Editorial Manager(tm) for Multimedia Systems

Manuscript Draft

Manuscript Number: MMSJ-D-06-00047R2

Title: Dynamic Bayesian Approach for Detecting Cheats in Multi-Player Online Games

Article Type: Original Research Paper

Keywords: Multi-Player Game, Cheat Detection, Bayesian Network

Corresponding Author: Prof. John C. S. Lui,

Corresponding Author's Institution: The Chinese University of Hong Kong

First Author: Siu Fung Yeung

Order of Authors: Siu Fung Yeung; John C. S. Lui

Abstract: Massively multi-player games hold a huge market in the digital entertainment industry. Companies
invest heavily in game developments since a successful online game can attract million of users, and this
translates to a huge investment payoff. However, multi-player online games are also subjected to various
forms of ““hacks" and "“cheats". Hackers can alter the graphic rendering to reveal information otherwise be
hidden in a normal game, or cheaters can use software robots to play the game automatically and thus gain
an unfair advantage. To overcome these problems, some popular online games release software patches
constantly to block ““known" hacks or incorporate anti-cheating software to detect ““known" cheats. This not
only creates deployment difficulty but new cheats will still be able to breach the normal game logic until
software patches or updates of the anti-cheating software are available. Moreover, the anti-cheating
software themselves are also vulnerable to hacks. In this paper, we propose a "“scalable" and "efficient"”
method to detect whether a player is cheating or not. The methodology is based on the dynamic Bayesian
network approach. The detection framework relies solely on the game states and runs in the game server
only. Therefore it is invulnerable to hacks and it is a much more deployable solution. To demonstrate the
effectiveness of the proposed method, we implement a prototype multi-player game system

to detect whether a player is using the "“aiming robot" for cheating or not. Experiments show that we can

effectively detect cheaters in a first-person shooter game with extremely low false positive rate. We believe



the proposed methodology and the prototype system provide a first step toward a systematic study of

cheating detection and security research in the area of online multi-player games.
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Multimedia Systems Journal:

Our Multimedia Systems Journal paper is an extension of
our work "Detect Cheating for Multi-Player Online Games:
Theory, Design and Implementation” appeared in NIME 2006.

We have added the followings into the journal version.

1.

2.

10.

11.

Re-written Section 2 to add more related and background
works.

Background knowledge on the dynamic Bayesian net-
work are added in Section 3, we used a simplified version
of our Bayesian model to illustrate the training process
and the inference process.

. A new pagragraph in Section 4.2 to discuss the motiva-

tion of our detection scheme.

. A new pagragraph in Section 4.4 to discuss more about

the overhead on the game server induced by the detection
routine.

. A new subsection “Multiple Thresholds” is added as Sec-

tion 4.5. New ideas on how to obtain multiple thresholds
and its usage are described.

. A new pagragraph in Section 5.1 to describe the details

of the players involved in the experiments.

. More game states, increased from 6 to 8, are included in

our Bayesian network for the cheat detection. New ex-
periment results are obtained using the new model, and
the results suggest that the new model is more effective
in detecting cheaters.

. In experiment 1 and experiment 2, new figures are in-

cluded to show the aiming accuracy of each player against
time to compare with the probability of cheating.

. New cross-validate experiment in experiment 3. We car-

ried out a cross-validate experiment on all of the datasets
used in experiment 1 and experiment 2, the experiment
shows the effectiveness in detecting cheaters while main-
tains a zero false positive rate.

New scalability experiment in experiment 4. The exper-
iment shows the CPU usage on the game sever against
varies number of connected players. The result shows
that our system is scalable.

New Future Work section to discuss ideas on further im-
provement of our approach.
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Dynamic Bayesian Approach for Detecting Cheats in Multi-Payer
Online Games

Abstract Massively multi-player games hold a huge market ntroduction

in the digital entertainment industry. Companies investhe

ily in game developments since a successful online game can

attract million of users, and this translates to a huge tave§1 2004, multi-player online games generated billions of re
ment payoff. However, multi-player online games are algnue. The Internet Research Report - Online Games 2004
subjected to various forms of “hacks” and “cheats”. Hackel$6] shows that there are nearly 300 online game producers
can alter the graphic rendering to reveal information ethedround the world, with 175 online games and nearly 20 mil-
wise be hidden in a normal game, or cheaters can use st players in the year 2004. Up to September 2005, just the
ware robots to play the game automatically and thus gain @ame World of Warcraft on its own has reached over $700
unfair advantage. To overcome these problems, some populion revenue from monthly subscription fees with more
lar online games release software patches constantlyc¢k bighan four million subscribers worldwide [12].

“known” hacks or incorporate anti-cheating software to de- . . .
tect “known” cheats. This not only creates deployment dif- '™ the virtual world of a multi-player online game, play-

ficulty but new cheats will still be able to breach the no'"s gain utility by interacting with different players aral

mal game logic until software patches or updates of the artri'—e world. Each player can directly control many objects

cheating software are available. Moreover, the anti-éhgat .., tanks, jeeps, planes, battleships, and even subesari
software themselves are also vulnerable to hacks. In tfi L .
ent to the game server. In order to maintain view consis-

aper, we propose a “scalable” and “efficient” method . .
bap brop gncy, the game server needs to process the information and

detect whether a player is cheating or not. The method i h 4 | ithin th rtuakvorl
ogy is based on the dynamic Bayesian network appranﬁ.aySt ese updates to players within the same virtuakvor
that all players will have a synchronized view of the game

The detection framework relies solely on the game sta . . . o
and runs in the game server only. Therefore it is invulner= ]. Usually, each multi-player online game has its specifi

able to hacks and it is a much more deployable solution. %es and regulations, for example, in order to play a game

Fg) in the virtual world, and the actions will be periodigal

demonstrate the effectiveness of the proposed method, & certain level, a pla}[/er ma;r/]_cnoose to dﬁ_strclnwmber N
implement a prototype multi-player game system to det faverage moving avatars (which are graphical representa-

whether a player is using the “aiming robot” for cheatin on of other players in an online_ game), or he/she may opt
or not. Experiments show that the proposed method can _destr_oym numb.er of h'gh moving avatars, whete> m.
fectively detect cheaters on a first-person shooter ganie wi rategizing "?md interacting with o_ther player_s are the f_un
extremely low false positive rate. We believe the propos gt of an o_nl|ne gam:e. Pllatyers gan sa;nsfacncin b>|' ”?OVC'jng
methodology and the prototype system provide a first st m a novice gamei eve tﬁ an tex;?er gljgme evel via de-
toward a systematic study of cheating detection and sgcurit' °Y'Ng Various avatars in the virtual worid.

research in the area of online multi-player games. As in all aspects in life, some players may use various

forms of cheat so as to gain an unfair advantage over honest

SEV players. With the use of cheats, a cheating player may have
.F.oYeun : Fpr H :
Departmegnt of Computer Science & Engineering, The Chinesgedd an overv_vhelmln_g superiority in terms of destroying Other
sity of Hong Kong ’ avatars in the virtual world. As a matter of fact, cheating
E-mail: sfyeung@cse.cuhk.edu.hk in multi-player online games is becoming so common be-
John C.S. Lui cause cheating software are easily accessible on the Inter-
Department of Computer Science & Engineering, The Chinesedr  Net. For example, Blizzard Entertainment once banned tens
sity of Hong Kong of thousand Diablo accounts whose players are believed to
E-mail: cslui@cse.cuhk.edu.hk be cheaters [7].
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Cheating in a first-person shooter gdriseespecially an- we provide the necessary background for Dynamic Bayesian
noying. The fun in playing a first-person shooter game is dfetwork. In Section 4, we present the architecture of our
the extensive and continuous interactions with other plagrototype, as well as our cheat detection mechanism. We
ers, playing against a cheater is an unpleasant experieats® quantify the computational complexity of our cheat de-
since an honest player will have very little chance, if any, itection algorithm. Experiments for showing the effective-
beating the cheater. The cheater will eventually gain enougess and scalability of the proposed method is presented in
points and drive away most honest players from the gan&ection 5. Section 6 concludes.

