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Abstract

Data-driven P2P streaming systems can potentially pro-
vide good playback rate to a large number of viewers. One
important design problem in such P2P systems is to de-
termine the optimal chunk selection policy that provides
high continuity playback under the server’s upload capac-
ity constraint. We present a general and unified mathemat-
ical framework to analyze a large class of chunk selection
policies. The analytical framework is asymptotically exact
when the number of viewers is large. More importantly, we
provide some interesting observations on the optimal chunk
selection policy: it is of∨-shaped and becomes more greedy
as the upload capacity of the server increases. This insight
helps content providers to deploy large scale streaming sys-
tems with a QoS-guarantee under a given cost constraint.

1. Introduction

Video streaming is part of the basic service that we ex-
pect in the current Internet. There has been number of stud-
ies on how to provide streaming service using the client-
server architecture and how to engineer streaming servers
so as to provide the quality-of-service guarantees [1]. In
recent years, the attention is on how to provide ascalable
streaming service to a large number of viewers. To this end,
IP multicast was proposed so that the server only needs to
send a copy of video file and routers along the distribution
network will relay all packets to different end users. How-
ever, due to security and deployment issues [2], IP multicast
has not been widely deployed. Instead, people are using ap-
plication layer multicast to deliver the video files to users.

Peer-to-peer (P2P) system is considered one form of
application layer multicast. In particular, the data-driven
model of P2P systems (e.g., BitTorrent) is shown to exhibit
high scalability property: the service rate of the P2P system

is proportional to the number of users. In the past few years,
number of companies such as PPLive and UUSee are using
the data-driven P2P approach to provide live-streaming or
video-on-demand services [5]. The basic idea of the data-
driven P2P streaming is for the server to organize the video
content into a stream of “chunks” in playback order. The
server uploads these stream of chunks to some randomly se-
lected peers. Peers, in return, upload chunks that they pos-
sess and at the same time, request for chunks that they do
not have. Given a large enough peer population, a sufficient
number of neighbors and sufficient buffer size at each peer,
the data-driven P2P streaming approach can potentially de-
liver a good playback performance for all peers.

For a P2P streaming service provider, the technical chal-
lenge is how to design a system that can providegood
playback continuityto a large population of viewersand
at the same time, reduce the operating cost of the system.
In general, the operating cost includes (a) the number of
servers needed to support a large viewing population, and
(b) the amount of traffic uploaded by these servers since
ISPs usually use the volume-based charging method for
these streaming service providers.

At the heart of the P2P streaming protocol is the chunk
selection algorithm: given a set of missing video chunks,
which chunk should a peer request from its neighboring
peers so as to enhance the system performance, e.g., play-
back continuity. In [14, 15], authors propose someheuris-
tic chunk selection policies. These include (a) the greedy
chunk selection, in which each peer requests the missing
chunk with the most urgent playback deadline so as to max-
imize its own playback continuity, (b) the rarest chunk pol-
icy, in which each peer requests the missing chunk with the
furthest playback deadline with the aim to maximize the
rarest piece so as to improve the scalability of the system.
The insight is that the priority for selecting a chunk depends
on two factors: playback urgency (based on the local view
of a peer’s buffer), and distribution efficiency (based on the
global scarcity of a chunk). A chunk policy based purely
on playback urgency (i.e., the greedy chunk selection) can-



not scale; whereas a policy based purely on distribution ef-
ficiency (i.e., the rarest chunk selection) is asymptotically
suboptimal as buffer becomes abundant compared to the
peer population size. One fundamental question we seek to
answer is to discover the“structure” of the optimal chunk
selection policy. That is, given the server’s upload capac-
ity, the number of peers in the system and the buffer size
of each peers, determine the chunk selection policy so as
to maximize the average system playback continuity. The
contributions of our work are as follows.

• Instead of focusing on few heuristic algorithms, we
propose to study a large family of chunk selection poli-
cies, which we called thepriority-based chunk selec-
tion class.

• We propose to use a general and unified analytical
framework, thedensity dependent jump Markov pro-
cess(DDJMP) [6] to analyze any chunk selection pol-
icy in the above mentioned class, and we prove that
our framework is asymptotically exact when we scale
up the system.

• We also propose the segmentation algorithm to reduce
the computational complexity of evaluating the perfor-
mance of a chunk selection policy. This algorithm fa-
cilitates us to explore the optimal chunk selection pol-
icy. This segmentation algorithm not only helps us to
to efficiently find the optimal policy, but it also demon-
strates the important influence of the server’s upload
capacity on the class of chunk selection policies that
are likely to include the optimal: namely, the more the
server is able to upload, the more the peers can afford
to use the local greedy policy.

• We show that the optimal chunk selection policy has
the “ ∨”-shaped structure, while the worst chunk se-
lection policy has the“ ∧”-shaped structure, where
the shape refers to the priority of requesting missing
chunks in the peer’s buffer. Furthermore, the server
upload capacity is monotonically beneficial to achieve
higher playback continuity.

• We present a distributed adaptive algorithm so that the
server can notify all peers about the optimal chunk se-
lection policy whenever there is any change in the sys-
tem parameters.

The balance of our paper is as follows. In Section 2,
we provide the model of a data-driven P2P streaming sys-
tem. In Section 3, we define the family of chunk selection
policies we study and present the density dependent jump
Markov process framework in analyzing any policy in the
class. In Section 4, we explore the structure of the optimal
chunk selection policy and state its properties. In Section5,

we present the segmentation algorithm to improve the com-
putational efficiency of evaluating a given policy. In Sec-
tion 6, we present an adaptive algorithm so that the server
can notify the optimal chunk selection to all peers whenever
there is any change in the system parameters. Experiments
are carried out to illustrate the performance and robustness
of our proposals. Related work is given in Section 7 and
finally, Section 8 concludes.

