
 Editorial Manager(tm) for Multimedia Systems

 Manuscript Draft

Manuscript Number: MMSJ-D-06-00047R2

Title: Dynamic Bayesian Approach for Detecting Cheats in Multi-Player Online Games

Article Type: Original Research Paper

Keywords: Multi-Player Game, Cheat Detection, Bayesian Network

Corresponding Author: Prof. John C. S. Lui,

Corresponding Author's Institution: The Chinese University of Hong Kong

First Author: Siu Fung Yeung

Order of Authors: Siu Fung Yeung; John C. S. Lui

Abstract: Massively multi-player games hold a huge market in the digital entertainment industry. Companies

invest heavily in game developments since a successful online game can attract million of users, and this

translates to a huge investment payoff. However, multi-player online games are also subjected to various

forms of ``hacks'' and ``cheats''. Hackers can alter the graphic rendering to reveal information otherwise be

hidden in a normal game, or cheaters can use software robots to play the game automatically and thus gain

an unfair advantage. To overcome these problems, some popular online games release software patches

constantly to block ``known'' hacks or incorporate anti-cheating software to detect ``known'' cheats. This not

only creates deployment difficulty but new cheats will still be able to breach the normal game logic until

software patches or updates of the anti-cheating software are available. Moreover, the anti-cheating

software themselves are also vulnerable to hacks. In this paper, we propose a ``scalable'' and ``efficient''

method to detect whether a player is cheating or not. The methodology is based on the dynamic Bayesian

network approach. The detection framework relies solely on the game states and runs in the game server

only. Therefore it is invulnerable to hacks and it is a much more deployable solution. To demonstrate the

effectiveness of the proposed method, we implement a prototype multi-player game system

to detect whether a player is using the ``aiming robot'' for cheating or not. Experiments show that we can

effectively detect cheaters in a first-person shooter game with extremely low false positive rate. We believe

the proposed methodology and the prototype system provide a first step toward a systematic study of

cheating detection and security research in the area of online multi-player games.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Multimedia Systems Journal:

Our Multimedia Systems Journal paper is an extension of
our work ”Detect Cheating for Multi-Player Online Games:
Theory, Design and Implementation” appeared in NIME 2006.

We have added the followings into the journal version.

1. Re-written Section 2 to add more related and background
works.

2. Background knowledge on the dynamic Bayesian net-
work are added in Section 3, we used a simplified version
of our Bayesian model to illustrate the training process
and the inference process.

3. A new pagragraph in Section 4.2 to discuss the motiva-
tion of our detection scheme.

4. A new pagragraph in Section 4.4 to discuss more about
the overhead on the game server induced by the detection
routine.

5. A new subsection “Multiple Thresholds” is added as Sec-
tion 4.5. New ideas on how to obtain multiple thresholds
and its usage are described.

6. A new pagragraph in Section 5.1 to describe the details
of the players involved in the experiments.

7. More game states, increased from 6 to 8, are included in
our Bayesian network for the cheat detection. New ex-
periment results are obtained using the new model, and
the results suggest that the new model is more effective
in detecting cheaters.

8. In experiment 1 and experiment 2, new figures are in-
cluded to show the aiming accuracy of each player against
time to compare with the probability of cheating.

9. New cross-validate experiment in experiment 3. We car-
ried out a cross-validate experiment on all of the datasets
used in experiment 1 and experiment 2, the experiment
shows the effectiveness in detecting cheaters while main-
tains a zero false positive rate.

10. New scalability experiment in experiment 4. The exper-
iment shows the CPU usage on the game sever against
varies number of connected players. The result shows
that our system is scalable.

11. New Future Work section to discuss ideas on further im-
provement of our approach.

* Manuscript
Click here to download Manuscript: paper.tex

http://www.editorialmanager.com/mmsj/download.aspx?id=3528&guid=95504964-0ff4-4a59-ba18-e627df11cfd5&scheme=1

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

2 S.F. Yeung, John C.S. Lui
Multimedia Systems manuscript No.
(will be inserted by the editor)

S.F. Yeung · John C.S. Lui

Dynamic Bayesian Approach for Detecting Cheats in Multi-Player
Online Games

Abstract Massively multi-player games hold a huge market
in the digital entertainment industry. Companies invest heav-
ily in game developments since a successful online game can
attract million of users, and this translates to a huge invest-
ment payoff. However, multi-player online games are also
subjected to various forms of “hacks” and “cheats”. Hackers
can alter the graphic rendering to reveal information other-
wise be hidden in a normal game, or cheaters can use soft-
ware robots to play the game automatically and thus gain an
unfair advantage. To overcome these problems, some popu-
lar online games release software patches constantly to block
“known” hacks or incorporate anti-cheating software to de-
tect “known” cheats. This not only creates deployment dif-
ficulty but new cheats will still be able to breach the nor-
mal game logic until software patches or updates of the anti-
cheating software are available. Moreover, the anti-cheating
software themselves are also vulnerable to hacks. In this
paper, we propose a “scalable” and “efficient” method to
detect whether a player is cheating or not. The methodol-
ogy is based on the dynamic Bayesian network approach.
The detection framework relies solely on the game states
and runs in the game server only. Therefore it is invulner-
able to hacks and it is a much more deployable solution. To
demonstrate the effectiveness of the proposed method, we
implement a prototype multi-player game system to detect
whether a player is using the “aiming robot” for cheating
or not. Experiments show that the proposed method can ef-
fectively detect cheaters on a first-person shooter game with
extremely low false positive rate. We believe the proposed
methodology and the prototype system provide a first step
toward a systematic study of cheating detection and security
research in the area of online multi-player games.

S.F. Yeung
Department of Computer Science & Engineering, The Chinese Univer-
sity of Hong Kong
E-mail: sfyeung@cse.cuhk.edu.hk

John C.S. Lui
Department of Computer Science & Engineering, The Chinese Univer-
sity of Hong Kong
E-mail: cslui@cse.cuhk.edu.hk

1 Introduction

In 2004, multi-player online games generated billions of rev-
enue. The Internet Research Report - Online Games 2004
[16] shows that there are nearly 300 online game producers
around the world, with 175 online games and nearly 20 mil-
lion players in the year 2004. Up to September 2005, just the
game “World of Warcraft” on its own has reached over $700
million revenue from monthly subscription fees with more
than four million subscribers worldwide [12].

In the virtual world of a multi-player online game, play-
ers gain utility by interacting with different players around
the world. Each player can directly control many objects
(i.e., tanks, jeeps, planes, battleships, and even submarines,...
etc) in the virtual world, and the actions will be periodically
sent to the game server. In order to maintain view consis-
tency, the game server needs to process the information and
relays these updates to players within the same virtual world
so that all players will have a synchronized view of the game
[10]. Usually, each multi-player online game has its specific
rules and regulations, for example, in order to play a game
at a certain level, a player may choose to destroyn number
of average moving avatars (which are graphical representa-
tion of other players in an online game), or he/she may opt
to destroym number of high moving avatars, wheren > m.
Strategizing and interacting with other players are the fun
part of an online game. Players gain satisfaction by moving
from a novice game level to an expert game level via de-
stroying various avatars in the virtual world.

As in all aspects in life, some players may use various
forms of cheat so as to gain an unfair advantage over honest
players. With the use of cheats, a cheating player may have
an overwhelming superiority in terms of destroying other
avatars in the virtual world. As a matter of fact, cheating
in multi-player online games is becoming so common be-
cause cheating software are easily accessible on the Inter-
net. For example, Blizzard Entertainment once banned tens
of thousand Diablo accounts whose players are believed to
be cheaters [7].

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Dynamic Bayesian Approach for Detecting Cheats in Multi-Player Online Games 3

Cheating in a first-person shooter game1 is especially an-
noying. The fun in playing a first-person shooter game is on
the extensive and continuous interactions with other play-
ers, playing against a cheater is an unpleasant experience
since an honest player will have very little chance, if any, in
beating the cheater. The cheater will eventually gain enough
points and drive away most honest players from the game.
Rampant cheating will destroy the entertainment value of a
game, then honest players will eventually abandon the game,
which implies that the game developer who invested heavily
on the game development will suffer a significant financial
loss.

Although many first-person shooter games are now in-
corporated with anti-cheating software, which are essentially
pattern scanners, cheating cannot be completely prevented.
Because the computer or the game console is in the hands of
the cheaters, they can always work around any anti-cheating
software. Besides using the software patches, online game
companies also need to employ enough people to monitor
the games constantly so as to discover potential cheaters.
For example, some online game servers have administrators
and if they discover some suspicious players, or receive suf-
ficient evidence2 from other players of accusing someone
for foul play, the administrators have the right to suspend
a suspicious player from participating in the online game.
Obviously, these types of solutions are labor intensive and
they are not a scalable and effective solution for detecting
cheaters for online games that support thousands of players.