Rampant cheating will destroy the entertainment value of a

game, then honest players will eventually abandon the game,

which implies that the game Qeveloper who i_n_vesteq hea‘_’ﬂyBackground and Related Work
on the game development will suffer a significant financial

loss. . In this section, we provide some backgrounds on cheats and
Although many first-person shooter games are now ifacks for multi-player online games. We conclude this sec-

corporated with anti-cheating software, which are esainti o, by providing some related work in this area.

pattern scanners, cheating cannot be completely prevented Multi-player online games divide into mainly four cate-

Because the computer or the game console is in the ha”dé&fies, i.e. turn-based gafenassively multi-player online

the cheaters, they can always work around any ant|_—cheatf6g:‘._p|aying game (MMORPG), real-time strategy game (RY,SG

software. Besides using the software patches, online gag; first-person shooter game (FPS). The types of cheat vary

companies also need to employ enough people to moniRsy one category to another category. In here, we survey

the games constantly so as to discover potential cheat€fine common types of cheat in each game category:
For example, some online game servers have administrators

and if they discover some suspicious players, or receive suf Turn-based Gamed:ook-ahead Cheat- a form of cheat
ficient evidencé from other players of accusing someone that let a player be thiast player to make a decision on
for foul play, the administrators have the right to suspend simultaneous actions. The cheater thus can make deci-
a suspicious player from participating in the online game. sion based on the decisions of other players.
Obviously, these types of solutions are labor intensive and MMORPG: (1) Trade Hack - a form of cheat that at-
they are not a scalable and effective solution for detecting tacks the security hole in network transaction. For exam-
cheaters for online games that support thousands of players ple, some MMORPGs allow players to exchange items
Although cheats can be implemented in many different Within the game, but the process may not be atomic such
ways and can perform differently to achieve the same pur- that when playeri disconnects from the network during
pose, these forms of cheat essentially produce similar play the exchange process, playémay be able to receive
ing patterns. In this paper, we propose an efficient and scal- the item from playei5 but disconnects just before player
able solution to automatically detect whether a player is a B receives the item from playet. (2) Item Grabber -
potential cheater or not. In particular, we use the Dynamic @ form of cheat that automatically moves a player closer
Bayesian Network (DBN) approach for our cheat detection to the target item. _
framework. To test the effectiveness of the propose method= RTSG:(1) Map Hack - a form of cheat that reveals hid-
ology, we also develop a prototype multi-player online game den information of a game. Thel chgzater will be able_to
server, and the cheat detection engine is enabled within thereveal the whole map at the beginning of a game, which
game server only. Because our framework relies solely on Otherwise the exploration is a time consuming process.
the ordinary game states, and the detection engine runs in(2) Speed Hack- a form of cheat that change the tim-
the server side only, therefore it is immune from hacks and ing in the client side. It will let the cheater to move and
it is a better deployable solution than the conventionatsof ~gather resources faster than other honest players.
ware patches or human monitoring schemes. We evaluateFPS: (1) Wall Hack - a form of cheat that modifies the
our cheat detection method onfaét-person shootéigame display rendering of a game. The cheater will be able
for the detection of a specific type of cheat called aiming t0 see objects or other players behind opaque objects
robot. We also carry out experiment on several enhance- such as walls. (2ZAiming robot- a form of cheat that
ments of the aiming robot and the results show that our frame-automate the movements of a player. It helps the cheater
work can detect the cheats effectively. to aim accurately by moving the aiming point towards
The remaining of this paper is organized as follows. In & nearby target. This type of cheat is very common in

Section 2, related work on cheat detection or cheat preven- first-person shooter games.

tion for multi-player online game is presented. In Section 3 There are research works on cheat-controlled protocols

that prevent look-ahead cheats. In [5], authors proposed a
L Afirst-person shooter game is a type of game that each plaijfer w
perceive from a first-person perspective view of the virtaild, the 3 A turn-based game is a game where each player plays in turn. A
game concentrates mainly on aiming and shooting with vartgpes  round of game will be over once every player has taken a ttw, t
of weapons and limited ammunition. result of that round will be processed and then all playelisagivance
2 Most online games have built-in support of game recordimg oto the next round of play. Most board games (i.e., chess ghgeiehg
can replay the game from different viewpoints with the releatfile.  to this category.
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lock-step protocol on a distributed game model wherein-plgossible that VAC detects processes that work like cheats,
ers will announce their decisions in cryptographically ssuch as processes that hook on the game client at run-time.
cure one-way hashes as commitments. Only when all pldyhis once caused some problems such as false positive would
ers have announced their commitments, players then revealproduced if a player runs the in-game MP3 player called
their decisions in plaintext. Thus, a cheater cannot gayn adLamp.

advantage by being the last player to make decision. The HLGuard [15], formerly called CSGuard, is a free server-
authors also proposed some optimizations to overcome #ige anti-cheat system for the famous commercial FPS game,
synchronization problems caused. In [6], authors proposdlf-Life, and its many variations such as Counter-Strike.
a scheme that enforces the fair-ordering of the message HeGuard contains a set of anti-cheat features and includes a
livery so that cheating will be restricted to a certain levevall-hack blocking function and an aiming-robot detection
or may even be detected. In [8], author extended the ideautine. However, HLGuard uses a very simple algorithm
so that the cheat-proof protocol can be used in games wiithits aiming-robot detection routine. Basically, it looks

dead reckoning. In [11], authors proposed the use of ryslayers whose kill other players in the way like an aiming
time verification to verify game codes. This approach maintpbot does, such as changes the aiming direction dramati-
targets on cheats that exploit implementation bugs suchcadly within a very short period of time and then stops at
trade-hack in MMORPG, but this approach is not applicaiming a target accurately [1] and [2]. The algorithm is too
ble to cheats that involve modification of client code thaimple that many subsequent aiming robots could not be de-
loads into memory at runtime. In [9], authors proposed thected by HLGuard properly. For this reason, the detection
use of CAPTCHA tests [3] to ensure the participation of hueutine has been disabled by default in the newer releases of
man players in online games. This approach is very effectitree HLGuard.

against the use of fully automated robots. However, the in-

sertion of the CAPTCHA tests can be quite annoying during
the playing of an online game. And this approach is not ap-Bayesian Networks

plicable to cheats whose only assist the human player where

a human player is still involved in the playing. In [14], then this section, we provide a brief introduction of Bayesian
author briefly discussed the disadvantages of statistigal aetwork and its application in detect online game cheating.
proach to cheat detection in the game Quake. However, the A Bayesian network can be viewed as a graphical repre-
detection scheme mentioned simply sort out players whasentation of causal relationships between different evémt
shoot too accurate, but didn't take other attributes or gameneral, a Bayesian network is an acyclic graph that con-
states into account. sists of a set of nodes and a set of directed edges. Each