2. System Models

In this section, we present the model of a data-driven P2P
streaming system, as well as the buffering structure of each
peer in receiving and displaying the video chunks.

2.1. Model of a P2P Streaming System

Consider a P2P live-streaming system which needs to
serveM homogeneous peers. This P2P system has a logi-
cal serverS, which organizes the video content into stream
of chunks in playback order. The serverS has an upload
bandwidth ofC (in unit of bit per second). In order to view
the live-streaming program, there is a playback rate require-
ment ofr (in unit of bit per second). In this work, we con-
sider a large scale P2P system whereinC < Mr. In other
words, the serverS can only supportf = C

Mr
< 1 fraction

of peers. Therefore, peers need to collaborate with each
other to maximize their chance of continual playback.

We model this large scale P2P live-streaming network as
a discrete time system. At each time slot, the serverS up-
loads one chunk of video to a fraction,f , of peers. Each
chunk has a sequence number, starting from 1. Therefore,
at time slott, the serverS randomly selectsf peers and
uploads the video chunk of sequence numbert to these ran-
domly selected peers.

One important note is that for a P2P streaming service
provider, it is not only important to provide an adequate
service (e.g., sustainable playback rate) to theseM peers,
but at the same time, the provider wants to minimize its op-
erating cost. Deploying and maintaining a large server con-
tribute to the operating cost, moreover, the amount of traffic
upload also contributes to the operating cost since an ISP
usually charges a content provider based on its upload traf-
fic based on the volume-based charging model. Therefore,
the streaming service provider would like to support a large
population under a given continuity playback requirement
with a smallest value off as much as possible.

Each peer needs to receive and buffer these video chunks
from the P2P streaming system. To achieve this, each peer
maintains a local bufferB, which can cache up ton video
chunks.B(1) is used to store the newest video chunk that
the serverS is uploading in the current time slot, whileB(n)
is used to store the oldest video chunk that is being played



back. In other words, when the serverS is uploading chunk
with sequence numberk, and if k ≥ n − 1, then video
chunkk − n + 1 is the chunk being played back by that
peer (provided that the video chunk is available inB(n)).
At the end of each time slot, the video chunk inB(n) will
be discarded, and all chunks will be “shifted left” by one
position: video chunk inB(i) will be shifted toB(i + 1),
for i = 1, . . . , n − 1. Figure 1 illustrates the dynamics
of buffer B. At the beginning of time slott, the serverS
is filling in B(1) and video chunks are available inB(3),
B(4),B(6) andB(7) respectively. Also, at time slott, video
chunk inB(7) is fed to the video player for playback. At the
beginning of time slott+1, all video chunks inB are shifted
left by one position.

fed to
video player

fed by 
server SB(1)B(n)

time slot t

time slot t+1

Figure 1: Buffer structureB with n = 7, serverS fills B(1)
at time slott.

When a peer joins the P2P streaming system, its buffer
B is initially empty. Eventually, each position ofB may be
filled, either by the serverS or by other peers. The goal
for each peer is to ensure the display buffer, namelyB(n),
is filled in as many times as possible so as to maximize its
probability of continuous video playback. We define

π(i)=Prob[B(i) is filled with video chunk]i=1, .., n. (1)

Therefore, peers want to maximizeπ(n) for continuous
playback. Consider a client-server architecture (e.g., with-
out the assistance of P2P technology). Since the server
S randomly selects fraction of peers to upload, therefore
π(1) = f . Due to the buffer shifting operation, it is not
difficult to see thatπ(n) = π(n − 1) = · · · = π(1), or

π(n) = f = C/(MR). (2)

Remark: From the above equation, we can see that a client-
server architecture has a scalability problem. WhenM is
large and if a streaming service provider wants to have a
reasonable value ofπ(n), the service provider needs to en-
sureC ≈ Mr. This translates to deploying many servers
and uploading more traffic to viewers, which implies a very
high operating cost, especially when one wants to support
a large number of viewers. To alleviate this problem, one
can rely on the P2P technology to fill in more video chunks
in B. Moreover, which video chunk to request to fill in to
B (a.k.a,chunk selection policy) has a significant impact on
the performance measure of continuous playback. In the

following, we present a general framework to model and
analyze a large class of chunk selection policies.

3. Chunk Selection Policies

The chunk selection is modeled as apull process: at the
beginning of the time slot, each peer randomly selects an-
other peer and requests a video chunk. SinceB(1) is used to
cache the video chunk uploaded by the serverS, andB(n)
is used as the playback buffer by the video player, there-
fore, a peer only needs to request for a missing video chunk
in B(2) toB(n−1).

Note that thispull modelhas two implications. Firstly,
a peer can be selected by multiple requesting peers. In this
case, we assume the selected peer has sufficient upload ca-
pacity to satisfy all requests at one time slot. It is important
to point out that whenM is sufficiently large, the probabil-
ity of being selected by many requesting peer is asymptot-
ically small. Secondly, if the selected peer does not pos-
sess the requesting video chunk, the requesting peer loses
the chance to download in this time slot. As we will illus-
trate, this simplification helps us to analyze a large family
of chunk selection policies.

Since the downloading bandwidth of a peer is limited,
when a peer has multiple missing chunks, it needs to decide
which chunk to download. In this paper, we study the chunk
selection policy which belongs to thepriority-based chunk
selection class.

Definition 1 (Priority-based Chunk Selection Policy) A
priority-based chunk selection policy for bufferB with size
n is represented by a permutation of lengthn−2, where the
ith digit from the right is the relative selection priority of
B(i + 1), and larger value implies higher priority. In each
time slot, when a peer has multiple missing video chunks in
B(2) toB(n−1), the peer always choose the missing chunk
with the highest selection priority to download.