Although cheats can be implemented in many different
ways and can perform differently to achieve the same pur-
pose, these forms of cheat essentially produce similar play-
ing patterns. In this paper, we propose an efficient and scal-
able solution to automatically detect whether a player is a
potential cheater or not. In particular, we use the Dynamic
Bayesian Network (DBN) approach for our cheat detection
framework. To test the effectiveness of the propose method-
ology, we also develop a prototype multi-player online game
server, and the cheat detection engine is enabled within the
game server only. Because our framework relies solely on
the ordinary game states, and the detection engine runs in
the server side only, therefore it is immune from hacks and
it is a better deployable solution than the conventional soft-
ware patches or human monitoring schemes. We evaluate
our cheat detection method on a “first-person shooter” game
for the detection of a specific type of cheat called aiming
robot. We also carry out experiment on several enhance-
ments of the aiming robot and the results show that our frame-
work can detect the cheats effectively.

The remaining of this paper is organized as follows. In
Section 2, related work on cheat detection or cheat preven-
tion for multi-player online game is presented. In Section 3,

1 A first-person shooter game is a type of game that each player will
perceive from a first-person perspective view of the virtualworld, the
game concentrates mainly on aiming and shooting with various types
of weapons and limited ammunition.

2 Most online games have built-in support of game recording, one
can replay the game from different viewpoints with the recorded file.

we provide the necessary background for Dynamic Bayesian
Network. In Section 4, we present the architecture of our
prototype, as well as our cheat detection mechanism. We
also quantify the computational complexity of our cheat de-
tection algorithm. Experiments for showing the effective-
ness and scalability of the proposed method is presented in
Section 5. Section 6 concludes.

2 Background and Related Work

In this section, we provide some backgrounds on cheats and
hacks for multi-player online games. We conclude this sec-
tion by providing some related work in this area.

Multi-player online games divide into mainly four cate-
gories, i.e. turn-based game3, massively multi-player online
role-playing game (MMORPG), real-time strategy game (RTSG),
and first-person shooter game (FPS). The types of cheat vary
from one category to another category. In here, we survey
some common types of cheat in each game category:

– Turn-based Game:Look-ahead Cheat- a form of cheat
that let a player be thelast player to make a decision on
simultaneous actions. The cheater thus can make deci-
sion based on the decisions of other players.

– MMORPG: (1) Trade Hack - a form of cheat that at-
tacks the security hole in network transaction. For exam-
ple, some MMORPGs allow players to exchange items
within the game, but the process may not be atomic such
that when playerA disconnects from the network during
the exchange process, playerA may be able to receive
the item from playerB but disconnects just before player
B receives the item from playerA. (2) Item Grabber -
a form of cheat that automatically moves a player closer
to the target item.

– RTSG:(1) Map Hack - a form of cheat that reveals hid-
den information of a game. The cheater will be able to
reveal the whole map at the beginning of a game, which
otherwise the exploration is a time consuming process.
(2) Speed Hack- a form of cheat that change the tim-
ing in the client side. It will let the cheater to move and
gather resources faster than other honest players.

– FPS: (1) Wall Hack - a form of cheat that modifies the
display rendering of a game. The cheater will be able
to see objects or other players behind opaque objects
such as walls. (2)Aiming robot - a form of cheat that
automate the movements of a player. It helps the cheater
to aim accurately by moving the aiming point towards
a nearby target. This type of cheat is very common in
first-person shooter games.

There are research works on cheat-controlled protocols
that prevent look-ahead cheats. In [5], authors proposed a

3 A turn-based game is a game where each player plays in turn. A
round of game will be over once every player has taken a turn, the
result of that round will be processed and then all players will advance
to the next round of play. Most board games (i.e., chess game)belong
to this category.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4 S.F. Yeung, John C.S. Lui

lock-step protocol on a distributed game model wherein play-
ers will announce their decisions in cryptographically se-
cure one-way hashes as commitments. Only when all play-
ers have announced their commitments, players then reveal
their decisions in plaintext. Thus, a cheater cannot gain any
advantage by being the last player to make decision. The
authors also proposed some optimizations to overcome the
synchronization problems caused. In [6], authors proposed
a scheme that enforces the fair-ordering of the message de-
livery so that cheating will be restricted to a certain level
or may even be detected. In [8], author extended the idea
so that the cheat-proof protocol can be used in games with
dead reckoning. In [11], authors proposed the use of run-
time verification to verify game codes. This approach mainly
targets on cheats that exploit implementation bugs such as
trade-hack in MMORPG, but this approach is not applica-
ble to cheats that involve modification of client code that
loads into memory at runtime. In [9], authors proposed the
use of CAPTCHA tests [3] to ensure the participation of hu-
man players in online games. This approach is very effective
against the use of fully automated robots. However, the in-
sertion of the CAPTCHA tests can be quite annoying during
the playing of an online game. And this approach is not ap-
plicable to cheats whose only assist the human player where
a human player is still involved in the playing. In [14], the
author briefly discussed the disadvantages of statistical ap-
proach to cheat detection in the game Quake. However, the
detection scheme mentioned simply sort out players whose
shoot too accurate, but didn’t take other attributes or game
states into account.

PunkBuster [4] is the first client-side cheat prevention
system for commercial online games. To play an online game
on a PunkBuster enabled server, the player must install the
PunkBuster plug-in into the game client, otherwise the game
server will refuse the connection. The PunkBuster client per-
forms real-time memory scans to search for any known cheats
and hacks. If any cheats or hacks are found, the PunkBuster
client will report to the PunkBuster server, the cheater will
be removed from the game and all other players will be
informed of this violation. However, PunkBuster was once
rendered nearly useless due to the very fast development cy-
cle of the very famous cheat called OGC. OGC is a multi-
functional cheat targets for several online FPS games in-
cluding the very famous and popular commercial FPS game
called Counter-Strike [18]. Representatives from PunkBuster
asked for financial and development support from Counter-
Strike’s developer, Valve, but were turned down. Thus the
involvement of PunkBuster with Counter-Strike was over.
Currently, PunkBuster is supported on 18 online FPS games
including the well-known Quake series.

After Valve decided to forego PunkBuster, Valve devel-
oped its own anti-cheat system called Valve Anti-Cheat (VAC)
[19]. All game clients and game servers developed by Valve
run VAC by default. Valve keeps much of VAC’s detection
method secret, but it is believed that VAC uses hash de-
tection to identify individual cheats. Therefore, new cheats
must be discovered and added to the VAC database. It is also

possible that VAC detects processes that work like cheats,
such as processes that hook on the game client at run-time.
This once caused some problems such as false positive would
be produced if a player runs the in-game MP3 player called
HLamp.

HLGuard [15], formerly called CSGuard, is a free server-
side anti-cheat system for the famous commercial FPS game,
Half-Life, and its many variations such as Counter-Strike.
HLGuard contains a set of anti-cheat features and includes a
wall-hack blocking function and an aiming-robot detection
routine. However, HLGuard uses a very simple algorithm
in its aiming-robot detection routine. Basically, it looksfor
players whose kill other players in the way like an aiming
robot does, such as changes the aiming direction dramati-
cally within a very short period of time and then stops at
aiming a target accurately [1] and [2]. The algorithm is too
simple that many subsequent aiming robots could not be de-
tected by HLGuard properly. For this reason, the detection
routine has been disabled by default in the newer releases of
the HLGuard.

3 Bayesian Networks

In this section, we provide a brief introduction of Bayesian
network and its application in detect online game cheating.

A Bayesian network can be viewed as a graphical repre-
sentation of causal relationships between different events. In
general, a Bayesian network is an acyclic graph that con-
sists of a set of nodes and a set of directed edges. Each
node in a Bayesian network represents a random variable
(i.e., which can have discrete or continuous outcomes), and
each directed edge represents a causal influence from a par-
ent nodeXp to its childXc. A node can have more than one
parent, it implies that the random variable isdependenton
many random variables (represented by all the parent nodes).
A node can be parent of more than one node, in this case, this
implies that the random variable can influence many other
possible random variables (all its children nodes). We define
the set of parent nodes ofX asparents(X). The probabil-
ity of a nodeX is conditioned on only its parent nodes and
conditionally independent on other random variables. We
say thatP (A|B, C) = P (A|B) if B ∈ parents(A) while
C 6∈ parents(A). Thus, the joint probability distribution of
a Bayesian network is given by:

P (X1, X2, ..., Xn)

= P (X1|parents(X1))P (X2|parents(X2))

. . . P (Xn|parents(Xn)).

To illustrate the applicability of this joint probability dis-
tribution, let us consider an example in Figure 1(a), which
illustrates a Bayesian network that models the causal re-
lationship between three random variables:Cheating(C̃),
Distance(D̃) and aimingAccuracy(Ã). In here, the ran-
dom variablesCheating andDistance are parent nodes of
Accuracy. Therefore, whether the player is a cheater or not
and his distance from the aiming target can influence the

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Dynamic Bayesian Approach for Detecting Cheats in Multi-Player Online Games 5

outcome of the aimingAccuracy. In this case, the probabil-
ity of the variableAccuracy is dependent upon the values
of Cheating andDistance, while the variablesCheating
and Distance themselves are independent of any random
variable. The joint probability distribution of this Bayesian
network is given by:

P (C̃, D̃, Ã)

= P (Ã|parents(Ã))P (C̃|parents(C̃))P (D̃|parents(D̃))

= P (Ã|C̃, D̃)P (C̃)P (D̃).