PunkBuster [4] is the first client-side cheat preventiopPde in a Bayesian network represents a random variable
system for commercial online games. To play an online gafé&:» Which can have discrete or continuous outcomes), and
on a PunkBuster enabled server, the player must install @ch directed edge represents a causal influence from a par-
PunkBuster plug-in into the game client, otherwise the garit nodeX), to its child X.. A node can have more than one
server will refuse the connection. The PunkBuster client pdarent, it implies that the random variabledspendenbn
forms real-time memory scans to search for any known chéB@sy random variables (represented by all the parent nodes)
and hacks. If any cheats or hacks are found, the PunkBudétode can be parent of more than one node, in this case, this
client will report to the PunkBuster server, the cheatet wimplies that the random variable can influence many other
be removed from the game and all other players will geossible random variables (all its children nodes). We Qefln
informed of this violation. However, PunkBuster was onc€ set of parent nodes of asparents(X). The probabil-
rendered nearly useless due to the very fast developmentify©f & nodeX is conditioned on only its parent nodes and
cle of the very famous cheat called OGC. OGC is a mulgonditionally independent on other random variables. We
functional cheat targets for several online FPS games ffty thatP(A|B,C) = P(A|B) if B € parents(A) while
cluding the very famous and popular commercial FPS gafieg parents(A). Thus, the joint probability distribution of
called Counter-Strike [18]. Representatives from Punk&us?a Bayesian network is given by:
asklt(ad fo(; finalmcial antlj de\k/)elopment sup;()jo(rjt from Ci]ountﬁr— P(X1,Xs5,...,X,)

Strike’s developer, Valve, but were turned down. Thus the
involvement oprunkBuster with Counter-Strike was over, 1 (A1 [Parents(X1))P(Xz|parents(Xs))

Currently, PunkBuster is supported on 18 online FPS games:- - - P(Xn|parents(Xy)).

including the well-known Quake series. To illustrate the applicability of this joint probabilityist

After Valve decided to forego PunkBuster, Valve devefribution, let us consider an example in Figure 1(a), which
oped its own anti-cheat system called Valve Anti-Cheat (yAltistrates a Bayesian network that models the causal re-

[19]. All game clients and game servers developed by Vallgionship between three random variabl€$icating(C),

run VAC by default. Valve keeps much of VAC's detectiorDistance(D) and aimingAccuracy(A). In here, the ran-
method secret, but it is believed that VAC uses hash d#em variables heating and Distance are parent nodes of
tection to identify individual cheats. Therefore, new diseaAccuracy. Therefore, whether the player is a cheater or not

must be discovered and added to the VAC database. It is asal his distance from the aiming target can influence the
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outcome of the aiminglccuracy. In this case, the probabil-

ity of the variableAccuracy is dependent upon the values {0'4 G — true

of Cheating and Distance, while the variable€ heating P(C’) =060 = False

and Distance themselves are independent of any random
variable. The joint probability distribution of this Bayas

network is given by: 025 A=1,C = false,D =0
U 0.7 A=0,C = false,D =0
P(Q’D’A) B 5 s 5 5 050 A=1,C = false,D =1
= P(/Nl|p~arfnts(14))P(~C'|pa7’ents(C))P(D|parentS(D)) PAIC.D) = 0.50 ,{1 =0, C:' = false,~D =1
= P(A|C,D)P(C)P(D). 1050 A=1,C = true,D =0
0.50 A=0,C = true,D =0
1.00A=1,C =true,D =1
3.1 Training and Inferring Bayesian Network 0.00 A=0,C =true,D =1
In some situations, the values of both random variailesiracy With the prior probabilities, we can now infer the Bayesian
and Distance are observable and one may want to detei€twork. Assume at a particular instance, we observed that

mine the probability of the variabl@heating given the knowrfhe shooting is accurate (i.ed, = 1) and the player is far
values, i.e.,P(C|A, D). This can be done by inference. Inaway from the target (i.el) = 1). Now we can infer the
ferring a Bayesian network is the task to compute the proprobability of whether the player is cheating or not at that
ability of a node given the values of all other nodes. But b#stance. By Bayes' rule, the probability is given by:
fore one can infer the Bayesian network, one mustknowthep, ~ _ i _ 1 p _

. : P(C=TIA=1,D=1)
prior probabilities of all nodes in the network, these proba-

bilities can be obtained via the training process. _P(A= 1|Ci =T,D = 1P(C = T)Jf(D =1)
SeP(A=1|C,D = 1)P(C)P(D = 1)

| Cheating(C) | Distance(D) | Accuracy(A) || —_ _ P~(A - 1|C: =1,D :~1)P(~ - Tz _
True T T P(A=1|C=T,D=1)P(C=TWP(A=1|C=F,D=1)P(C=F)
True 1 1
True 0 1 = (0.5)(0.4)
True 0 0 (0-5)(0-4) + (0-5)(06)
False 1 1 =0.4.
False 1 0 . . .
False 0 i Therefore, at any particular instance during a game, the&ag
False 0 0 network approach allows us to determine the probability dis
11::‘1536 0 0 tribution of C. That is, whether the player is cheating or not,

arse 0 0 bases on the observed values of other random variables.

Table 1 Data set obtained in the training stage for the Bayesian net-
work in Figure 1(a). (In real cases the valuesiofand A should be

continuous values, this example uses very simple datasetéer un- 3 o Dynamic Bayesian Networks and Inferring
derstanding on the idea.) Information

Although the BN approach can help us to estimate the prob-

Training the network is a task of sampling the values @fbility of whether the player is cheating or not, but the ap-
the variables for a set of test cases. For exampl€ietiting proach has anajor limitation since it can only model the
be a discrete random variable which has two possible odtatic behavior of a player. Note that the outcomes of the
comes, true or false, i.e(; € [true, false]. The variable random variable€’, A and D can be time dependent, there-
aiming Accuracy is a discrete random variable with outfore, a temporal representation is needed so that one can ac-
come of either 1 (accurate) or O (inaccurate), ez [0,1]. curately predict whether the player is a cheater or not.
Finally, Distance is also a discrete random variable which  When random variables take on different values as time
can have the value of either O (i.e. very near to the targethpses while the structure of the inference network resnain
or 1 (i.e. far away from the target), i.& < [0,1]. If we unchanged, the resulting temporal model is callBgaamic
record the values aficcuracy, Cheating and Distance of Bayesian NetworkDBN). Typically, a DBN is composed by
a particular player at a game session, we may obtain a sgilicating the same Bayesian network for different time in
of data such as the one shows in Table 1. Each row of tegvals or time slices. Dependencies not only exist between
table corresponds to a single sampled data. If we count thedes inside the same time slice, but a node within one time
“frequency” of each possible value of the variables and natice may also be dependent on the same node and/or other
malize the frequencies to values between zero and one, megles in previous time slices. To illustrate, consider the e
will get the following probability distributions: ample in Figure 1(b) which illustrates a DBN formed by
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Cheati ng

Ai mi ng
Accur acy

A

time slice t-1 time slice t tine slice t+1
(a) A Bayesian network consists of three ran- (b) A DBN unrolled for three consecutive time slices.
dom variables aimingAccuracy, Cheating
and Distance.

Fig. 1 An example of Bayesian network and Dynamic Bayesian network

replicating the Bayesian network in Figure 1(a) for evenpate ofC, is:
time slices. This enhancement adds a dependency betweerp
O =T)
the random variableCheating(C) in every two adjacent
time slices. In other words, the random variableat timet  — ( T|CO - (CO =T)
depends on the random varialdle_; at time(i—1). +P(Cl = T|CO =F)P (CO =F)

Inferring a DBN is much like inferring a static Bayesian= (0.8)(0.5) + (0.3)(0.5)
network, but one will not infer the whole dynamic Bayesian= 0.55.
network since the state space is large (or infinite) and |t[1_%r the second stage, we update this estimate base on the
computational expensive to deal with an arbitrary large d
namic Bayesian network as time elapses. Instead, one ne%@%erve_d values aficcuracy and Distance (ie., Ay and
to update the probabilities and “roll” the network forwaml a~* for time slicet = 1, which gives:
time elapses. We illustrate this concept with a working ex- P(Cy = T|A; = 1,D; = 0)
ample. Figure 1(b) models the temporal change in the prob-

ability of whether the player is cheating or not, as well a&s th= P(A =1|C =T, Dy = O)P(C T) ( 1= 0)
influence of the random variabte, and D, on the probabil- Zm P(Al - 1|Cl =c1,D1 = O)P( c¢1)P(Dy =0)
ity of the player’s aiming accuracy. B (0.5)(0.55)

