r1 and r2:
ATT
CGT
(score = -1, distance = 4)

• Best alignment between r1 and r3:
AT_T
ATGT
(score = 1, distance = 3)

• Best alignments between r2 and r3:
C_GT _CGT
ATGT and ATGT
(score = -1, distance = 5)

• Consensus between r1 and r3:
r13 = ATT or ATGT

• Best alignments between r13 and r2:
ATT ATGT ATGT
CGT or C_GT or _CGT
(for ATT) (for ATGT)
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r1:ATT

r3:ATGT

r2:CGT

Resulting tree:

AT_T

ATGT

ATT

CGT

or
ATGT

C_GT

or
ATGT

_CGT

Multiple sequence alignments:
AT_T AT_T AT_T

CG_T C_GT _CGT
ATGT orATGT orATGT

r1 AT_T

r2 C_GT

r3 ATGT



Case Study, Summary and Further Readings

Epilogue



Case study: High-impact work

• The 1990 BLAST paper by Altschul et al. has been cited 38,000 times, 
ranked 12th in the most highly-cited papers of all time by ISI Web of 
Science in 2014

–PSI-BLAST was the 14th, with ~36,000 citations

–(Check out more details about the list by yourself at 
http://www.nature.com/news/the-top-100-papers-1.16224)

• The method itself is one of the most used ones in bioinformatics.

–The work is not only well-received in academia, but also heavily 

used in practice.
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http://www.nature.com/news/the-top-100-papers-1.16224


Case study: High-impact work

• Why the success?

– Exponential growth in the amount of sequencing data

– Optimal methods are too slow

• BLAST is much faster

• Seldom necessary to find “optimal” solution – mathematically optimal 
does not guarantee biological significance

– E-value

• Interpretability: What cutoff score would we use to define a “good” 
alignment?

• Statistical basis
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Case study: High-impact work

• Some ingredients of high-impact work:

– Real needs

• Not only now, but also future

• No good solutions exist yet

– Balance between theoretical elegance and practicality

– User-friendliness

• Easy-to-interpret inputs and outputs

– Availability, stability and scalability

– An appropriate name
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Summary

• We need heuristic alignment methods because dynamic programming is 
infeasible for very long sequences and/or many sequences

• For pairwise alignment, FASTA and BLAST first find local matches, then 
extend/combine them to get longer matches

– There are ways to evaluate statistical significance of matches

• For multiple sequence alignment, one way is to perform a series of 
pairwise alignments in a greedy manner
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Further readings

• Chapter 4 of Algorithms in Bioinformatics: A Practical Introduction

–More about E-values of BLAST

–Additional searching algorithms

–Free slides available

• Chapter 5 of Algorithms in Bioinformatics: A Practical Introduction

–More details and additional methods

–Free slides available

• Chapter 6 of Algorithms in Bioinformatics: A Practical Introduction

–Methods for aligning whole genomes

–Free slides available
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http://www.comp.nus.edu.sg/~ksung/algo_in_bioinfo/slides/Ch4_genome_alignment.pdf


Further readings

• Kent, BLAT – The BLAST-like Alignment Tool. Genome Research 12(4):

656-664, (2002)

– Claimed to be 500 times faster for aligning DNA/mRNA and 50 times faster for 

aligning proteins than existing tools at that time

– Due to indexing all non-overlapping k-mers in the genome and keeping it in memory

– Major differences from BLAST:

• BLAST indexes the query sequence, BLAT indexes the database

• BLAST extends only when there are two proximal hits, BLAT can extend on any 
number of perfect or near-perfect hits

• BLAST returns each local alignment separately, BLAT tries to stitch them together 
into a larger alignment

– Particularly useful for handling exons and introns
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