3.1 Training and Inferring Bayesian Network

In some situations, the values of both random variablesAccuracy
andDistance are observable and one may want to deter-
mine the probability of the variableCheating given the known
values, i.e.,P (C̃|Ã, D̃). This can be done by inference. In-
ferring a Bayesian network is the task to compute the prob-
ability of a node given the values of all other nodes. But be-
fore one can infer the Bayesian network, one must know the
prior probabilitiesof all nodes in the network, these proba-
bilities can be obtained via the training process.

Cheating(C̃) Distance(D̃) Accuracy(Ã)

True 1 1
True 1 1
True 0 1
True 0 0
False 1 1
False 1 0
False 0 1
False 0 0
False 0 0
False 0 0

Table 1 Data set obtained in the training stage for the Bayesian net-
work in Figure 1(a). (In real cases the values ofD̃ and Ã should be
continuous values, this example uses very simple dataset for easier un-
derstanding on the idea.)

Training the network is a task of sampling the values of
the variables for a set of test cases. For example, letCheating
be a discrete random variable which has two possible out-
comes, true or false, i.e.,̃C ∈ [true, false]. The variable
aiming Accuracy is a discrete random variable with out-
come of either 1 (accurate) or 0 (inaccurate), i.e.Ã ∈ [0, 1].
Finally, Distance is also a discrete random variable which
can have the value of either 0 (i.e. very near to the target)
or 1 (i.e. far away from the target), i.e.̃D ∈ [0, 1]. If we
record the values ofAccuracy, Cheating andDistance of
a particular player at a game session, we may obtain a set
of data such as the one shows in Table 1. Each row of the
table corresponds to a single sampled data. If we count the
“frequency” of each possible value of the variables and nor-
malize the frequencies to values between zero and one, we
will get the following probability distributions:

P (C̃) =

{

0.4 C̃ = true

0.6 C̃ = false,

P (Ã|C̃, D̃) =















































0.25 Ã = 1, C̃ = false, D̃ = 0

0.75 Ã = 0, C̃ = false, D̃ = 0

0.50 Ã = 1, C̃ = false, D̃ = 1

0.50 Ã = 0, C̃ = false, D̃ = 1

0.50 Ã = 1, C̃ = true, D̃ = 0

0.50 Ã = 0, C̃ = true, D̃ = 0

1.00 Ã = 1, C̃ = true, D̃ = 1

0.00 Ã = 0, C̃ = true, D̃ = 1

With the prior probabilities, we can now infer the Bayesian
network. Assume at a particular instance, we observed that
the shooting is accurate (i.e.,̃A = 1) and the player is far
away from the target (i.e.,̃D = 1). Now we can infer the
probability of whether the player is cheating or not at that
instance. By Bayes’ rule, the probability is given by:

P (C̃ = T |Ã = 1, D̃ = 1)

=
P (Ã = 1|C̃ = T, D̃ = 1)P (C̃ = T)P (D̃ = 1)

∑

C̃ P (Ã = 1|C, D̃ = 1)P (C)P (D̃ = 1)

=
P (Ã = 1|C̃ = T, D̃ = 1)P (C̃ = T)

P (Ã=1|C̃=T,D̃=1)P (C̃ =T)+P (Ã=1|C̃ =F,D̃=1)P (C̃=F)

=
(0.5)(0.4)

(0.5)(0.4) + (0.5)(0.6)

= 0.4.

Therefore, at any particular instance during a game, the Bayesian
network approach allows us to determine the probability dis-
tribution of C̃. That is, whether the player is cheating or not,
bases on the observed values of other random variables.

3.2 Dynamic Bayesian Networks and Inferring
Information

Although the BN approach can help us to estimate the prob-
ability of whether the player is cheating or not, but the ap-
proach has amajor limitation since it can only model the
static behavior of a player. Note that the outcomes of the
random variables̃C, Ã andD̃ can be time dependent, there-
fore, a temporal representation is needed so that one can ac-
curately predict whether the player is a cheater or not.

When random variables take on different values as time
elapses while the structure of the inference network remains
unchanged, the resulting temporal model is called aDynamic
Bayesian Network(DBN). Typically, a DBN is composed by
replicating the same Bayesian network for different time in-
tervals or time slices. Dependencies not only exist between
nodes inside the same time slice, but a node within one time
slice may also be dependent on the same node and/or other
nodes in previous time slices. To illustrate, consider the ex-
ample in Figure 1(b) which illustrates a DBN formed by

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

6 S.F. Yeung, John C.S. Lui

Cheating

C
~

 Aiming
Accuracy

A
~

Distance

D
~

(a) A Bayesian network consists of three ran-
dom variables aimingAccuracy, Cheating
andDistance.

C
~
t-1

A
~
t-1

D
~
t-1

C
~
t-1

A
~
t-1

D
~
t-1

C
~
t-1

A
~
t-1

D
~
t-1

time slice t-1 time slice t time slice t+1

(b) A DBN unrolled for three consecutive time slices.

Fig. 1 An example of Bayesian network and Dynamic Bayesian network.

replicating the Bayesian network in Figure 1(a) for every
time slices. This enhancement adds a dependency between
the random variableCheating(C̃) in every two adjacent
time slices. In other words, the random variableC̃t at timet
depends on the random variableC̃t−1 at time(t−1).

Inferring a DBN is much like inferring a static Bayesian
network, but one will not infer the whole dynamic Bayesian
network since the state space is large (or infinite) and it is
computational expensive to deal with an arbitrary large dy-
namic Bayesian network as time elapses. Instead, one needs
to update the probabilities and “roll” the network forward as
time elapses. We illustrate this concept with a working ex-
ample. Figure 1(b) models the temporal change in the prob-
ability of whether the player is cheating or not, as well as the
influence of the random variablẽCt andD̃t on the probabil-
ity of the player’s aiming accuracy.

Without the loss of generality, the very first time slice
occurs att = 0 is considered as a special case with the as-
sumption that the prior probabilityP (C̃0 = true) = 0.5
(i.e., in the beginning, we have no information to determi-
nate whether a player is a cheater or not. So we consider
the case that a player can be honest or cheating with equal
probabilities). Let say that in the first time slice, we observe
that the player aims accurately from a short distance, i.e.,
Ã1 = 1 andD̃1 = 0. For the second time slice, we also ob-
serve that the player aims accurately from a long distance,
i.e., Ã2 = 1 and D̃2 = 1. Given the outcomes of̃At and
D̃t, for t ∈ {1, 2} are known, one can infer the probability
of whether the player is cheating or not on each of these two
time slices.

The inference can be carried out intwo stages. For the
first stage, we estimate whetherC̃t is true or not based on
the probability distribution ofC̃t−1. For the second stage,
we improve the estimate of̃Ct based on the observed values
of Ãt andD̃t at timet. Let us illustrate this concept.

On the first time slice, estimate the outcome ofC̃1 based
on C̃0. Note that this estimation is computed based on the
conditional probability distributionP (Ct|Ct−1). The esti-

mate ofC̃t is:

P (C̃1 = T)

= P (C̃1 = T |C̃0 = T)P (C̃0 = T)

+P (C̃1 = T |C̃0 = F)P (C̃0 = F)

= (0.8)(0.5) + (0.3)(0.5)

= 0.55.

For the second stage, we update this estimate base on the
observed values ofAccuracy and Distance (i.e., Ã1 and
D̃1) for time slicet = 1, which gives:

P (C̃1 = T |Ã1 = 1, D̃1 = 0)

=
P (Ã1 = 1|C̃1 = T, D̃1 = 0)P (C̃1 = T)P (D̃1 = 0)

∑

c1
P (Ã1 = 1|C̃1 = c1, D̃1 = 0)P (C̃1 = c1)P (D̃1 = 0)

=
(0.5)(0.55)

(0.5)(0.55) + (0.5)(0.45)

= 0.38.

This gives the probability of whether the player is cheating
or not at time slicet = 1.

For the second time slice, we estimate the outcome ofC̃2

based on updated probability of̃C1, this gives:

P (C̃2 = T)

= P (C̃2 = T |C̃1 = T)P (C̃1 = T)

+P (C̃2 = T |C̃1 = F)P (C̃1 = F)

= (0.8)(0.38) + (0.3)(0.62)

= 0.49.

Then we update this estimate based on the observed values
of Ã2 andD̃2, this gives:

P (C̃2 = T |Ã2 = 1, D̃2 = 1)

=
P (Ã2 = 1|C̃2 = T, D̃2 = 1)P (C̃2 = T)P (D̃2 = 1)

∑

c2
P (Ã2 = 1|C̃2 = c2, D̃2 = 1)P (C̃2 = c2)P (D̃2 = 1)

=
(1.0)(0.49)

(1.0)(0.49) + (0.5)(0.51)

= 0.66.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Dynamic Bayesian Approach for Detecting Cheats in Multi-Player Online Games 7

Game Server

Client1 Client2 ClientN...

Batch update packet

Broadcast all updates

Fig. 3 Updates between playing clients and the game server in Cube.

Intuitively, the probability that the player is cheating inthe
current time slice increases if the player cheated in the pre-
vious time slice. This probability is also reinforced by the
observed evidence that the player can keep a high aiming
accuracy even when he moved away from the target (i.e.,
D̃1 = 0 andD̃2 = 1).