To illustrate, consider the example in Figure 1 in which
the bufferB has sizen = 7. Therefore, we can use 5 digits
to present a priority-based chunk selection policy. Let say
the chunk selection policy is54321, which implies thatB(6)
has the highest selection priority whileB(2) has the lowest
selection priority. At time slott, since the only missing
video chunks areB(5) andB(2), therefore, this peer will
request for the missing video inB(5), or in other words, the
video chunk with the sequence numbert − 4.

Note that the above definition allows us to represent a
large family of chunk selection policies. For example:
Random Chunk Selection:under this chunk selection pol-
icy, a peer requests to download any missing video chunk
with equal probability. Note that this is the policy used for
file distribution and it is shown to be very efficient [7]. For
a bufferB with sizen, the random chunk selection policy



is represented byn − 2 digits of 1’s. For example, when
n = 7, this chunk selection policy is specified as11111.
Greedy Chunk Selection Policy:under this chunk selec-
tion policy, a peer requests to download the missing video
chunk that has the earliest playback deadline. The objec-
tive of this chunk selection policy is that each peer tends
to maximize its probability of playback continuity. For a
bufferB with sizen, the greedy chunk selection policy is
represented byn − 2 digits with decreasing value from the
left. For example, whenn = 7, this chunk selection policy
is specified as54321.
Rarest First Selection Policy: under this chunk selection
policy, a peer requests to download the missing video chunk
that has the largest sequence number (or the video chunk
that has just been pushed out by the serverS). This is a
reasonable policy since this helps the rarest video chunk to
spread faster in the P2P network and thereby improve the
system scalability. For a bufferB with size n, the rarest
chunk selection policy is represented byn − 2 digits with
increasing value. For example, whenn = 7, this chunk se-
lection policy is specified as12345.
Family of Mixed Selection Policy:one can specify a chunk
selection policy that combines the advantages of the greedy
chunk selection and the rarest first selection. For example,
whenn = 7, we can specify a number of mixed selection
policies, say53124 or 42135. Note that the policy53124
gives a higher weight to the chunk with the earliest play-
back deadline while the policy42135 gives a higher weight
to the chunk that has the highest sequence number. For both
of these policies, the rarest chunk inB(2) and the video
chunk with the earliest playback deadline inB(6) have a
higher selection priority than other video chunks, while the
chunk in the middle of the buffer (e.g.,B(4) in this case)
will have the lowest selection priority.

Note that the priority-based chunk selection represents a
large family of policies. For a bufferB with sizen, there are
(n−2)! permutations so there are at least(n−2)! chunk se-
lection policies. Given that there are a lot of chunk selection
policies, what we need is a general and accurate modeling
framework to evaluate and compare their performance. In
the following, we discuss this modeling framework.

3.1. Modeling Framework for Chunk Selection Policies

The most direct approach to model any chunk selection
policy is to use a discrete time Markov chain (DTMC). Let
Cn be the set of alln-digits binary numbers that represent
the buffer states, with theith digit representing the state of
B(i), e.g., if theith digit is ‘1’, it means the video chunk is
available inB(i) and ’0’ otherwise. For example, ifn = 7,
then ’1000001’ represents thatB(7) andB(1) have video
chunks while other buffer cells do not have video chunk.
Let ck be the state of peerk, the state space of the DTMC

is

S = {(c1, c2, . . . , cM )|ck ∈ Cn, k = 1, . . . , M}. (3)

A close examination of the state spaceS reveals that the
number of states is(2n)M for any chunk selection policy
with buffer sizen. This implies that the direct approach
of using DTMC as a modeling framework has a huge stor-
age and computational requirement, especially if we want
to model a realistic system with a reasonable value of buffer
sizen and a relatively large umber of peers (e.g.,M ≥ 500).

Let us consider a different approach. SinceM ≫ n, in-
stead of modeling the dynamics ofall peers, we model the
system dynamics with a given chunk selection policy as a
density dependent jump Markov process (DDJMP)[6]. Let
xc(t), c ∈ Cn be the fraction of peers with buffer statec
at time slott. A buffer changes its state after downloading
a chunk. In the downloading process, a peer has probabil-
ity f to get the newest chunk from the main server, or it
randomly chooses another peer and download the highest
priority missing chunk which the selected peer has.

To illustrate, consider a system using a six-cell buffer and
the rarest chunk selection policy. Assume the buffer state of
a peer is010100 at time slott. If the peer gets the newest
chunk from the main server, its buffer state will become
101010 (after shifting) in the next time slot. If it does not
get the newest chunk and it selects a peer with a buffer state
of 001110, then its buffer state will become101100 in the
next time slot. Note that due to the shifting, the lowest bit
of all possible states in the system is always equal to zero.

Let r(c) be the buffer state at the next time slot after a
peer with buffer statec downloads the newest chunk from
the main server. Lets(c, c′) be the buffer state at the next
time slot after a peer with buffer statec downloads a chunk
from another peer with buffer statec′. Then at time slott,
xc(t)f fraction of peers in statec download from the main
server and switch to stater(c), while xc(t)xc′(t)(1 − f)
fraction of peers in statec download from another peer in
statec′ and switch to states(c, c′). Summing all possible
cases that could generate statec in the next time slot, we get
the following equations that describes the system dynamics:

xc(t+ 1) = f
∑

r(k)=c

xk(t)+(1−f)
∑

s(i,j)=c

xi(t)xj(t), c ∈ Cn.