Without the loss of generality, the very first time slice  (0.5)(0.55) + (0.5)(0.45)
occurs at = 0 is considered as a special case with the as= 0.38.
sumption that the prior probability’(Co = true) = 0.5 Thjs gives the probability of whether the player is cheating
(i.e., in the beginning, we have no information to determi, not at time slice = 1.
nate whether a player is a cheater or not. So we consider For the second time slice, we estimate the outcont@,of

the case that a player can be honest or cheating with eqyaded on updated probability 6%, this gives:
probabilities). Let say that in the first time slice, we olsger

that the player aims accurately from a short distance, i.e., P(Cy=T)

A; = 1andD; = 0. For the second time slice, we also ob—= P(C, = T|C, = T)P(Cy = T)
serve that the player aims accurately from a long distance, +P(Cy = T|Ol — F)P(Cy = F)
ie., Ay, = 1 and Dy, = 1. Given the outcomes ofi; and
Dy, fort € {1,2} are known, one can infer the probability = (0.8)(0.38) + (0.3)(0.62)
of whether the player is cheating or not on each of these twe 0.49.

time slices. Then we update this estimate based on the observed values
The inference can be carried outtino stagesFor the of A; andDs, this gives:

first stage, we estimate wheth€f is true or not based on 5 = ~

e ~ P(Co=T|A2=1,D3=1

the probability distribution of”;_;. For the second stage, (Cs - [ - ’ ) . -

we improve the estimate @f; based on the observed values_ P(A{: 1|02~: T, D - 1) P(Co — T)P(D: — 1)

of A, andD; at timet. Let us illustrate this concept. > e, P(A2 = 1|Cy = c2, D2 = 1) P(Cy = c2) P(Da =
On the first time slice, estimate the outcomebfbased _ (1.0)(0.49)

on Cy. Note that this estimation is computed based on the (1.0)(0.49) + (0.5)(0.51)
conditional probability distributionP(C;|C;_1). The esti- = 0.66.

1)
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to the game server at every timeframe. When the server re-
ceives these updates from different clients, the game serve
will then broadcast these updates to all players in theafirtu
world so every player can maintain the view consistency.
This type of communication mode is illustrated in Figure
3. Cube clients synchronize at a timeframe of 40ms, or 25

Batch update packet frames per second. Each update from a client includes the

following information (i.e. game states): 1) the positidn o

Gane Server Broadcast all updates the player, 2) the direction and velocity of the player, 3) th

» aiming direction of the player and, 4) the action of the playe

Fig. 3 Updates between playing clients and the game server in Cub@.g- strafing, jumping,. ., etc.

Our cheating detection framework will only rely on these

. . ) . game states. Therefore, the detection framework can reside
Intuitively, the probability that the player is cheatingthre completely on the server side and it does not require any

current time slice increases if the player cheated in the pigogification of the client code. This simplifies the deploy-
vious time slice. This probability is also reinforced by thgyent process since one can easily enhance the detecticerfram

observed evidence that the player can keep a high aimiggyk transparently to the players if a new form of cheating
accuracy even when he moved away from the target ('-%suspected.

D, =0andD, = 1).

[T,
llIIIIlIIIIllIIIllIIII»
[T,

4 Design and Implementation 4.2 Aimbot

In here, we present our framework of cheating detection wf§fmbPot is a very popular type of cheat used in first-person
amulti-player online game engine. To demonstrate the efféooter games. When this form of cheat is enabled, it will
tiveness of the proposed method, we built a prototype ofi@e over the control of the player's mouse pointer and locks
multi-player game system using the open source first-perdhf Players aiming point, which is calleg¢fosshaif, onto
shooter game Cube [13] as our testbed. We choose a sp@earby target. To illustrate the effect on using an aimbot,
cific type of cheat called aiming robot (or aimbot for shortf7igure 4(a) shows a scenario when the aimbot is enabled
This type of cheat is frequently used by various players _@@d.the cheater aims at a target Wh|_Ie the cheater is mov-
gain an unfair advantage. To realize our dynamic detectit} in the virtual world. One can notice that the crosshair
scheme, we also implemented a dynamic Bayesian infereft@!wayslocked onto the aiming target. In contrast, Figure
routine on the game server so that we can infer the probatfb) shows a similar scenario but the player is not using any
ity of cheating for each individual players during a gam@mbot cheat. In this case, one can observe that the crosshai
session. We implemented three of the most common aiff-the honest player may not be able to track the target all
bot variants, and evaluate the adaptiveness of the propotftgitime (i.e., the last three frames in the figure). Based on
detection framework towards these different aimbots. MorBiS scenario, it is easy to observe that when an aimbot is
over, we measure the overhead of the detection framew&¥k@bled, the cheater can easily destroy any target and gain
on the game server so that we can evaluatstaabilityof ~an unfair advantage over other honest players. In general, a

the detection framework. cheater using an aimbot will exhibit very outstanding accu-
racy in aiming and very low, if any, miss rate in any situa-
tions.

4.1 Multi-Player Game Architecture To avoid being detected due to its high aiming accu-
racy, some advanced aimbots may pretend to act as a nor-

In a real-time multi-player online game, all of the playermal player, either by automatically switches itself on affd o

must maintain a consistent view of the game states. The pagriodically, or by creating some intended misses from time
ception of the real-time interaction is achieved by updatirto time. However, human players have diverse behaviors but
the game states among all players frequently. Typicaliyest cheaters using aimbots are very likely to exhibit some kind
updates will be carried out at a fixed time interval calledf patterns in their cheating behaviors. For example, & skil
a timeframe. This is to avoid overwhelming the networful player who is good at shooting will adopt a specific tac-
bandwidth and the processing power of the server. Updatiesto gain the highest advantage according to the current
on multiple game states within the same timeframe will b#rcumstance and landform of the virtual world. However, a
batchedand sent out as a single update packet, and the tygheater may exhibit outstanding accuracy but lack the sense
cal length of a timeframe is in tens of millisecond. Figure @f paying attention to the environment of the virtual world.
illustrates the updates sent from and received by the slieAin experienced administrator can tell whether a player is
over time with a timeframe of 50 ms. skillful or cheating by carefully reviews the recorded game
We used the game Cube as our testbed. Cube emplbymost cases the cheaters would configure the aimbots such
client-server architecture. Each game client sends itatepdthat they would perform much better than the cheaters them-
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—— Player A sends out a batch update packet to server

--------- » Player B sends out a batch update packet to server
—-—-> Player C sends out a batch update packet to server
- Server broadcast the batch update of all players

Fig. 2 Network architecture of multi-player online game: updatest from and received by clients over time with a timefram&0oms.

selves when they are unassisted. However, if a cheater con-In a first-person shooter game, several state information
figures the aimbot to make only a slight improvement iwill certainly influence the aiming accuracy of a player di-
performance, e.g., by automatically turning on occaslgnatectly. For example, when the player is closer to the target,
or even rarely, there are still clues that one can observe the higher the chance the player can hit the target. Also, it
presences of an aimbot at the very moment when the aiim-easier to aim at a static target than a high speed moving
bot is activating. For example, the most advanced aimbatget. Likewise, a player should have a higher aiming accu-
today is called the “charged-type” aimbot, these aimbats aacy when that player is stationary, as compares to a player
turned off by default but will only activate when the cheatexho is aiming while moving at the same time. Certainly, the
presses a self-defined hotkey, and then turned off immedse of an aimbot will affect the aiming accuracy of a player.
ately once the cheater releases the hotkey. More advantedrefore, the probability distribution of a player's aingi
aimbots would only activate when the crosshair is suffityenticcuracyP(A), is dependent on the following random vari-
close to the target, makes a more natural look thereforeshaables:

to detect. These aimbots are completely unnoticeable tepef \yhether the player is cheating or not, which is denoted
time but may still be caught when they are activated, al- by the random variable

though very careful and professional reviews are required. \yhether the player is moving or not, which is denoted by
These are the reasons why the most authoritative cheat de+he random variablas?