4 Design and Implementation

In here, we present our framework of cheating detection with
a multi-player online game engine. To demonstrate the effec-
tiveness of the proposed method, we built a prototype of a
multi-player game system using the open source first-person
shooter game Cube [13] as our testbed. We choose a spe-
cific type of cheat called aiming robot (or aimbot for short).
This type of cheat is frequently used by various players to
gain an unfair advantage. To realize our dynamic detection
scheme, we also implemented a dynamic Bayesian inference
routine on the game server so that we can infer the probabil-
ity of cheating for each individual players during a game
session. We implemented three of the most common aim-
bot variants, and evaluate the adaptiveness of the proposed
detection framework towards these different aimbots. More-
over, we measure the overhead of the detection framework
on the game server so that we can evaluate thescalabilityof
the detection framework.

4.1 Multi-Player Game Architecture

In a real-time multi-player online game, all of the players
must maintain a consistent view of the game states. The per-
ception of the real-time interaction is achieved by updating
the game states among all players frequently. Typically, state
updates will be carried out at a fixed time interval called
a timeframe. This is to avoid overwhelming the network
bandwidth and the processing power of the server. Updates
on multiple game states within the same timeframe will be
batchedand sent out as a single update packet, and the typi-
cal length of a timeframe is in tens of millisecond. Figure 2
illustrates the updates sent from and received by the clients
over time with a timeframe of 50 ms.

We used the game Cube as our testbed. Cube employs
client-server architecture. Each game client sends its update

to the game server at every timeframe. When the server re-
ceives these updates from different clients, the game server
will then broadcast these updates to all players in the virtual
world so every player can maintain the view consistency.
This type of communication mode is illustrated in Figure
3. Cube clients synchronize at a timeframe of 40ms, or 25
frames per second. Each update from a client includes the
following information (i.e. game states): 1) the position of
the player, 2) the direction and velocity of the player, 3) the
aiming direction of the player and, 4) the action of the player,
e.g. strafing, jumping,. . ., etc.

Our cheating detection framework will only rely on these
game states. Therefore, the detection framework can reside
completely on the server side and it does not require any
modification of the client code. This simplifies the deploy-
ment process since one can easily enhance the detection frame-
work transparently to the players if a new form of cheating
is suspected.

4.2 Aimbot

Aimbot is a very popular type of cheat used in first-person
shooter games. When this form of cheat is enabled, it will
take over the control of the player’s mouse pointer and locks
the player’s aiming point, which is called “crosshair”, onto
a nearby target. To illustrate the effect on using an aimbot,
Figure 4(a) shows a scenario when the aimbot is enabled
and the cheater aims at a target while the cheater is mov-
ing in the virtual world. One can notice that the crosshair
is alwayslocked onto the aiming target. In contrast, Figure
4(b) shows a similar scenario but the player is not using any
aimbot cheat. In this case, one can observe that the crosshair
of the honest player may not be able to track the target all
the time (i.e., the last three frames in the figure). Based on
this scenario, it is easy to observe that when an aimbot is
enabled, the cheater can easily destroy any target and gain
an unfair advantage over other honest players. In general, a
cheater using an aimbot will exhibit very outstanding accu-
racy in aiming and very low, if any, miss rate in any situa-
tions.

To avoid being detected due to its high aiming accu-
racy, some advanced aimbots may pretend to act as a nor-
mal player, either by automatically switches itself on and off
periodically, or by creating some intended misses from time
to time. However, human players have diverse behaviors but
cheaters using aimbots are very likely to exhibit some kind
of patterns in their cheating behaviors. For example, a skill-
ful player who is good at shooting will adopt a specific tac-
tic to gain the highest advantage according to the current
circumstance and landform of the virtual world. However, a
cheater may exhibit outstanding accuracy but lack the sense
of paying attention to the environment of the virtual world.
An experienced administrator can tell whether a player is
skillful or cheating by carefully reviews the recorded game.
In most cases the cheaters would configure the aimbots such
that they would perform much better than the cheaters them-

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

8 S.F. Yeung, John C.S. Lui

50ms
Time

Player A sends out a batch update packet to server

Server broadcast the batch update of all players

Player B sends out a batch update packet to server

Player C sends out a batch update packet to server

50ms

50ms 50ms

50ms 50ms

50ms 50ms

Fig. 2 Network architecture of multi-player online game: updatessent from and received by clients over time with a timeframe of 50 ms.

selves when they are unassisted. However, if a cheater con-
figures the aimbot to make only a slight improvement in
performance, e.g., by automatically turning on occasionally
or even rarely, there are still clues that one can observe the
presences of an aimbot at the very moment when the aim-
bot is activating. For example, the most advanced aimbot
today is called the “charged-type” aimbot, these aimbots are
turned off by default but will only activate when the cheater
presses a self-defined hotkey, and then turned off immedi-
ately once the cheater releases the hotkey. More advanced
aimbots would only activate when the crosshair is sufficiently
close to the target, makes a more natural look therefore harder
to detect. These aimbots are completely unnoticeable in peace-
time but may still be caught when they are activated, al-
though very careful and professional reviews are required.
These are the reasons why the most authoritative cheat de-
tection method used today is still by human observation, and
it is especially important in major tournaments [1] and [17].

Note that above are observations we made in the FPS
type of game. Based on these observations, we are able to
make the necessary Bayesian model to detect aimbot. We
believe the proposed approach holds promise in other forms
of games or cheats, although one may need to make some
specific observations and derive new Bayesian models for
different types of games.

4.3 Our Dynamic Bayesian Network

The overview of the DBN we used for our experiments is il-
lustrated in Figure 5. In this section, we explain the details of
our dynamic Bayesian network and discuss how the network
can be used to detect the use of an aimbot.

In a first-person shooter game, several state information
will certainly influence the aiming accuracy of a player di-
rectly. For example, when the player is closer to the target,
the higher the chance the player can hit the target. Also, it
is easier to aim at a static target than a high speed moving
target. Likewise, a player should have a higher aiming accu-
racy when that player is stationary, as compares to a player
who is aiming while moving at the same time. Certainly, the
use of an aimbot will affect the aiming accuracy of a player.
Therefore, the probability distribution of a player’s aiming
accuracy,P (A), is dependent on the following random vari-
ables:

1. whether the player is cheating or not, which is denoted
by the random variableC,

2. whether the player is moving or not, which is denoted by
the random variableMp,

3. whether the player’s aiming target is moving or not, which
is denoted by the random variableM t,

4. whether the player is moving the crosshair or not, which
is denoted by the random variableP , and

5. the distance between the player and the aiming target,
which is denoted by the random variableD.

6. the difference inD between this time slice and previous
time slice, which is denoted by the random variable△D.

7. the difference inA between this time slice and previous
time slice, which is denoted by the random variable△A.

Note that these random variables themselves are not de-
pendent on any other random variables. This is because the
habit and the skill of the player and also the environment of
the virtual world, such as the landforms and location of spe-
cial items, will dominate the activities of a player. It means
that the input of a player is normally not dependent on other
outcomes in a game session. For this reason, we model the

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Dynamic Bayesian Approach for Detecting Cheats in Multi-Player Online Games 9

(a) (b)

Fig. 4 (Left) consecutive frames when a cheater using an aimbot aiming at a target. The ‘+’ mark at the center is the aiming point called
‘crosshair’. Notice that the crosshair aims the target accurately even the player is moving during these five frames. (Right) consecutive frames
when an honest player aiming at a target. The player trying toaim the target but is not accurate since the player is moving during these five
frames.

above parameters themselves as independent random vari-
ables. Moreover, we model the aiming process as a first or-
der Markov process. Because aiming is a fine tuning process,
once a player aimed accurately, probably only small adjust-
ments are required to keep the accuracy. It means that the
probability distribution of a player’s accuracy on a certain
time slicet is dependent on the player’s accuracy on the pre-
vious time slicet − 1.

Also, the change in probability of whether the player is
cheating or not is also modeled as a first order Markov pro-

cess. We make this dependency because a cheater may want
to enable the aimbot in a time slice but disable the aimbot in
the following time slice. This allows us to capture the feature
of an advanced aimbot which we mentioned previously.