(4)
Let t → ∞ andxc be fraction of peers in statec when the
system is stable, then for allc ∈ Cn, we have:

xc = f
∑

r(k)=c

xk + (1 − f)
∑

s(i,j)=c

xixj , c ∈ C. (5)

Let b(c, i) be the ith bit of statec, then the probability
that B(i) is filled with video chunk, which is denoted in



Equation (1), can be expressed as:

π(i) =
∑

c:b(c,i)=1

xc, for i = 1, . . . , n. (6)

To illustrate the DDJMP framework, we apply it to the
following chunk selection policies:
• Rarest first chunk selection policy with buffer sizen = 4.
This system has eight possible states (sinceB(1) is always
0): 0000, 0010, 0100, 0110, 1000, 1010, 1100, 1110. Based
on Equation (5), the fixed point equation are as follows:

x0010 = f · x∗000, x1010 = f · x∗100

x0110 = f · x∗010, x1110 = f · x∗110

where

x0000 = (1−f)(x∗000x∗000)

x1000 = (1−f)(x∗000x∗100 + x∗100x∗∗00)

x0100 = (1−f)(x∗010x∗0∗0 + x∗000x∗∗10)

x1100 = (1−f)(x∗110x∗∗∗0 + x∗010x∗1∗0 + x∗100x∗∗10)

with π(1) = x∗∗∗1, π(2) = x∗∗1∗, π(3) = x∗1∗∗ and
π(4) = x1∗∗∗. Here we use the notation “∗” to denote the
sum of all possible cases. For examplex∗010 = x0010 +
x1010, x∗1∗0 = x0100 + x0110 + x1100 + x1110,... etc. Note
that one can determine the values ofx′s via standard numer-
ical methods.
• Greedy chunk selection with buffer sizen = 4. The
system has eight states (again, becauseB(0) is always 0).
Based on Equation (5), the fixed point equations are:

x0010 = f · x∗000, x1010 = f · x∗100

x0110 = f · x∗010, x1110 = f · x∗110

where

x0000 = (1−f)(x∗000x∗000)

x1000 = (1−f)(x∗000x∗1∗0 + x∗100x∗∗00)

x0100 = (1−f)(x∗010x∗0∗0 + x∗000x∗010)

x1100 = (1−f)(x∗110x∗∗∗0 + x∗010x∗1∗0 + x∗100x∗∗10)

These equations are only different from those of the rarest
first chunk selection policy atx1000 andx0100.
• Mixed chunk selection with buffer size ofn = 5. There are
number of mixed selection policies, let us consider a partic-
ular mixed selection policy312. For this system, there are
16 states and based on Equation (5), the fixed point equa-
tions are:

x00010 = f · x∗0000, x00110 = f · x∗0010

x01010 = f · x∗0100, x01110 = f · x∗0110

x10010 = f · x∗1000, x10110 = f · x∗1010

x11010 = f · x∗1100, x11110 = f · x∗1110

where

x00000 = (1 − f)(x∗0000x∗0000)

x00100 = (1 − f)(x∗0000x∗0∗10 + x∗0010x∗00∗0)

x01000 = (1 − f)(x∗0000x∗0100 + x∗0100x∗0∗00)

x01100 = (1 − f)(x∗0010x∗01∗0 + x∗0100x∗0∗10

+x∗0110x∗0∗∗0)

x10000 = (1 − f)(x∗0000x∗1∗∗0 + x∗1000x∗∗000)

x10100 = (1 − f)(x∗0010x∗1∗∗0 + x∗1000x∗∗∗10

+x∗1010x∗∗0∗0)

x11000 = (1 − f)(x∗0100x∗1∗∗0 + x∗1000x∗∗100

+x∗1100x∗∗∗00)

x11100 = (1 − f)(x∗0110x∗1∗∗0 + x∗1010x∗∗1∗0

+x∗1100x∗∗∗10 + x∗1110x∗∗∗∗0)

In essence, Eq. (4) is the density dependent jump
Markov process and it is an approximation to the original
Markov process. The right hand side of Eq. (4) gives the
expectation ofxc(t + 1). Note that in the original Markov
process,xc(t + 1) has a non-zero variance which causes
the Markov process to deviate from Eq. (4) for each time
slot. However, whenM is sufficiently large, the variance
of xc(t + 1) vanishes and Eq. (4) accurately describe the
original Markov process. As a matter of fact, we have the
follow result.

Theorem 1 The DDJMP described above converges al-
most surely, uniformly on all finite intervals[0, T ], to the
solution of Eq.(4) whenM → ∞.

Proof: Please refer to Theorem 8.1 in [6]

Corollary 1 The steady state probability vectorx =
{xc}c∈C of the P2P streaming system is given by Eq. (5).

Let us illustrate the accuracy of using the DDJMP frame-
work to model different chunk selection policies. Table 1
and Figure 2 compares the (1) simulation result, (2) our
DDJMP model, and (3) the stochastic model given by [15]
for the rarest First and the greedy chunk selection policies.
In this study, the buffer size ofB is set ton = 8 and the
server’s capacity can serve a fraction off = 0.1 of users.
In Table 1, the number of peers isM = 1000 and each
row shows different value ofπ(i), the probability that buffer
B(i) is filled with video chunk, with the last row indicating
π(8), the probability of playback continuity. In Figure 2a
and 2b, the horizontal axes are number of peers (M ) and
the vertical axes are the probability of playback continuity
π(n), or the probability thatB(n) is filled with video chunk.
In each figure, there are three curves: the simulation, the
DDJMP model and the stochastic model in [15]. We can



see that (1) the DDJMP model is more accurate than the ap-
proach in [15], and (2) the results provided by the DDJMP
model converges asymptotically when we increase the pop-
ulation sizeM . This agrees with our theoretical claim in
Theorem 1.