tection method used today is still by human observation, ard \yhether the player's aiming target is moving or not, which
itis especially important in major tournaments [1] and [17] ;5 denoted by the random variallé’

Note that above are observations we made in the FBS \hether the player is moving the crosshair or not, which
type of game. Based on these observations, we are able tgjs genoted by the random variatfe and

make the necessary Bayesian model to detect aimbot. Wethe distance between the player and the aiming target,

believe the proposed approach holds promise in other formsyhich is denoted by the random varialie

of games or cheats, although one may need to make soBleine difference irD between this time slice and previous

specific observations and derive new Bayesian models for tjme slice, which is denoted by the random variahl®.

different types of games. 7. the difference iM between this time slice and previous
time slice, which is denoted by the random variabld.

Note that these random variables themselves are not de-
4.3 Our Dynamic Bayesian Network pendent on any other random variables. This is because the
habit and the skill of the player and also the environment of
The overview of the DBN we used for our experiments is ithe virtual world, such as the landforms and location of spe-
lustrated in Figure 5. In this section, we explain the detaifil cial items, will dominate the activities of a player. It mean
our dynamic Bayesian network and discuss how the netwdHat the input of a player is normally not dependent on other
can be used to detect the use of an aimbot. outcomes in a game session. For this reason, we model the
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Fig. 4 (Left) consecutive frames when a cheater using an aimbongiat a target. The ‘+' mark at the center is the aiming poaiteti
‘crosshair’. Notice that the crosshair aims the target eately even the player is moving during these five framegi{ficonsecutive frames
when an honest player aiming at a target. The player tryingrtothe target but is not accurate since the player is movingnd these five
frames.

above parameters themselves as independent random \aa$s. We make this dependency because a cheater may want
ables. Moreover, we model the aiming process as a first tw-enable the aimbot in a time slice but disable the aimbot in
der Markov process. Because aiming is a fine tuning procet® following time slice. This allows us to capture the featu
once a player aimed accurately, probably only small adjust-an advanced aimbot which we mentioned previously.
ments are required to keep the accuracy. It means that the
probability distribution of a player's accuracy on a cartai
time slicet is dependent on the player’s accuracy on the prg=4 Training and Inference
vious time slicer — 1.

Also, the change in probability of whether the player i8ll of the random variables we need to infer the probabil-
cheating or not is also modeled as a first order Markov prity of cheating, i.e.C, M?, Mt, P, D, AD, AA, can be
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obtained directly, or derived from the game states conthine
in the update packets by various players. For example, grver Loop
comparing the current position and the latest recorded fo- while (gameover == false)

sition of a player, we know whether the player is moving. for each player(Y

or not. During a game session, a player will meet differet playerStates = receiyglayer stateupdate();
targets in the virtual world, and it is very common to meet // stage 1 computation based on Eq. (1)

more than one target at the same time. We define a playér’s pPredict = cptCheating[cheating] * pCheating[t-1]
current target as the latest target the player’s crosshai h + cptCheating[!cheating] * (1.0 - pCheating]t-1]);
ered over. To illustrate, let playet's crosshair hovered over // stage 2 computation based on Eq. (2)

player B, then for playerd, Target , = B until playerd’s 5. T = cptAccuracy[playerStates][cheating]
crosshair hovered over another player or plagebecame * pPredict;

invisible to playerA. The variables Distanceé)) and Accu- 6. F = cptAccuracy[playerStates][!cheating]

racy (4) are both derived against this current target. Also, for * (1.0 - pPredict),

those random variables having continuous values, i.e. Dfs- pCheating[t] = T/ (T + F);

tance () and Accuracy {), we discretize them into a finite 8.

field. Therefore, in training the dynamic Bayesian networR, timeframe++;

we need to consider the following random variables whicl0. }
take on the following values:

1. Cheating ), with C' € [true, false],

2. Player moving {/?) with M? € [true, false], _ _

3. Target moving §/*) with M* € [true, false], Computational AnaIyS|s: Based on the above_pseudo—code,

4. Moving crosshairf P), with AP € [true, false], we see that to estimate the cheating probability, we reguire

5. Distance from the aiming targgdj, with D € [0,1,2, 3] total of nine floating point operations (from line 4 to line 8)
in which larger the value implies further away is the digPer player within each time slice. One can easily see that
tance, this is a light weighted computation. Assuming that each
Change inD (AD), with AD € [0,1,2,3], time slice is 40 ms, i.e. 25 frames per second, this implies

No

. Aiming accuracy 4) with A € [0, 1,2, 3] in which the that to detect 100,000 simultaneous players, it only reguir
lower the value implies higher is the aiming accuracy* 25+ 100,000 = 22, 500, 000 floating point operations per
and, second. Using a P4 2.0GHz server as an example, which can

8. Change iM (AA) with AA € [0,1,2,3]. perform about one billion floating point operations per sec-
i ) _ond, therefore the overhead to detect 100,000 simultaneous
Using these data, one can compute the following Prigfayers uses only 22.5% of the CPU capacity.

probability distributions: For example, in commercial games such as counter-strike
1. P(C;|Cy—1), and and Quake, the game clients send all commands (keyboard
2. P(Ay|Ai—1,Ce, MF, M}, Py, Dy, ADy, A A, inputs) to the server. The server runs the simulation of the
whole game because all game states must be authorized by
the server before the server broadcasts the information to
other players. Therefore, the server already knows the posi
: tion and the aiming direction of all players at each instance
gqually likely to be a cheater_or an hpnest player). For egghiye game. In our proposed method, the only additional
time slicet, the inference carries outin two stages: o tation requires to perform prior to the Bayesian infer
Stage 1:estimates the outcome 6f; based onC;,, this  ence routine is to compute the “distance between a player’s
estimation can be carried out by the following equation: aiming trajectory and the players current target’, i.be t
P(Cy =T) playgr’s accuracy. That i§, to compute the distance betvyeen
= P(C. = T|C11 = T)P(Cios = T) Voreover. 2 we mentioned before, he. competaton only
, , putation only
+P(Cy =T|Cy—1 = F)P(Cr—1 = F) occurs when there is any visible target, and the server only
needs to trace the accuracy with respect to the current tar-
et, until it is not visible to the player or their distance is
eyond a certain threshold. Also, for FPS games the num-

Inferring the probability of cheating for any particulaager
follows the following steps. At the very first time slice wieer
t = 0, we initialize P(Cy = true) to 0.5 (i.e., a player is

Stage 2:updateg’; with all of the evidences at time sli¢e
This computation can be carried out by the following equ

tion: ber of players involved in the same game session typically
P(Cy = true| Ay, Ay—1, M, M}, Py, Dy, ADy, AAy) varies from 8 to 32. Hence, the computational overhead in-
P(aglas_1,Cy,mP,mt, py, dy, Ndy, Aay)P(Cy = true) duped should r}gt be much. I_\/I(()j(e_(()jverl, in practical implemen-

= alse - tation one could create an individual queue to store a copy
Sl e Pladlas, Co = ¢;mf, mf, Ady, i) P(Cy = o) of the user states, and then carries out the computation of
The pseudo-code to perform this inference computatitime player’'s accuracy and also the Bayesian inference rou-

on the game server is as follows: tine in a computational thread, which is separated from the
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main server loop so as to reduce the real-time workload on Type Ill: The third aimbot we built is the most advanced

the server. one, it will create intentional misses for some random
time intervals which vary from 0.5 seconds to 2 seconds.
The aimbot pretends to miss like a human player by ex-