4.4 Training and Inference

All of the random variables we need to infer the probabil-
ity of cheating, i.e.,C, Mp, M t, P , D, △D, △A, can be

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

10 S.F. Yeung, John C.S. Lui

obtained directly, or derived from the game states contained
in the update packets by various players. For example, by
comparing the current position and the latest recorded po-
sition of a player, we know whether the player is moving
or not. During a game session, a player will meet different
targets in the virtual world, and it is very common to meet
more than one target at the same time. We define a player’s
current target as the latest target the player’s crosshair hov-
ered over. To illustrate, let playerA’s crosshair hovered over
playerB, then for playerA, ˜TargetA = B until playerA’s
crosshair hovered over another player or playerB became
invisible to playerA. The variables Distance (D) and Accu-
racy (A) are both derived against this current target. Also, for
those random variables having continuous values, i.e. Dis-
tance (D) and Accuracy (A), we discretize them into a finite
field. Therefore, in training the dynamic Bayesian network,
we need to consider the following random variables which
take on the following values:

1. Cheating (C), with C ∈ [true, false],
2. Player moving (Mp) with Mp ∈ [true, false],
3. Target moving (M t) with M t ∈ [true, false],
4. Moving crosshair (△P), with △P ∈ [true, false],
5. Distance from the aiming target (D), with D ∈ [0, 1, 2, 3]

in which larger the value implies further away is the dis-
tance,

6. Change inD (△D), with △D ∈ [0, 1, 2, 3],
7. Aiming accuracy (A) with A ∈ [0, 1, 2, 3] in which the

lower the value implies higher is the aiming accuracy
and,

8. Change inA (△A) with △A ∈ [0, 1, 2, 3].

Using these data, one can compute the following prior
probability distributions:

1. P (Ct|Ct−1), and
2. P (At|At−1, Ct, M

p
t , M t

t , Pt, Dt,△Dt,△At),

Inferring the probability of cheating for any particular player
follows the following steps. At the very first time slice where
t = 0, we initializeP (C̃0 = true) to 0.5 (i.e., a player is
equally likely to be a cheater or an honest player). For each
time slicet, the inference carries out in two stages:
Stage 1:estimates the outcome of̃Ct based on ˜Ct−1, this
estimation can be carried out by the following equation:

P (C1 = T)

= P (Ct = T |Ct−1 = T)P (Ct−1 = T)

+P (Ct = T |Ct−1 = F)P (Ct−1 = F)

Stage 2:updatesC̃t with all of the evidences at time slicet.
This computation can be carried out by the following equa-
tion:

P (Ct = true|At, At−1, M
p
t , M t

t , Pt, Dt,△Dt,△At)

=
P (at|at−1, Ct, m

p
t , m

t
t, pt, dt,△dt,△at)P (Ct = true)

∑false

c=true P (at|at−1, Ct = c, mp
t , m

t
t,△dt, dt)P (Ct = c)

.

The pseudo-code to perform this inference computation
on the game server is as follows:

Server Loop
1. while (gameover == false){
2. for each player(){
3. playerStates = receiveplayerstateupdate();

// stage 1 computation based on Eq. (1)
4. pPredict = cptCheating[cheating] * pCheating[t-1]

+ cptCheating[!cheating] * (1.0 - pCheating[t-1]);
// stage 2 computation based on Eq. (2)

5. T = cptAccuracy[playerStates][cheating]
* pPredict;

6. F = cptAccuracy[playerStates][!cheating]
* (1.0 - pPredict);

7. pCheating[t] = T / (T + F);
8. }
9. timeframe++;
10. }

Computational Analysis:Based on the above pseudo-code,
we see that to estimate the cheating probability, we requirea
total of nine floating point operations (from line 4 to line 8)
per player within each time slice. One can easily see that
this is a light weighted computation. Assuming that each
time slice is 40 ms, i.e. 25 frames per second, this implies
that to detect 100,000 simultaneous players, it only requires
9 ∗ 25 ∗ 100, 000 = 22, 500, 000 floating point operations per
second. Using a P4 2.0GHz server as an example, which can
perform about one billion floating point operations per sec-
ond, therefore the overhead to detect 100,000 simultaneous
players uses only 22.5% of the CPU capacity.

For example, in commercial games such as counter-strike
and Quake, the game clients send all commands (keyboard
inputs) to the server. The server runs the simulation of the
whole game because all game states must be authorized by
the server before the server broadcasts the information to
other players. Therefore, the server already knows the posi-
tion and the aiming direction of all players at each instance
of the game. In our proposed method, the only additional
computation requires to perform prior to the Bayesian infer-
ence routine is to compute the “distance between a player’s
aiming trajectory and the player’s current target”, i.e., the
player’s accuracy. That is, to compute the distance between
a point and a line which involves a cross-product operation.
Moreover, as we mentioned before, the computation only
occurs when there is any visible target, and the server only
needs to trace the accuracy with respect to the current tar-
get, until it is not visible to the player or their distance is
beyond a certain threshold. Also, for FPS games the num-
ber of players involved in the same game session typically
varies from 8 to 32. Hence, the computational overhead in-
duced should not be much. Moreover, in practical implemen-
tation one could create an individual queue to store a copy
of the user states, and then carries out the computation of
the player’s accuracy and also the Bayesian inference rou-
tine in a computational thread, which is separated from the

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Dynamic Bayesian Approach for Detecting Cheats in Multi-Player Online Games 11

main server loop so as to reduce the real-time workload on
the server.

4.5 Multiple Thresholds

Using a higher threshold value can ensure zero false pos-
itive rates, however, the system will then be less sensitive
to cheaters. On the other hand, using a lower threshold value
can filter out most potential cheaters but false positives could
be annoying to the players and server administrators. Hence,
instead of using a single threshold, it may be more prac-
tical to have multiple thresholds in real-life situations.In
the training session, we could divide players into different
groups according to their playing skills, such as grouping
them into average players, advanced players and experts.
Then, for each of the groups, we obtain a separate thresh-
old value by training the Bayesian Network with the corre-
sponding data set. The more skillful the players in the group,
the higher the obtained threshold value should be.

In real-life situations, players often join ongoing game
sessions in public servers without knowing who are the other
players, it is very common that a mixture of players with
different skill levels playing together. A server administrator
may like to configure the system such that different alerts
will be triggered when a player’s inferred probability ex-
cesses different thresholds. For example, when the proba-
bility excesses the first threshold, the player will be logged
but no action will be taken. However, when the probabil-
ity excesses the second threshold, an alarm will be sent to
the administrator and gameplay recording will be enforced.
If the last threshold has been reached, the player would be
flagged as cheater and be removed from the game immedi-
ately.

5 Results

We have implemented three different aimbots for Cube. When
the aimbot is enabled, it will find the nearest target and aim
at it accurately. The aimbot will keep on aiming at the cur-
rent target even there is a nearer target, until the distancebe-
tween the player and the current target is larger than a certain
threshold. If there is only one visible target, the aimbot will
then keep on aiming this target until the target is invisibleto
the player.

The three aimbots perform similar to the most common
aimbots of first-person shooter games. They are:

– Type I: The first one is the most popular and basic one,
when enabled, it will aim at its target continuously.

– Type II: The second aimbot we built will automatically
switch itself on and off for a random time interval which
vary from 0.5 seconds to 2 seconds. The human player
will temporary take over the control during the off pe-
riods. The justification for this feature is to reduce the
aiming accuracy so that it is difficult to be detected as a
cheater.

– Type III: The third aimbot we built is the most advanced
one, it will create intentional misses for some random
time intervals which vary from 0.5 seconds to 2 seconds.
The aimbot pretends to miss like a human player by ex-
hibits a smooth fluctuation of the crosshair around its tar-
get.

We carried out ten separated game sessions. There are
a total of sixteen players. The players include eight student
volunteers and eight gamemates of the authors. They range
from naive players to above-average players, most are aver-
age level players. We arranged the data into three data sets.
These data sets are:

– Data setA, there are three honest players (i.e.ha1, ha2,
ha3) and three cheaters (i.e.ca1, ca2, ca3) using the basic
aimbot (the type I aimbot mentioned above). Note that
the data setA is used for training the DBN.

– Data setB, there are three honest players (i.e.hb1, hb2,
hb3) and three cheaters (i.e.cb1, cb2, cb3) using the basic
aimbot.

– Data setC, there are three honest players (i.e.hc1, hc2,
hc3), three cheaters (i.e.cc1, cc2, cc3) using the auto-
switching aimbot (the type II aimbot mentioned above)
and three cheaters (i.e.ca4, ca5, ca6) using the most ad-
vanced aimbot (type III aimbot mentioned above).

During session A, no inference is carried out, but the data
collected are used for the training of our Bayesian Network.
We have modified the game client such that each time when
an aimbot is activated or deactivated, it is logged along with
other game states. We then use data setA to compute the
two prior probabilities mentioned in Section 4.4, i.e.

1. P (Ct|Ct−1), and
2. P (At|At−1, Ct, M

p
t , M t

t , Pt, Dt,△Dt,△At),

During game session B and C, inference takes place in
real time. At each time frame, the system updates the prob-
ability of cheating for each of the players. Note that we also
logged the states of each player into files, which can later
be used for offline training or offline inference. Hence, we
can also train and infer the data with different combinations
(cross validation) in an offline manner.

Experiment 1 - Effectiveness to Detect Cheating:In this
experiment, we investigate the ability to detect cheaters while
produce no false positive for honest players. We use the data
setA as the training data and then infer the data setB. Fig-
ure 6 shows the probability of cheating over time for each
of the six players in the data setB. Note that Figure 6(a)-
(c) correspond to cheaters while (d)-(f) correspond to honest
players. The threshold line in each sub-figure corresponds
to the highest probability ever reached by an honest player,
which is obtained in the training section.

Actually, the game sessions each lasted for 10 minutes,
but the figures are zoomed into the first 500 frames of the
plays, i.e. 20 seconds, so that more details can be observed
from the figures. For most of the time, the probability of an
honest player keeps well below the threshold. On the other

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

12 S.F. Yeung, John C.S. Lui

hand, the probability of a cheater can fluctuate above the
threshold quite frequently, which indicates that the method-
ology is quite effective in detecting the use of aimbot.

There exists some time periods where a cheater is having
a low probability of cheating, this probably occurs when the
cheater does not have any visible target to aim at. It is com-
mon that only half of the time a player will have a visible
target nearby, and this effect is magnified when the virtual
world is a large one.