π(i) RF sim RF DDJMP RF [15]

π(1) 0.0000 0.0000 0.0000
π(2) 0.1000 0.1000 0.1000
π(3) 0.1807 0.1810 0.1810
π(4) 0.3074 0.3079 0.3024
π(5) 0.4696 0.4702 0.4496
π(6) 0.6245 0.6254 0.5858
π(7) 0.7355 0.7366 0.6863
π(8) 0.8058 0.8065 0.7538

π(i) GD sim GD DDJMP GD [15]

π(1) 0.0000 0.0000 0.0000
π(2) 0.1000 0.1000 0.1000
π(3) 0.1375 0.1373 0.1296
π(4) 0.1879 0.1877 0.1715
π(5) 0.2600 0.2599 0.2330
π(6) 0.3688 0.3687 0.3272
π(7) 0.5342 0.5342 0.4759
π(8) 0.7576 0.7581 0.7003

Table 1:π(i) for M = 1000, n = 8, f = 0.1, RF= Rarest
First policy, GD= Greedy policy
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Figure 2: Simulation & theoretical results.n = 8, f = 0.1

4. Exploring the Optimal Policy

The goal of this section is to explore theoptimalchunk
selection policy in the priority-based chunk selection class.
In the previous section, we notice thatπ(n), the probability
of playback continuity of the streaming system, depends on
multiple factors including (a) the server’s upload capacity
(which is represented by the fractionf in Equation (2)), (b)
chunk selection policys, (c) buffer sizen and, (d) number

of peersM . By Theorem 1, the system playback continu-
ity π(n) converges to a fixed value asM → ∞, which can
be solved using the DDJMP framework. Since this value
only depends onn, s, f , we denote this asymptotic play-
back continuity asC(n, s, f) and use it as the performance
metric of policys. Let ls be the length of permutations,
thenn = ls + 2. So we may ignore the parametern and
write it asC(s, f).

Definition 2 (Optimal/Worst Chunk Selection Policy) Let
Πn be the set of alln-permutations. The “optimal chunk
selection policy” for buffer sizen and initial fractionf
is defined asopt(n, f) = argmaxs∈Πn−2

C(s, f). Con-
versely, the “worst chunk selection policy” for buffer
size n and initial fractionf is defined aswst(n, f) =
argmins∈Πn−2

C(s, f).

In other words, the optimal policy is the one that reaches
the highest playback continuity while the worst policy is
the one reaches the lowest playback continuity. One pos-
sible way to find the optimal (worst) chunk selection pol-
icy for buffer sizen and initial fractionf is to enumerate
all (n − 2)! chunk selection policies and compute their re-
spectiveC(s, f). The policy which has the maximal (min-
imal) C(s, f) is the optimal (worst) chunk selection policy.
Obviously we need an efficient approach to overcome this
problem. But before we formally present a computationally
efficient method to find the optimal/worst chunk selection
policy, let us first define some terminologies.

Definition 3 (Greediness) A transposition(i, j) is an oper-
ation on a priority-based chunk selection policy. In essence,
it swaps the priority ofB(i + 1) andB(j + 1) while the
priority of the others remain the same as before. A transpo-
sition is greedy if in the exchange, the higher buffer position
results in higher priority. We say the chunk selection pol-
icy s is greedier than the chunk selection policyr if we can
obtains after some finite greedy transpositions onr.

For example, the transposition(1, 3) on policy2134 re-
sults in the policy2431, and this transposition is greedy.
The policy4213 is greedier than the policy2134 since we
can obtain the former by three greedy transpositions on the
later, namely: (1,2), (2,3) and (3,4).

Definition 4 (Concatenation operator·) Let Ps(i) be the
priority of the ith cell of policy counting from left to right
in policy s andls be its length. Policys · r is defined such
thatls·r = ls + lr, Ps·r(i) = Ps(i) for lr < i ≤ lr + ls and
Ps·r(i) = Pr(i) + lr for 1 ≤ i ≤ lr.

According to the above definition, the chunk selection
policy s · r can be split into two segments, where the upper
one has the same relative priority ass and the lower one has
the same relative priority asr. Moreover, the lower segment



has higher priority than the upper segment. For example, let
s = 4321, r = 1234, thens · r = 43215678.

We carry out the sequence of experiments to explore the
optimal and worst chunk selection policies forn = 6, 7
and8 under different server’s uploading limitf . Table 2-
4 depict the asymptotic probability of playback continuity
π(n) for the optimal policies as well as the worst chunk
selection policy.

f opt. cont. opt. policy worst cont. worst policy

0.04 0.4076 1234 0.3699 4321
0.19 0.7393 2134 0.7169 4321
0.26 0.7831 3124 0.7688 2431
0.32 0.8080 4123 0.7964 1432
0.39 0.8295 4213 0.8192 1342
0.50 0.8522 4312 0.8454 1243
0.95 0.9589 4321 0.9588 1234

Table 2: Optimal and worst policy forn = 6

f opt. cont. opt. policy worst cont. worst policy

0.02 0.4050 12345 0.3466 54321
0.10 0.7397 21345 0.6833 54321
0.14 0.7843 31245 0.7445 54321
0.17 0.8064 41235 0.7747 35421
0.21 0.8281 42135 0.8019 25431
0.29 0.8563 52134 0.8349 13542
0.35 0.8699 53124 0.8508 12543
0.40 0.8779 53214 0.8612 12543
0.41 0.8793 54123 0.8631 12453
0.45 0.8844 54213 0.8699 12453
0.55 0.8938 54312 0.8847 12354
0.95 0.9608 54321 0.9608 12345

Table 3: Optimal and worst policy forn = 7

Based on these experiments, we have the following ob-
servations:

Observation 1 The optimal chunk selection policy is of∨-
shaped. That is, for the optimal chunk selection policy, let
B(k) be the buffer cell which has the lowest priority, then
priority increases as the position moves away fromB(k).
Conversely, the worst chunk selection policy is of∧-shaped.
That is, for the worst policy, letB(k) be the buffer cell with
the highest priority, then priority decreases as the position
moves away fromB(k). Table 2-4 illustrate Observation 1.
For example, from Table 4, whenf = 0.15 andn = 8, the
optimal chunk selection policy is ’521346’, which is of∨-
shape, while the worst chunk selection policy is ‘365421’,
which is of∧-shape. The importance of this observation is
that it can restrict the search space for finding the optimal
policy from (n−2)! to 2n−2.