4.5 Multiple Thresholds hibits a smooth fluctuation of the crosshair around its tar-
get.

Using a higher threshold value can ensure zero false pos- . .
9 g b We carried out ten separated game sessions. There are

itive rates, however, the system will then be less sensitiv tal of sixt | The ol include eight stud
to cheaters. On the other hand, using a lower threshold vafhe[f al of sixteen piayers. The piayers inciude eignt studen

can filter out most potential cheaters but false positivescco volunteers and eight gamemates of the authors. They range

be annoying to the players and server administrators. Henfégm naive players to above-average players, most are aver-

instead of using a single threshold, it may be more praﬁ’le Ievctjeltplay?rs. We arranged the data into three data sets.
tical to have multiple thresholds in real-life situations. €se dala Sets are.

the training session, we could divide players into différen_ pata setd, there are three honest players (hgy, hao,
groups according to their playing skills, such as grouping h,s) and three cheaters (i.€,1, cas, ca3) Using the basic
them into average players, advanced players and experts.aimhot (the type | aimbot mentioned above). Note that
Then, for each of the groups, we obtain a separate thresh-ne gata sett is used for training the DBN.

old value by training the Bayesian Network with the corre-_ pata setB, there are three honest players (hg., by,
sponding data set. The more skillful the players in the group hys) and three cheaters (i.@, cy2, cp3) Using the basic
the higher the obtained threshold value should be. aimbot.

In real-life situations, players often join ongoing game_ pata setC, there are three honest players (he., hes,
sessions in public servers without knowing who are the other hes), three cheaters (i.ex.1, cq2, cc3) using the auto-
players, it is very common that a mixture of players with  syitching aimbot (the type 1l aimbot mentioned above)
different skill levels playing together. A server adminggor and three cheaters (i.€,4, cq5, cqs) USINg the most ad-

may like to configure the system such that different alerts \anced aimbot (type 11l aimbot mentioned above).
will be triggered when a player’s inferred probability ex-

cesses different thresholds. For example, when the proba-During session A, no inference is carried out, but the data
bility excesses the first threshold, the player will be lafjgecollected are used for the training of our Bayesian Network.
but no action will be taken. However, when the probabile have modified the game client such that each time when
ity excesses the second threshold, an alarm will be sentatpaimbot is activated or deactivated, it is logged alond wit
the administrator and gameplay recording will be enforcedther game states. We then use dataébd compute the

If the last threshold has been reached, the player would tie prior probabilities mentioned in Section 4.4, i.e.

flagged as cheater and be removed from the game 'mmef."P(Ct|Ct_1), and

ately: 2. P(Ae| A1, Cy, M M}, P, Dy, ADy, AAy),
During game session B and C, inference takes place in
5 Results real time. At each time frame, the system updates the prob-

ability of cheating for each of the players. Note that we also
We have implemented three different aimbots for Cube. Wiegged the states of each player into files, which can later
the aimbot is enabled, it will find the nearest target and aip¢ used for offline training or offline inference. Hence, we
at it accurately. The aimbot will keep on aiming at the cugan also train and infer the data with different combination
rent target even there is a nearer target, until the dista@ce (cross validation) in an offline manner.

tween the player and the current target is larger than ainer.tExperiment 1 - Effectiveness to Detect Cheatingtn this

threshold. If there is only one visible target, the aimbdt wi ; . . . .
then keep on aiming this target until the target is invistble experiment, we investigate the ability to detect cheatéstew
produce no false positive for honest players. We use the data
the player. etA as the training data and then infer the data/3efFig-
The three aimbots perform similar to the most commozwre 6 shows the p?obability of cheating over time forgeach
aimbots of first-person shooter games. They are: of the six players in the data s& Note that Figure 6(a)-
— Type |: The first one is the most popular and basic onég;) correspond to cheaters while (d)-(f) correspond to kbne
when enabled, it will aim at its target continuously. players. The threshold line in each sub-figure corresponds
— Type Il: The second aimbot we built will automaticallyto the highest probability ever reached by an honest player,
switch itself on and off for a random time interval whichwhich is obtained in the training section.
vary from 0.5 seconds to 2 seconds. The human player Actually, the game sessions each lasted for 10 minutes,
will temporary take over the control during the off pebut the figures are zoomed into the first 500 frames of the
riods. The justification for this feature is to reduce thplays, i.e. 20 seconds, so that more details can be observed
aiming accuracy so that it is difficult to be detected asfeom the figures. For most of the time, the probability of an
cheater. honest player keeps well below the threshold. On the other
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hand, the probability of a cheater can fluctuate above tlimeframes, itis being detected shortly after it aimed ara t
threshold quite frequently, which indicates that the mdthoget accurately. ¢, From other results, we can also obserie tha
ology is quite effective in detecting the use of aimbot. many times the probability rises above the threshold shortl
There exists some time periods where a cheater is haviféer the aiming accuracy goes high. It is because "aims
a low probability of cheating, this probably occurs when th@ake by aimbots” are being detected. For the results corre-
cheater does not have any visible target to aim at. It is cofponding to the honest players, there are also sometimes the
mon that only half of the time a player will have a visibl@iming accuracy rises sharply such as near the 400th time-

target nearby, and this effect is magnified when the virtuime in Figure 6(k). However, the probability of cheating
world is a large one. still keeps below the threshold. This is because not only the

One may think that the detection can be improved b'%jming accuracy, but also other game states, influences the

only counting the data when a player has any visible targdtference result.

Unfortunately, for most of the first-person shooter game, t xperiment 3 - Cross Validation: In this experiment, we

game server does not contain the information of static alidate our results by training and inferring with diffate

jects insid_e the virtgql y\_/orld, and this information is regd combinations of data sets. We first train with dataBetnd
to determine the visibility between any two players. Evenf fer data set, then train with data s&8 and infer data set

we incI_ude this info_rmation, the computation will be V€4, and so on. Figure 8 shows the probability of cheating over
expensive and thus it is not a scalable method. !

time for each test case. We use the same threshold for all the

Experiment 2 - Adaptiveness to Auto-switching and In- test cases in_determining whether the player is a che_ater or
tentional Misses:In this experiment, we investigate the abil10t: ¢From Figure 8, we see that even when we use different

ity to detect cheaters who use either one of the two more & Set as training, the methodology is still effectiveén d

vanced aimbots, that is, they either perform auto-swighit€Mining whether a player is using the aimbot or not. The

(turns on and off itself alternately), or by intentionallygs- nferred probability of a cheater fluctuates above the tiwres
ing the current target. We still use the data.dets the train- old while the inferred probability of an honest player keeps

ing data and then infer the data €&t Figure 7 shows the PEIOW the threshold.