One may think that the detection can be improved by
only counting the data when a player has any visible target.
Unfortunately, for most of the first-person shooter game, the
game server does not contain the information of static ob-
jects inside the virtual world, and this information is required
to determine the visibility between any two players. Even if
we include this information, the computation will be very
expensive and thus it is not a scalable method.

Experiment 2 - Adaptiveness to Auto-switching and In-
tentional Misses:In this experiment, we investigate the abil-
ity to detect cheaters who use either one of the two more ad-
vanced aimbots, that is, they either perform auto-switching
(turns on and off itself alternately), or by intentionally miss-
ing the current target. We still use the data setA as the train-
ing data and then infer the data setC. Figure 7 shows the
probability of cheating over time for each player in data set
C.

For the same reason that there is no visible target, there
exists time periods that the probability drops far below the
threshold. However, we look into the time frame from 350 to
450 in Figure 7(a). During this period, the probability keeps
beyond the threshold for 100 timeframes, or100/25 = 4
seconds, while the aimbot is switching on and off periodi-
cally at random intervals. The probability does not drop even
the aimbot is switched off, this is because aiming the target
becomes much easier with the periodic assistance from the
aimbot.

We also look into the time frame from 0 to 150 in Figure
7(d). During this period, the probability fluctuates around
the threshold for 150 timeframes, or150/25 = 6 seconds,
while the aimbot is creating intentional misses at about one
second intervals. The probability drops when the aimbot misses
its target, however, it rises again when the aimbot aims at
its target in later time frames. The results suggest that our
methodology can effectively detect the use of an aimbot even
if the aimbot has the advanced feature to switch automati-
cally and miss intentionally.

The results also suggest that our methodology actually
learns and detects “how do aimbots aim”. For example, at
around the 250th timeframe in Figure 7(k), the aiming accu-
racy rises from zero to nearly 100% and then drops back to
zero in a period of around 25 timeframes (i.e. 1 second). It
indicates that the aimbot is in action and at the same time a
visible target exists. Referring to the corresponding inferred
result in Figure 7(e), the probability of cheating rises sharply
at the same moment when the aiming accuracy rises. There-
fore, even though the aimbot is only activated for about 25

timeframes, it is being detected shortly after it aimed at a tar-
get accurately. ¿From other results, we can also observe that
many times the probability rises above the threshold shortly
after the aiming accuracy goes high. It is because ”aims
make by aimbots” are being detected. For the results corre-
sponding to the honest players, there are also sometimes the
aiming accuracy rises sharply such as near the 400th time-
frame in Figure 6(k). However, the probability of cheating
still keeps below the threshold. This is because not only the
aiming accuracy, but also other game states, influences the
inference result.

Experiment 3 - Cross Validation: In this experiment, we
validate our results by training and inferring with different
combinations of data sets. We first train with data setB and
infer data setC, then train with data setB and infer data set
A, and so on. Figure 8 shows the probability of cheating over
time for each test case. We use the same threshold for all the
test cases in determining whether the player is a cheater or
not. ¿From Figure 8, we see that even when we use different
data set as training, the methodology is still effective in de-
termining whether a player is using the aimbot or not. The
inferred probability of a cheater fluctuates above the thresh-
old while the inferred probability of an honest player keeps
below the threshold.

Experiment 4 - Scalability of using the Inference Engine:
In this experiment, we investigate the overhead of the dy-
namic Bayesian inference routine on the game server. We
measure the maximum CPU load on the game server from
one player to ten players. We first carry out the measurement
on an original Cube server. We then repeat the measurement
on the Cube server with an added dynamic Bayesian infer-
ence routine. Figure 9 shows the percentage of CPU usage
against the number of connected players on the Cube server
running on a P4 2.4GHz machine with 512MB memory. Al-
though the CPU loading of the original Cube server is not
linear to the number of connected clients, this is probably be-
cause the Cube server is not optimized in its performance, as
it is mentioned in the Cube’s documentation. However, com-
pares the modified server running the Bayesian inference
routine to the original server, there is only a constant fac-
tor induced by the Bayesian inference routine. This suggests
that the inference algorithm is scalable on massive multiple
player online games where the number of connected players
per server is of the order of thousands.

6 Future Work

The proposed approach in this paper is applied on a FPS
game, although it may be specific to this type of game, we
believe the methodology holds promise and open doors for
new detection method for other types of games. For exam-
ple, based on the Bayesian network used in the Section 5,
we may be able to further enhanced the effectiveness of our
scheme on FPS games by adding more nodes into the Bayesian

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Dynamic Bayesian Approach for Detecting Cheats in Multi-Player Online Games 13

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

number of connected players

cp
u

us
ag

e
(%

)

Server side cpu usage vs number of connected players

With Bayesian inference routine
Original server

Fig. 9 % of CPU loading on a Cube server running on P4 2.4GHz
machine with 512MB memory.

network, for example:

1. weapon - the player’s current weapon,
2. map type - discrete values represent close up battle, long

range battle or in-between,
3. number of visible targets - the number of targets that cur-

rently visible to the player,
4. action - the player’s current action, such as dodging, jump-

ing, standing, walking or running,
5. skill - a value indicate how good the player should be,

discuss below.

Since the inspiration of our approach is to imitate how
professional administrators detect cheaters by observation.
The motive of adding these new nodes is trying to capture
the skill of the player and capture more information of the
whole game. The data needed to the proposed “skill” node
could be obtained by a centralized method. For example,
many popular FPS games have regular national or interna-
tional tournaments such as the Cyberathlete Amateur League
(CAL) tournaments. One of the most critical issue is to dif-
ferentiate CAL-level players from cheaters, which means
false positive should not happen even for very skillful honest
players. Since nowadays most popular FPS games use global
login ID to identify players, which can only be obtained by
purchasing a new copy of the game, and there exists cen-
tralized global databases for all servers to retrieve and save
banned login ID. Therefore, it is possible to query a player’s
tournament history according to the global login ID and de-
termine the player’s “skill” accordingly.

7 Conclusions

Our work is the first attempt of using statistical inference
in cheat detection. Different from HLGuard, our approach
makes use of machine learning to capture the behaviors of
different aimbots. Moreover, our Bayesian model includes a
variety of available game states so that the variations in the
player’s performance could also be taken into account in the
inference. Our experimental results show that the Dynamic
Bayesian Network is an effective and scalable solution in the
detection of the aiming robot cheat for a first-person shooter
multi-player online game. Our framework only relies on the
game states observed in the server side, therefore, cheaters
cannot hack the detection system like hacking a cheat scan-
ner software on the client side. The statistical approach has
the advantage that one does not require to perform software
updates on the client side so as to detect new released cheats,
and the same methodology can be used to detect other cheats
of the same category, because these cheats exhibit similar
behavior (e.g., high aiming accuracy in all circumstances but
lack of relevant tactics). We believe the proposed methodol-
ogy and the prototype system provide a first step toward a
systematic study of cheating detection and security research
in the area of multi-player online games.

Although in this paper we focus on the detection of aim-
bots, we believe the same approach is capable on other types
of cheat that exhibit similar patterns. For example, a cheater
using a map-hack in a RTSG game would go straightly to-
ward important items before the cheater has already explored
their locations; a cheater using a wall-hack in a FPS game
would likely to aim around the corners frequently and shoot
immediately when a target appears. As long as one can de-
scribe the behavior of a cheat in terms of the game states,
then it is possible to construct a proper Bayesian Network
to learn and then to detect such cheat. This type of enhance-
ment is our on-going research work.

References

1. Admins, U.: official HLGuard discussion forum.
http://forums.unitedadmins.com/index.php?showtopic=36652
(2004)

2. Admins, U.: official HLGuard discussion forum.
http://forums.unitedadmins.com/index.php?showtopic=44059
(2004)

3. L. von Ahn M. Blum, N.J.H., Langford, J.: Captcha: Using hard
ai problems for security. pp. 294–311

4. Balance, E.: official PunkBuster website.
http://www.evenbalance.com (2007)

5. Baughman, N.E., Levine, B.N.: Cheat-proof playout for central-
ized and distributed online games. pp. 104–113 (2001)

6. Chen, B.D., Maheswaran, M.: A cheat controlled protocol for cen-
tralized online multiplayer games. pp. 139–143 (2004)

7. Entertainment, B.: Battle.net. http://www.battle.net(2002)
8. Eric Cronin, B.F., Jamin, S.: Cheat-proofing dead reckoned multi-

player games (2003)
9. Golle, P., Ducheneaut, N.: Keeping bots out of online games

(2005)
10. Lui, J.C.S.: Constructing communication subgraphs andderiving

an optimal synchronization interval for distributed virtual environ-
ment systems. pp. 778–792 (2001)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

14 S.F. Yeung, John C.S. Lui

11. Margaret DeLap Bjorn Knutsson, H.L.O.S.U.S.I.L.C.T.:Is run-
time verification applicable to cheat detection. pp. 134–138 (2004)

12. the New York Times: Conqueror in a War of Virtual Worlds.
http://www.nytimes.com/2005/09/06/arts/design/06worl.html?
ex=1283659200&en=7057c2e17780c600&ei=5090 (2005)