f opt. cont. opt. policy worst cont. worst policy

0.01 0.4038 123456 0.3251 654321
0.05 0.7364 213456 0.6369 654321
0.07 0.7809 312456 0.6982 654321
0.09 0.8089 412356 0.7411 654321
0.11 0.8287 421356 0.7730 654321
0.15 0.8556 521346 0.8131 365421
0.18 0.8692 531246 0.8326 265431
0.19 0.8731 631245 0.8373 146532
0.25 0.8904 641235 0.8587 136542
0.27 0.8946 642135 0.8641 125643
0.33 0.9037 652134 0.8768 124653
0.38 0.9092 653124 0.8851 124653
0.47 0.9153 653214 0.8968 123564
0.49 0.9162 654213 0.8990 123564
0.61 0.9201 654312 0.9114 123465
0.96 0.9684 654321 0.9684 123456

Table 4: Optimal and worst policy forn = 8

Observation 2 As the initial fractionf increases, the op-
timal policy becomes more greedier while the worst pol-
icy becomes less greedy.Observation 2 is intuitive because
when the server has a high upload capacity (or high value of
f ), chunk scarcity is rare and so the chunk selection policy
should download those chunks which have earliest playback
deadlines.

Observation 3 The optimal policyw for buffer sizen that
reaches the playback continuity ofπ has the forms · r for
sufficiently largen. Heres is a chunk selection policy which
depends onπ but is independent ofn, andr is the Rarest
First policy of lengthlw − ls. Observation 3 provides a
way to extend the optimal chunk selection policy for a small
buffer to the optimal policy for a larger buffer. For exam-
ple, the optimal policies that reach playback continuity of
π = 0.81 for n = 6, 7, 8 are 4123, 41235 and 412356 re-
spectively, and they share the same upper segment policy of
4123. Based on the Observation 3, the optimal chunk se-
lection policy that reaches the playback continuity of 0.81
for buffer length 11 should be412356789. Again, the im-
portance of this observation is that it can help us to easily
determine the optimal chunk selection policy for a partic-
ular system configuration (e.g.,n andf ). In the following
section, we provide a computational efficient approach to
find the optimal/worst chunk selection policy for largen.

5. Segmentation Method

To find the optimal and worst policy, it is necessary for
us to computeC(s, f). However, for a given value ofn,
the number of states in the DDJMP model is2n−2, there-
fore, the large number of states in the DDJMP framework



is still computationally expensive. In here , we present the
segmentation method which is computationally efficient to
solve and gives a very good approximation toC(s, f). In
essence, the segmentation method is a divide-and-conquer
approach to estimateC(s, f).

5.1. Segmentation Approach

We assume a buffer using the chunk selection policysB

can be split into two segments so that any priority-based
policy in the lower segment has a higher downloading pri-
ority than any cell in the higher segment. We denote the
lower segment byL and the higher segment byH . For con-
venience, we add one hypothetic cell at the end ofL to hold
the piece shifted out ofL and another at the beginning ofH
to hold the piece to be shifted intoH . After adding these
hypothetic cells, bothH andL has the similar structure as
a video staging buffer. In fact, as we will show later, we can
model them as separate buffers by the DDJMP model. Let
sH , sL be the chunk selection policies ofH andL respec-
tively, then we havesB = sH · sL. For example, the buffer
of sizen = 10 shown in Figure 3 using policy43215678
can be split into two buffersH andL both of size 6 (Figure
3). The lower segmentL uses policysL = 1234 and the
higher segmentH uses policysH = 4321.
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Figure 3: Splitting the buffer of sizen = 10.

To model each segment separately, we have to fully ac-
count their mutual influence. Since cells inL have higher
priorities than cells inH , H can never take away the down-
loading bandwidth fromL, thus the activities in theH have
no effect onL. Therefore, we can separateL from the whole
buffer and model it accurately using DDJMP. The continu-
ity of buffer L is pL = C(sL, f).

Now we look at the higher segmentH . The lower buffer
L can affectH in two aspects. First, it loads upH(2)
with probabilitypL at the beginning of each time slot. Sec-
ondly,L, with higher priority, preempts certain download-
ing probability fromH(2) to H(lsH

+ 1). If we assume
the correlation betweenH and L is small, the download
probability took away byL is justpL, which is the proba-
bility that downloading happens inL in a time slot. These
two effects can also be fully accounted for by replacingL
with the hypotheticH(1) with downloading probabilitypL

in each time slot. Now we can concentrate on the analy-
sis for cells inH . We can take the whole bufferB as the

buffer H with the initial fractionpL, and the buffer con-
tinuity is pH = C(sH , pL). Since lsH

, lsL
≤ lsB

, the
state space cardinality of the corresponding DDJMP mod-
els of the lower and higher buffer is much smaller than the
original problem, therefore,pH is much easier to compute
thanpB = C(sB , f). We can summarize the segmentation
method with the following proposition:

Proposition 1 Let s andr be two priority-based chunk selec-
tion policies, thenC(s · r, f) = C(s, C(r, f)).

Figure 4 compares the performance measure based on
(1) the segmentation method, (2) simulation and (3) the
stochastic model in [15]. The horizontal axes are the buffer
positions fromi = 1 to n. The vertical axes are the proba-
bility that B(i) is filled, orπ(i). Figure 4a shows the result
for the Rarest First Policy on a buffer with sizen = 14. To
apply the segment model, we split the buffer into two seg-
ments of size 8, both using the Rarest First policy. There
are three curves which correspond to the simulation, the
segment model and stochastic model in [15] respectively.
Figure 4b shows the result for an ad-hoc piece selection
policy (3, 1, 6, 4, 2, 5, 11, 7, 12, 9, 10, 8) on a buffer of size
n = 14. To apply the segment model, again we split it
into two buffers of size 8. The lower segment uses policy
516342 while the higher one uses policy316425. There are
two curves which correspond to the simulation and the seg-
mentation method respectively. From these two figures, we
can see that the segmentation method is efficient and it pro-
vides more accurate results than the stochastic model [15].
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Figure 4: Evaluation for the Segment Model.M = 10000,
f = 0.01, n = 14.