probability of cheating over time for each player in data S@xperiment 4 - Scalability of using the Inference Engine:
C. _ o In this experiment, we investigate the overhead of the dy-
_For the same reason that there is no visible target, theygmic Bayesian inference routine on the game server. We
exists time periods that the probability drops far below th@easure the maximum CPU load on the game server from
threshold. However, we look into the time frame from 350 tgne player to ten players. We first carry out the measurement
450 in Figure 7(a). During this period, the probability keepon an original Cube server. We then repeat the measurement
beyond the threshold for 100 timeframes,100/25 = 4 on the Cube server with an added dynamic Bayesian infer-
seconds, while the aimbot is switching on and off periodénce routine. Figure 9 shows the percentage of CPU usage
cally at random intervals. The probability does not dropreveygainst the number of connected players on the Cube server
the aimbot is switched off, this is because aiming the targgfning on a P4 2.4GHz machine with 512MB memory. Al-
becomes much easier with the periodic assistance from thgugh the CPU loading of the original Cube server is not
aimbot. linear to the number of connected clients, this is probably b
We also look into the time frame from 0 to 150 in Figureause the Cube server is not optimized in its performance, as
7(d). During this period, the probability fluctuates arouniis mentioned in the Cube’s documentation. However, com-
the threshold for 150 timeframes, ©50/25 = 6 seconds, pares the modified server running the Bayesian inference
while the aimbot is creating intentional misses at about oneutine to the original server, there is only a constant fac-
second intervals. The probability drops when the aimbosessr induced by the Bayesian inference routine. This suggest
its target, however, it rises again when the aimbot aimsthat the inference algorithm is scalable on massive meltipl
its target in later time frames. The results suggest that qayer online games where the number of connected players
methodology can effectively detect the use of an aimbot evper server is of the order of thousands.
if the aimbot has the advanced feature to switch automati-
cally and miss intentionally.
The results also suggest that our methodology actualy
learns and detects “how do aimbots aim”. For example, @t-uture Work
around the 250th timeframe in Figure 7(k), the aiming accu-
racy rises from zero to nearly 100% and then drops backThe proposed approach in this paper is applied on a FPS
zero in a period of around 25 timeframes (i.e. 1 second).game, although it may be specific to this type of game, we
indicates that the aimbot is in action and at the same timdalieve the methodology holds promise and open doors for
visible target exists. Referring to the correspondingrirefe new detection method for other types of games. For exam-
resultin Figure 7(e), the probability of cheating risesrpha ple, based on the Bayesian network used in the Section 5,
at the same moment when the aiming accuracy rises. These-may be able to further enhanced the effectiveness of our
fore, even though the aimbot is only activated for about Z8heme on FPS games by adding more nodes into the Bayesian




O©CO~NOOOTA~AWNPE

Dynamic Bayesian Approach for Detecting Cheats in Muléiy@r Online Games 13

Server side cpu usage vs number of connected players 7 Conclusions
100 T T T ;

— With Bayésian inférence rbutine L
90 —— Original server Our work is the first attempt of using statistical inference
in cheat detection. Different from HLGuard, our approach
makes use of machine learning to capture the behaviors of
70t 1 different aimbots. Moreover, our Bayesian model includes a
variety of available game states so that the variationsén th
player’s performance could also be taken into account in the
50t 1 inference. Our experimental results show that the Dynamic
Bayesian Network is an effective and scalable solutionén th
detection of the aiming robot cheat for a first-person shoote
30+ 1 multi-player online game. Our framework only relies on the
sl | game states observed in the server side, therefore, cheater
/ cannot hack the detection system like hacking a cheat scan-
101 - 1 ner software on the client side. The st_atistical approach ha
the advantage that one does not require to perform software
1 2 3 4 5 6 7 8 9 10 updates on the client side so as to detect new released cheats
number of connected players and the same methodology can be used to detect other cheats
Fig. 9 % of CPU loading on a Cube server running on P4 2.4GHaf the same category, because these cheats exhibit similar
machine with 512MB memory. behavior (e.g., high aiming accuracy in all circumstancgs b
lack of relevant tactics). We believe the proposed methodol
ogy and the prototype system provide a first step toward a
systematic study of cheating detection and security rekear
network, for example: in the area of multi-player online games.

Although in this paper we focus on the detection of aim-
bots, we believe the same approach is capable on other types
of cheat that exhibit similar patterns. For example, a @reat
using a map-hack in a RTSG game would go straightly to-

80 b

60 b

cpu usage (%)

40r 1

1. weapon - the player’s current weapon, ward important items before the cheater has already explore
2. map type - discrete values represent close up battle, IaRgir locations; a cheater using a wall-hack in a FPS game
range battle or in-between, would likely to aim around the corners frequently and shoot
3. number of visible targets - the number of targets that ciinmediately when a target appears. As long as one can de-
rently visible to the player, scribe the behavior of a cheat in terms of the game states,
4. action - the player’s current action, such as dodgingpjurihen it is possible to construct a proper Bayesian Network
ing, standing, walking or running, to learn and then to detect such cheat. This type of enhance-

5. skill - a value indicate how good the player should besent is our on-going research work.
discuss below.
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* authors' response to reviewers' comments
Click here to download authors' response to reviewers' comments: replyl.pdf

Reply to reviewer 1

Paper Title: Dynamic Bayesian Approach for Detecting Cheats in Multi-Player Online Games
Authors: S.F. Yeung and John C.S. Lui

Thank you for your comments on our paper. Your comments helped us to make our paper
more precise, and also clarify some points which may be confusing to readers. We have made a
moderate revision on the paper. In this reply, we have two sections. Section 1 is a summary of
our revisions on the paper. Section 2 is a reply to the individual questions raised by the reviewer.

Note: all reference number below are based on the original submission, so as to be consistent
with reviewer comments.

1 Summary of revisions

1. Some typo and grammatical errors are corrected.

2. Minor modification on the Abstract to state clearly that our experiment results are based on a
first-person shooter game.

3. A new pagragraph in Section 4.2 to discuss the motivation of our detection scheme.
4. The sub-section Computational Analysis in Section 4.4 is expanded to include more details.
5. Details of the players involved in the experiments are included in the Results section.

6. A new section “Future Work” is added to discuss the ideas of possible enhancements of our
approach.

2 Reply to reviewer’s comment

1. Reviewer: Missed this on the first go around. Section 2 starts with a mistake (MMORPS)


http://www.editorialmanager.com/mmsj/download.aspx?id=3530&guid=bc8e9142-b979-48af-98db-18ff61e89fe3&scheme=1

Reply: Thanks for pointing out the mistake, we have also corrected some other typos and
grammatical errors.



* authors' response to reviewers' comments
Click here to download authors' response to reviewers' comments: reply2.pdf

Reply to reviewer 2

Paper Title: Dynamic Bayesian Approach for Detecting Cheats in Multi-Player Online Games
Authors: S.F. Yeung and John C.S. Lui

Thank you for your comments on our paper. Your comments helped us to make our paper
more precise, and also clarify some points which may be confusing to readers. We have made a
moderate revision on the paper. In this reply, we have two sections. Section 1 is a summary of
our revisions on the paper. Section 2 is a reply to the individual questions raised by the reviewer.

Note: all reference number below are based on the original submission, so as to be consistent
with reviewer comments.

1 Summary of revisions

1. Some typo and grammatical errors are corrected.

2. Minor modification on the Abstract to state clearly that our experiment results are based on a
first-person shooter game.

3. A new pagragraph in Section 4.2 to discuss the motivation of our detection scheme.
4. The sub-section Computational Analysis in Section 4.4 is expanded to include more details.
5. Details of the players involved in the experiments are included in the Results section.

6. A new section “Future Work” is added to discuss the ideas of possible enhancements of our
approach.

2 Reply to reviewer’s comment

1. Reviewer: | would like to see a discussion of the increased computation load on the server for
the scheme, specifically as it relates to determining the player's aim point. Under normal oper-
ation a FPS server only needs to do a raycast when a player fires an instant-hit weapon, but for


http://www.editorialmanager.com/mmsj/download.aspx?id=3531&guid=578372d4-0755-4d60-9a00-32090b6a3920&scheme=1

this detection, the FPS server must do a raycast for every player every frame in order to deter-
mine a player's aiming target. This seems to be the dominant computational cost in the scheme.

Reply: Thanks for your suggestion. We include the following discussion in our revision, in the
sub-section Computational Analysis in Section 4.4.