13. van Oortmerssen, W.: Cube. http://www.cubeengine.com(2004)
14. Pritchard, M.: How to hurt the hackers: The scoop on internet

cheating and how you can combat it (2001)
15. Project, T.Z.: official HLGuard website.

http://www.thezproject.org (2007)
16. Space, S.: Internet Research Reports.

http://www.securityspace.com/ssurvey/data (2004)
17. official website, C.: Rules 6.40 Anti-Cheat information.

http://www.caleague.com/?division=csac&page=rules#6.40
(2007)

18. Wikipedia: Counter-Strike. http://en.wikipedia.org/wiki/Counter-
Strike (2007)

19. Wikipedia: Valve Anti-Cheat. http://en.wikipedia.org/wiki/Valve Anti-
Cheat (2007)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Dynamic Bayesian Approach for Detecting Cheats in Multi-Player Online Games 15

Ct-1

At-1

Mt-1

p

Mt-1

t
Dt-1

Dt-1

Ct

At

time slice t-1 time slice t

Pt-1

At-1 Mt

p

Mt

t
Dt

Dt Pt

At

Fig. 5 The DBN used for aimbot behavior detection.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

16 S.F. Yeung, John C.S. Lui

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

timeframe

pr
ob

ab
ili

ty
 (

%
)

Inferred probability of cheating

(a) cheatercb1

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

timeframe

pr
ob

ab
ili

ty
 (

%
)

Inferred probability of cheating

(b) cheatercb2

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

timeframe

pr
ob

ab
ili

ty
 (

%
)

Inferred probability of cheating

(c) cheatercb2

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

timeframe

pr
ob

ab
ili

ty
 (

%
)

Inferred probability of cheating

(d) honest playerhb1

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

timeframe

pr
ob

ab
ili

ty
 (

%
)

Inferred probability of cheating

(e) honest playerhb2

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

timeframe

pr
ob

ab
ili

ty
 (

%
)

Inferred probability of cheating

(f) honest playerhb3

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

timeframe

A
cc

ur
ac

y
(%

)

Aiming accuracy

(g) cheatercb1

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

timeframe

A
cc

ur
ac

y
(%

)

Aiming accuracy

(h) cheatercb2

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

timeframe

A
cc

ur
ac

y
(%

)
Aiming accuracy

(i) cheatercb2

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

timeframe

A
cc

ur
ac

y
(%

)

Aiming accuracy

(j) honest playerhb1

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

timeframe

A
cc

ur
ac

y
(%

)

Aiming accuracy

(k) honest playerhb2

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

timeframe

A
cc

ur
ac

y
(%

)

Aiming accuracy

(l) honest playerhb3

Fig. 6 Result of Experiment 1. Cheaters have probabilities fluctuating around the threshold, as illustrated in the sub-figures(a)-(c), while honest
players have probabilities well below the threshold, as illustrated in sub-figures (d)-(f). For comparison, the aimingaccuracies of the players are
shown in the sub-figures (g)-(l) respectively.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Dynamic Bayesian Approach for Detecting Cheats in Multi-Player Online Games 17

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

timeframe

pr
ob

ab
ili

ty
 (

%
)

Inferred probability of cheating

(a) auto-switching, cheaterhc1

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

timeframe

pr
ob

ab
ili

ty
 (

%
)

Inferred probability of cheating

(b) auto-switching, cheaterhc2

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

timeframe

pr
ob

ab
ili

ty
 (

%
)

Inferred probability of cheating

(c) auto-switching, cheaterhc3

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

timeframe

pr
ob

ab
ili

ty
 (

%
)

Inferred probability of cheating

(d) intentional misses, cheater
hc4

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

timeframe

pr
ob

ab
ili

ty
 (

%
)

Inferred probability of cheating

(e) intentional misses, cheater
hc5

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

timeframe

pr
ob

ab
ili

ty
 (

%
)

Inferred probability of cheating

(f) intentional misses, cheater
hc6

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

timeframe

ac
cu

ra
cy

 (
%

)

Aiming accuracy

(g) auto-switching, cheaterhc1

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

timeframe

ac
cu

ra
cy

 (
%

)

Aiming accuracy

(h) auto-switching, cheaterhc2

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

timeframe

ac
cu

ra
cy

 (
%

)
Aiming accuracy

(i) auto-switching, cheaterhc3

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

timeframe

ac
cu

ra
cy

 (
%

)

Aiming accuracy

(j) intentional misses, cheater
hc4

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

timeframe

ac
cu

ra
cy

 (
%

)

Aiming accuracy

(k) intentional misses, cheater
hc5

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

timeframe

ac
cu

ra
cy

 (
%

)

Aiming accuracy

(l) intentional misses, cheater
hc6

Fig. 7 Result of Experiment 2. Probability of cheaters using an aimbot that automatically switching on and off occasionally inrandom intervals
(a)-(c), and the probability of cheaters using an aimbot that creates intentional misses in random intervals (d)-(f). For comparison, the aiming
accuracies of the players are shown in the sub-figures (g)-(l) respectively.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

18 S.F. Yeung, John C.S. Lui

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

timeframe

pr
ob

ab
ili

ty
 (

%
)

Inferred probability of cheating

(a) honest playerhc1

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

timeframe

pr
ob

ab
ili

ty
 (

%
)

Inferred probability of cheating

(b) cheatercc1

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

timeframe

pr
ob

ab
ili

ty
 (

%
)

Inferred probability of cheating

(c) honest playerha1

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

timeframe

pr
ob

ab
ili

ty
 (

%
)

Inferred probability of cheating

(d) cheaterca1

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

timeframe

pr
ob

ab
ili

ty
 (

%
)

Inferred probability of cheating

(e) honest playerha1

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

timeframe

pr
ob

ab
ili

ty
 (

%
)

Inferred probability of cheating

(f) cheaterca1

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

timeframe

pr
ob

ab
ili

ty
 (

%
)

Inferred probability of cheating

(g) honest playerhb1

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

timeframe

pr
ob

ab
ili

ty
 (

%
)

Inferred probability of cheating

(h) cheatercb1

Fig. 8 Result of Experiment 3. Use different combinations of data set for training and inference. Learn session B and infer session C: cheater
(a) and honest player (b). Learn session B and infer session A: cheater (c) and honest player (d). Learn session C and infersession A: cheater (e)
and honest player (f). Learn session C and infer session B: cheater (g) and honest player (h).

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

timeframe

A
cc

ur
ac

y
(%

)

Aiming accuracy

Figure

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

timeframe

A
cc

ur
ac

y
(%

)

Aiming accuracy

Figure

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

timeframe

A
cc

ur
ac

y
(%

)

Aiming accuracy

Figure

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

timeframe

A
cc

ur
ac

y
(%

)

Aiming accuracy

Figure

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

timeframe

A
cc

ur
ac

y
(%

)

Aiming accuracy

Figure

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

timeframe

A
cc

ur
ac

y
(%

)

Aiming accuracy

Figure

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

timeframe

A
cc

ur
ac

y
(%

)

Aiming accuracy

Figure

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

timeframe

A
cc

ur
ac

y
(%

)

Aiming accuracy

Figure

Ct-1

At-1

Mt-1
p

Mt-1
t

Dt-1

Dt-1

Ct

At

Mt
p

Mt
t

Dt

Dt

time slice t-1 time slice t

Figure

Reply to reviewer 1

Paper Title: Dynamic Bayesian Approach for Detecting Cheats in Multi-Player Online Games

Authors: S.F. Yeung and John C.S. Lui

Thank you for your comments on our paper. Your comments helped us to make our paper

more precise, and also clarify some points which may be confusing to readers. We have made a

moderate revision on the paper. In this reply, we have two sections. Section 1 is a summary of

our revisions on the paper. Section 2 is a reply to the individual questions raised by the reviewer.

Note: all reference number below are based on the original submission, so as to be consistent

with reviewer comments.

1 Summary of revisions

1. Some typo and grammatical errors are corrected.

2. Minor modification on the Abstract to state clearly that our experiment results are based on a
first-person shooter game.

3. A new pagragraph in Section 4.2 to discuss the motivation of our detection scheme.

4. The sub-section Computational Analysis in Section 4.4 is expanded to include more details.

5. Details of the players involved in the experiments are included in the Results section.

6. A new section “Future Work” is added to discuss the ideas of possible enhancements of our
approach.

2 Reply to reviewer’s comment

1. Reviewer: Missed this on the first go around. Section 2 starts with a mistake (MMORPS)

1

* authors' response to reviewers' comments
Click here to download authors' response to reviewers' comments: reply1.pdf

http://www.editorialmanager.com/mmsj/download.aspx?id=3530&guid=bc8e9142-b979-48af-98db-18ff61e89fe3&scheme=1

Reply: Thanks for pointing out the mistake, we have also corrected some other typos and
grammatical errors.

2

Reply to reviewer 2

Paper Title: Dynamic Bayesian Approach for Detecting Cheats in Multi-Player Online Games

Authors: S.F. Yeung and John C.S. Lui

Thank you for your comments on our paper. Your comments helped us to make our paper

more precise, and also clarify some points which may be confusing to readers. We have made a

moderate revision on the paper. In this reply, we have two sections. Section 1 is a summary of

our revisions on the paper. Section 2 is a reply to the individual questions raised by the reviewer.

Note: all reference number below are based on the original submission, so as to be consistent

with reviewer comments.