6. Adaptive Chunk Selection

In the previous section, we show that the optimal chunk
selection policy depends on the server’s upload capacity,
which is represented byf = C

Mr
, as well as the buffer size



n. Since the number of peers can be time varying, which
implies that the optimal chunk selection can change also,
therefore, we need an efficient protocol so the P2P stream-
ing system can update the optimal chunk selection policy to
all peers.

6.1. Estimate number of viewing peersM

Let us first consider how to estimateM , the number of
peers of the video streaming session, in a distributed fash-
ion. The value ofM will increase whenever there is any
new peer arrival, and will decrease whenever there is any
peer departure. Note the there are two cases for a depar-
ture: anormaldeparture wherein a peer decides to leave the
system, or anabnormaldeparture wherein a peer leaves the
P2P streaming session due the software or network failure.

For the arrival event, a peer usually contacts thetracker
so as to obtain the IP addresses of peers which are viewing
the same video session. Therefore, the tracker can update
the value ofM whenever there is a new peer arrival. For
normal departure, a peer usually informs the tracker so the
tracker can update the value ofM . However, the tracker
cannot account for those peers which leave the P2P system
due to abnormal departure. One can overcome this problem
by using the distributed hash table (DHT). In particular, a
tracker uses the IP address (or any unique ID) of a peer and
assigns a DHT value to a peer upon its arrival. Given these
DHT values, the tracker can organize peers in a logical ring
(similar to Chord [13]) and each peer has a unique position
in this logical structure. For each peer, saya, the tracker
can assign a set of neighboring peersNa for peera to han-
dle. All peers inNa need to periodically send keep-alive
messages to peera. If peera does not receive a keep-alive
message from a given neighboring peer, peera will inform
the tracker so the tracker can update the value ofM . Note
that the above procedure is very lightweight and can be car-
ried out in a fully distributed fashion. The pseudo-codes for
the tracker and peers in estimatingM are listed below.

Pseudo Code for Tracker:
1. while(true){
2. msg = waitfor messagefrom peers();
3. if (msg == arrival of a new peera ) {
4. M++;
5. Compute the DHT’s ID for this new peera;
6. Compute the neighborhoodNa;
7. Send ID andNa to peera;
8. for (each peerb ∈ Na)
9. update peerb of itsNb by including peera;
10 } /* end if for new peer arrival */
11. if (msg == departure of a normal peera) {
12. M−−;
13. for (each peerb wherea ∈ Nb)

14. update peerb of its Nb by excluding peera;
15. } /* end if for normal peer departure */
16. if (msg == abnormal departure of peera) {
17. M−−;
18. for (each peerb wherea ∈ Nb)
19. update peerb itsNb by excluding peera;
20. } /* end for abnormal peer departure */
21. } /* end while */

Pseudo Code for peera:
1. Upon joining the system{
2. msg = waitfor messagefrom tracker;
3. ID = extractID (msg);
4. Na = extractneighborhoodset (msg);
5. for (each peerb ∈ Na) {
6. periodically send keep-alive message to peerb;
7. } /* end for */
8. } /* end for newly join peer */

9. if (receive message from track to exclude peerb){
10. removeb fromNa;
11. disable sending keep-alive message to peerb;}

12. if (no keep-alive message from peerb)
13. send message to tracker to indicate the

abnormal departure ofb;

6.2. Updating the optimal Chunk Selection Policy

The next task is how to inform all peers about the new
optimal chunk selection policy. From the above discussion,
the system has an estimate ofM , which implies that we
now have an estimate off = C/(Mr). Given the value of
f and the peer’s buffer sizen, the system can easily look
up the optimal chunk selection policy, which we denote as
s∗. Note that the optimal chunk selection policy for dif-
ferent values off andn can be pre-computed offline. As
we discussed in Section 4 and 5, one can use the DDJMP
framework and the segmentation method to efficiently ob-
tain the optimal chunk selections∗.

To efficiently inform all peers about the latest chunk se-
lections∗. We consider the following approach: the stream-
ing server will send the new chunk selections∗, together
will a timestampt, to a fractionf of peers. When a peer,
say a, receives this update message, it can compare with
its current chunk selection policy and the associated times-
tamp. If the timestamp of the new message is larger than
the timestamp of its current chunk selection, then the peer
will use the receiveds∗, and then relay this update message
to all its neighboring peers inNa. Else, peera will suppress



relaying the new message to its neighbors. In essence, this
is a control gossip protocolto broadcast the latest chunk
selections∗ to all peers.

Let us analyze the time it takes to relay the new chunk
selections∗ to all peers. Assume peers learn about the new
policy s∗ via gossip and peers receive gossips at a rate of 1
per time slot. If the gossip contains a policy with a newer
time stamp, then the peer will switch to this policy. Let
the serve pushes out the new chunk selection policys∗ to
f fraction of peers at timet = 0. Let x(t) be the fraction
of peers using the new policys∗ at timet. Then on aver-
age, peers send outx(t)M gossips altogether. Since there
are1 − x(t) fraction of peers using the old chunk selection
policy and the receiver is randomly selected, each gossip
will change1 − x(t) peers on average. So in this current
time unit, there will bex(t)M(1 − x(t)) peers, or fraction
x(t)(1 − x(t)), switching to the new policys∗. Thus we
have:

dx

dt
= x(t)(1 − x(t)).