Let us have a brief discussion on the computational workload of using the proposed scheme
on the server. In commercial games such as counter-strike and Quake, the game clients send
all commands (keyword inputs) to the server. The server runs the simulation of the whole
game because all game states must be authorized by the server before the server broadcasts
the information to other players. Therefore, the server already knows the position and the
aiming direction of all players at each instance of the game. In our proposed method, the
only additional computation requires to perform is to compute the " distance between a player's
aiming trajectory and the player's current target”, we called it the player's accuracy. This is
to compute the distance between a point and a line which involves a cross-product operation.
Moreover, as we mentioned before, the computation only occurs when there is any visible target,
and the server only needs to trace the accuracy with respect to the current target, until it is not
visible to the player or their distance is beyond a certain threshold. Also, for FPS games the
number of players involved in the same game session typically varies from 8 to 32. Hence, the
computational overhead induced should not be much. Moreover, in practical implementation
one could create an individual queue to store a copy of the user states, and then carries out the
computation of the player’s accuracy and also the Bayesian inference routine in a computational
thread, which is separated from the main server loop so as to reduce the real-time workload on
the server.
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Click here to download authors' response to reviewers' comments: reply3.pdf

Reply to reviewer 3

Paper Title: Dynamic Bayesian Approach for Detecting Cheats in Multi-Player Online Games
Authors: S.F. Yeung and John C.S. Lui

Thank you for your comments on our paper. Your comments helped us to make our paper
more precise, and also clarify some points which may be confusing to readers. We have made a
moderate revision on the paper. In this reply, we have two sections. Section 1 is a summary of
our revisions on the paper. Section 2 is a reply to the individual questions raised by the reviewer.

Note: all reference number below are based on the original submission, so as to be consistent
with reviewer comments.

1 Summary of revisions

1. Some typo and grammatical errors are corrected.

2. Minor modification on the Abstract to state clearly that our experiment results are based on a
first-person shooter game.

3. A new pagragraph in Section 4.2 to discuss the motivation of our detection scheme.
4. The sub-section Computational Analysis in Section 4.4 is expanded to include more details.
5. Details of the players involved in the experiments are included in the Results section.

6. A new section “Future Work” is added to discuss the ideas of possible enhancements of our
approach.

2 Reply to reviewer’s comment

1. Reviewer: There are a number of simplifying assumptions made in order to make the solution
tractable. Notably, the dependency on determination of cheating seems to be very specific to a


http://www.editorialmanager.com/mmsj/download.aspx?id=3532&guid=70aec81b-f7ae-4859-91c1-a338a82fded0&scheme=1

FPS game, the exact weapon used in the game and a specific player. For example, accuracy of
a weapon would largely depend upon the precision of the weapon (i.e. a shotgun and machine
gun being less precise than a sniper rifle). In addition, the skill of the player will matter, too, in
terms of accuracy with some being better than others. And the map, where some battles are
all done at a distance and others are all close up. In short, trying to apply a single, acceptable
threshold for cheating to a heterogeneous (in terms of skill and weapon and map) bunch of users
seems like it would fail in many cases. They also provided a weak response to my comment:

The paragraph right before section 4.3 is very speculative. Claiming that an aimbot will " always”
exhibit some kind of pattern seems hopeful, not based on reason. Saying that a player that
is good must be good at both offense and defense also seems speculative. In my personal
experience, some players have an offensive style of play and may be quite bad at defense, and
vice versa. To make such claims, the authors would need to profile the experience and style of
play of many players.

Basically, they tried to justify including the prose they have. While their reasoning may, indeed,
be sound, their claims read like such results are " proven” or "facts”. This is not good science.
It would be much better if their prose was qualified or written as assumptions.

Reply: Thanks for your comment. We have re-written our paper, including the paragraph
right before section 4.3, based on your comment. In particular, we improve the presentation by
adding the following nodes into our Bayesian network, in the Future Work section:

weapon - the player’s current weapon

map type - discrete values represents close up battle, long range battle or in-between

no. visible targets - the number of targets that currently visible to the player

action - the player’s current actions, such as dodging, jumping, standing, walking or running
skill - a value indicate how good the player should be, discuss below

O W=

Since the inspiration of our approach is to imitate how professional administrators detect
cheaters by observation. The motive of adding these new nodes is trying to capture the skill of
the player and capture more information of the whole game. The proposed “skill” node could
be obtained by a centralized method. For example, many popular FPS games have regular
national or international tournaments such as the Cyberathlete Amateur League (CAL) tourna-
ments. From the concern you mentioned, we may think that one of the most critical issue is
to differentiate CAL-level players from cheaters. Since nowadays most popular FPS games use
global login ID to identify players, which can only be obtained by purchase a new copy of the
game. And there exists centralized global databases for all servers to retrieve and save banned
login ID. Therefore, it is possible to query a player’s tournament history according to the global
login ID and determinate the player's “skill” accordingly.

Also, we have added the following paragraphs at the end of Section 4.2.

To avoid being detected due to its high aiming accuracy, some advanced aimbots may pre-
tend to act as a normal player, either by automatically switches itself on and off periodically,



or by creating some intended misses from time to time. However, human players have diverse
behaviors but cheaters using aimbots are very likely to exhibit some kind of patterns in their
cheating behaviors. For example, a skillful player who is good at shooting will adopt a specific
tactic to gain the highest advantage according to the current circumstance and landform of
the virtual world. However, a cheater may exhibit outstanding accuracy but lack the sense of
paying attention to the environment of the virtual world. An experienced administrator can tell
whether a player is skillful or cheating by carefully reviews the recorded game. In most cases
the cheaters would configure the aimbots such that they would perform much better than the
cheaters themselves when they are unassisted. However, if a cheater configures the aimbot to
make only a slight improvement in performance, e.g., by automatically turning on occasionally
or even rarely, there are still clues that one can observe the presences of an aimbot at the very
moment when the aimbot is activating. For example, the most advanced aimbot today is called
the "charged-type” aimbot, these aimbots are turned off by default but will only activate when
the cheater presses a self-defined hotkey, and then turned off immediately once the cheater re-
leases the hotkey. More advanced aimbots would only activate when the crosshair is sufficiently
close to the target, makes a more natural look therefore harder to detect. These aimbots are
completely unnoticeable in peacetime but may still be caught when they are activated, although
very careful and professional reviews are required. These are the reasons why the most author-
itative cheat detection method used today is still by human observation, and it is especially
important in major tournaments [1] and [17]. Note that above are observations we made in the
FPS type of game. Based on these observations, we are able to make the necessary Bayesian
model to detect aimbot. We believe the proposed approach holds promise in other forms of
games or cheats, although one may need to make some specific observations and derive new
Bayesian models for different types of games.

. Reviewer: While they did address my comment:

For the results, who where the players? The authors? That seems a biased group. If not, then
how were they solicited? What was there skill and style of play? These comments tie into my
above concerns about the general applicability of this to a wide range of game/player settings.

They only did so in their response. Their prose regarding these details in the paper seems to
be unaltered. Again, this lack of detail is bad science. And, overall, | don’t want the authors
to convince me in their responses. Rather, they should add appropriate text to their paper to
convince the readers of their article.

Reply: Thanks for your comment. We have included the content in the previous reply, i.e. the
details of the players, in this submission as you suggested. We also have a minor modification
on the Abstract to state clearly that our experiment results are based on a first-person shooter
game.

Moreover, as you concerned, and also due to the new nodes proposed above, there is a need
for a new and larger scale experiment. We have once tried to organize a large scale experiment
in Newcastle University, but we hope that we could deploy the Bayesian framework in a public
commercial gaming environment. However, supports from server companies are required and



we think that we may not be able to include the new results in this submission.

3. Reviewer: The English needs to be cleaned up before this appears in print. The new text
added is especially problematic in places.

Reply: Thanks for your comment. We have proof-read the paper again for this submission.