1 Summary of revisions

1. Some typo and grammatical errors are corrected.

2. Minor modification on the Abstract to state clearly that our experiment results are based on a
first-person shooter game.

3. A new pagragraph in Section 4.2 to discuss the motivation of our detection scheme.

4. The sub-section Computational Analysis in Section 4.4 is expanded to include more details.

5. Details of the players involved in the experiments are included in the Results section.

6. A new section “Future Work” is added to discuss the ideas of possible enhancements of our
approach.

2 Reply to reviewer’s comment

1. Reviewer: I would like to see a discussion of the increased computation load on the server for
the scheme, specifically as it relates to determining the player’s aim point. Under normal oper-
ation a FPS server only needs to do a raycast when a player fires an instant-hit weapon, but for

1

* authors' response to reviewers' comments
Click here to download authors' response to reviewers' comments: reply2.pdf

http://www.editorialmanager.com/mmsj/download.aspx?id=3531&guid=578372d4-0755-4d60-9a00-32090b6a3920&scheme=1

this detection, the FPS server must do a raycast for every player every frame in order to deter-
mine a player’s aiming target. This seems to be the dominant computational cost in the scheme.

Reply: Thanks for your suggestion. We include the following discussion in our revision, in the
sub-section Computational Analysis in Section 4.4.

Let us have a brief discussion on the computational workload of using the proposed scheme
on the server. In commercial games such as counter-strike and Quake, the game clients send
all commands (keyword inputs) to the server. The server runs the simulation of the whole
game because all game states must be authorized by the server before the server broadcasts
the information to other players. Therefore, the server already knows the position and the
aiming direction of all players at each instance of the game. In our proposed method, the
only additional computation requires to perform is to compute the ”distance between a player’s
aiming trajectory and the player’s current target”, we called it the player’s accuracy. This is
to compute the distance between a point and a line which involves a cross-product operation.
Moreover, as we mentioned before, the computation only occurs when there is any visible target,
and the server only needs to trace the accuracy with respect to the current target, until it is not
visible to the player or their distance is beyond a certain threshold. Also, for FPS games the
number of players involved in the same game session typically varies from 8 to 32. Hence, the
computational overhead induced should not be much. Moreover, in practical implementation
one could create an individual queue to store a copy of the user states, and then carries out the
computation of the player’s accuracy and also the Bayesian inference routine in a computational
thread, which is separated from the main server loop so as to reduce the real-time workload on
the server.

2

Reply to reviewer 3

Paper Title: Dynamic Bayesian Approach for Detecting Cheats in Multi-Player Online Games

Authors: S.F. Yeung and John C.S. Lui

Thank you for your comments on our paper. Your comments helped us to make our paper

more precise, and also clarify some points which may be confusing to readers. We have made a

moderate revision on the paper. In this reply, we have two sections. Section 1 is a summary of

our revisions on the paper. Section 2 is a reply to the individual questions raised by the reviewer.

Note: all reference number below are based on the original submission, so as to be consistent

with reviewer comments.

1 Summary of revisions

1. Some typo and grammatical errors are corrected.

2. Minor modification on the Abstract to state clearly that our experiment results are based on a
first-person shooter game.

3. A new pagragraph in Section 4.2 to discuss the motivation of our detection scheme.

4. The sub-section Computational Analysis in Section 4.4 is expanded to include more details.

5. Details of the players involved in the experiments are included in the Results section.

6. A new section “Future Work” is added to discuss the ideas of possible enhancements of our
approach.

2 Reply to reviewer’s comment

1. Reviewer: There are a number of simplifying assumptions made in order to make the solution
tractable. Notably, the dependency on determination of cheating seems to be very specific to a

1

* authors' response to reviewers' comments
Click here to download authors' response to reviewers' comments: reply3.pdf

http://www.editorialmanager.com/mmsj/download.aspx?id=3532&guid=70aec81b-f7ae-4859-91c1-a338a82fded0&scheme=1

FPS game, the exact weapon used in the game and a specific player. For example, accuracy of
a weapon would largely depend upon the precision of the weapon (i.e. a shotgun and machine
gun being less precise than a sniper rifle). In addition, the skill of the player will matter, too, in
terms of accuracy with some being better than others. And the map, where some battles are
all done at a distance and others are all close up. In short, trying to apply a single, acceptable
threshold for cheating to a heterogeneous (in terms of skill and weapon and map) bunch of users
seems like it would fail in many cases. They also provided a weak response to my comment:

The paragraph right before section 4.3 is very speculative. Claiming that an aimbot will ”always”
exhibit some kind of pattern seems hopeful, not based on reason. Saying that a player that
is good must be good at both offense and defense also seems speculative. In my personal
experience, some players have an offensive style of play and may be quite bad at defense, and
vice versa. To make such claims, the authors would need to profile the experience and style of
play of many players.

Basically, they tried to justify including the prose they have. While their reasoning may, indeed,
be sound, their claims read like such results are ”proven” or ”facts”. This is not good science.
It would be much better if their prose was qualified or written as assumptions.

Reply: Thanks for your comment. We have re-written our paper, including the paragraph
right before section 4.3, based on your comment. In particular, we improve the presentation by
adding the following nodes into our Bayesian network, in the Future Work section:

1. weapon - the player’s current weapon
2. map type - discrete values represents close up battle, long range battle or in-between
3. no. visible targets - the number of targets that currently visible to the player
4. action - the player’s current actions, such as dodging, jumping, standing, walking or running
5. skill - a value indicate how good the player should be, discuss below

Since the inspiration of our approach is to imitate how professional administrators detect
cheaters by observation. The motive of adding these new nodes is trying to capture the skill of
the player and capture more information of the whole game. The proposed “skill” node could
be obtained by a centralized method. For example, many popular FPS games have regular
national or international tournaments such as the Cyberathlete Amateur League (CAL) tourna-
ments. From the concern you mentioned, we may think that one of the most critical issue is
to differentiate CAL-level players from cheaters. Since nowadays most popular FPS games use
global login ID to identify players, which can only be obtained by purchase a new copy of the
game. And there exists centralized global databases for all servers to retrieve and save banned
login ID. Therefore, it is possible to query a player’s tournament history according to the global
login ID and determinate the player’s “skill” accordingly.

Also, we have added the following paragraphs at the end of Section 4.2.

To avoid being detected due to its high aiming accuracy, some advanced aimbots may pre-
tend to act as a normal player, either by automatically switches itself on and off periodically,

2

or by creating some intended misses from time to time. However, human players have diverse
behaviors but cheaters using aimbots are very likely to exhibit some kind of patterns in their
cheating behaviors. For example, a skillful player who is good at shooting will adopt a specific
tactic to gain the highest advantage according to the current circumstance and landform of
the virtual world. However, a cheater may exhibit outstanding accuracy but lack the sense of
paying attention to the environment of the virtual world. An experienced administrator can tell
whether a player is skillful or cheating by carefully reviews the recorded game. In most cases
the cheaters would configure the aimbots such that they would perform much better than the
cheaters themselves when they are unassisted. However, if a cheater configures the aimbot to
make only a slight improvement in performance, e.g., by automatically turning on occasionally
or even rarely, there are still clues that one can observe the presences of an aimbot at the very
moment when the aimbot is activating. For example, the most advanced aimbot today is called
the ”charged-type” aimbot, these aimbots are turned off by default but will only activate when
the cheater presses a self-defined hotkey, and then turned off immediately once the cheater re-
leases the hotkey. More advanced aimbots would only activate when the crosshair is sufficiently
close to the target, makes a more natural look therefore harder to detect. These aimbots are
completely unnoticeable in peacetime but may still be caught when they are activated, although
very careful and professional reviews are required. These are the reasons why the most author-
itative cheat detection method used today is still by human observation, and it is especially
important in major tournaments [1] and [17]. Note that above are observations we made in the
FPS type of game. Based on these observations, we are able to make the necessary Bayesian
model to detect aimbot. We believe the proposed approach holds promise in other forms of
games or cheats, although one may need to make some specific observations and derive new
Bayesian models for different types of games.

2. Reviewer: While they did address my comment:

For the results, who where the players? The authors? That seems a biased group. If not, then
how were they solicited? What was there skill and style of play? These comments tie into my
above concerns about the general applicability of this to a wide range of game/player settings.

They only did so in their response. Their prose regarding these details in the paper seems to
be unaltered. Again, this lack of detail is bad science. And, overall, I don’t want the authors
to convince me in their responses. Rather, they should add appropriate text to their paper to
convince the readers of their article.

Reply: Thanks for your comment. We have included the content in the previous reply, i.e. the
details of the players, in this submission as you suggested. We also have a minor modification
on the Abstract to state clearly that our experiment results are based on a first-person shooter
game.

Moreover, as you concerned, and also due to the new nodes proposed above, there is a need
for a new and larger scale experiment. We have once tried to organize a large scale experiment
in Newcastle University, but we hope that we could deploy the Bayesian framework in a public
commercial gaming environment. However, supports from server companies are required and

3

we think that we may not be able to include the new results in this submission.

3. Reviewer: The English needs to be cleaned up before this appears in print. The new text
added is especially problematic in places.

Reply: Thanks for your comment. We have proof-read the paper again for this submission.

4