Solving the above equation, we have:

x(t) =
et−τ

1 + et−τ
, whereτ = ln(f−1 − 1). (7)

Hereτ is the time needed for half of all peers to receive
the update. By Equation (7), whenf is very small andx is
very close to one, the time needed for the update to reachx
fraction of users is

t = τ + ln
x

1 − x
≈ − ln f − ln(1 − x). (8)

In the following, we carry out a set of experiments to
quantify the merits of our proposed algorithms.
Experiment 1: Performance comparison of different
chunk selection policies:In Figure 5, we compare the per-
formance of different chunk selection policies under differ-
ent buffer lengths. The horizontal axis is the buffer length
(n) and the vertical axis is the average playback continuity
(π(n)). There are five curves correspond to the rarest first,
random, greedy, the optimal and the worst chunk selection
policies at each system configuration. In this experiment,
there are 5000 peers and the initial fractionf = 0.0002.
We can see that there is a big performance gap between the
optimal and the worst policy. We also notice that the per-
formance of the greedy policy is very close to that of the
worst policy at all buffer lengths. This indicates that there
is a need for peers to collaborate and not to focus purely on
its local performance measure.
Experiment 2: Effectiveness of Adaptive Chunk Selec-
tion: In this experiment, we want to see the effectiveness of
the proposed adaptive algorithms in subsection 6.1 and 6.2.
We consider a P2P live streaming system withM = 1000,
n = 8 and f = 0.18. Figure 6a illustrates the average

20 25 30 35 40

Buffer Length

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
v
e
ra
g
e
 p
la
y
b
a
c
k
 c
o
n
ti
n
u
it
y

Worst

Greedy

Optimal

Random

Rarest

  First

Figure 5: Comparison of five chunk selection policies.

playback continuity at different time points. Before time
slot 2000, all peers use the rarest first chunk selection pol-
icy. Then the system switches to the optimal policy531246
at timet = 2000. Figure 6b magnifies around the switch-
ing point. We see that the system adapts to the new policy
within 10 time slots only. This shows the effectiveness and
how quick the system can relay the optimal chunk selection
to all M peers.

0 1000 2000 3000 4000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time slot

A
ve

ra
ge

 p
la

yb
ac

k 
co

nt
in

ui
ty

(a)

1800 1900 2000 2100 2200

0.82

0.84

0.86

0.88

0.9

0.92

Time slot

A
ve

ra
ge

 p
la

yb
ac

k 
co

nt
in

ui
ty X:2010

Y:0.913

(b)

Figure 6: Policy switching delay,n = 8.

Experiment 3: Adaptiveness of different chunk selection
policies: In Figure 7, we show the dynamics of different
policies in a P2P live streaming system where the number
of peersM changes with time. The horizontal axis is the
time slot and the vertical axis is the average playback conti-
nuity. In this experiment, a new peer joins the system every
two time slots and the server uploads is fixed atf = 1/M .
Initially, the system hasM = 100 peers. We simulate this
P2P system for 5000 time slots so the peer numberM in-
creases steadily from 100 to 2600 andf decreases from
0.01 to 0.0004. The buffer length is set to21. There are



three curves which are for non-adaptive, adaptive and the
rarest first selection policy respectively. The non-adaptive
policy is the optimal policy at timet = 0 and it remains to
use this policy even when the number of peers is changing.
The adaptive policy is the optimal selection policy ateach
time slot. We can see that asM increases andf decreases,
the average playback continuity of the non-adaptive policy
keeps deteriorating while the adaptive policy and the rarest
first policy remain relative stable. We also see that the adap-
tive optimal policy has a significant performance gain over
the other two policies.
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7. Related Work

There are number of recent work on P2P live streaming
systems [3, 4, 9–11] wherein authors discuss the incentive
issues, network-wide quality, time-shifting operations and
advantages of the data-driven architecture. Several studies
have explored the chunk selection policies for data-driven
P2P streaming systems. In [14], authors propose to choose
the chunk from the currenthigh-priority setor from there-
maining set. While authors in [12] propose to use the greedy
chunk selection. Simulations were carried out to justify the
above heuristics.

Closely related to this work is the simple stochastic
model proposed in [15]. Authors proposed several heuris-
tics algorithms. However, due to the inner buffer correla-
tion, the model in [15] is not accurate enough to explore
the property of optimality policy. In this work, we not only
provide ageneralizationof the above model by allowing
a variable server’s upload capacity, but we also provide a
more accurate analytical framework and shows its asymp-
totic correctness. More importantly, the density dependent
jump Markov process (DDJMP) allows us to analyze a large

class of chunk selection policies and derive optimality struc-
ture.

DDJMP is discussed in [6] and has been applied to
P2P systems [7] to model BitTorrent file distribution sys-
tems. We apply this methodology to P2P streaming sys-
tems which has different chunk selection structures. There
are some existing work which discuss various chunk selec-
tion policies. In [8], authors notice that chunk scarcity and
urgency are two important factors. They consider a class of
policies whose chunk priority is decided by a weighting fac-
tion that mixes these two factors. They also show via sim-
ulation that their optimal policy also exhibits the∨-shaped
structure while we use analytical approach to explore a large
design space and derive optimal/worst structure.

8. Conclusion

In this paper, we provide an asymptotically exact ana-
lytical framework to analyze a large family of chunk se-
lection policies for data-driver P2P streaming systems. We
study the large design space of priority-based chunk selec-
tion policies observe some interesting properties of the op-
timal and worst policy. In particular, the optimal policy isof
∨-shaped and becomes more greedy as the upload capacity
of the server increases. For a given continual playback prob-
ability, the structure of the optimal policy is also fixed as a
concatenation of a policy independent of buffer size and the
rarest First policy. This work provides some insight on the
properties of the optimal policies and it allows streaming
service providers to tradeoff between playback continuity
and operating cost of deploying the service.
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