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Accurate identification of network applications is important for many network activities.
The traditional port-based technique has become much less effective since many new
applications no longer use well-known fixed port numbers. In this paper, we propose a
novel profile-based approach to identifying traffic flows belonging to the target applica-
tion. In contrast to the method used in previous studies, of classifying traffic based on sta-
tistics of individual flows, we build behavioral profiles of the target application, which
describe dominant patterns in the application. Based on the behavior profiles, a two-level
matching method is used to identify new traffic. We first determine whether a host partic-
ipates in the target application by comparing its behavior with the profiles. Subsequently,
we compare each flow of the host with those patterns in the application profiles to deter-
mine which flows belong to this application. We demonstrate the effectiveness of our
method on-campus traffic traces. Our results show that one can identify popular P2P appli-
cations with very high accuracy.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

The accurate identification of network applications is
important in many areas such as network planning, quality
of service (QoS) and access control. To identify network
applications, the simplest method is to use transport-layer
port numbers, since many services are supposed to run on
well-known ports. Today, however, this traditional port-
based technique has become less accurate for many rea-
sons. For instance, some new applications, such as P2P
applications, do not rely on predefined well-known ports.
Another reason is that firewalls block some unauthorized
or unknown applications, so some applications are tun-
neled through port 80 in order to circumvent firewalls. An-
other approach is payload-based analysis, which searches
packet payloads for the signatures of known applications.
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This approach is employed in some commercial network
management products. However, finding appropriate sig-
natures and maintaining up-to-date signatures for various
applications are daunting tasks. Moreover, the payload-
based method is ineffective when traffic is encrypted.

Today, peer-to-peer applications have grown to repre-
sent a large proportion of Internet traffic. P2P traffic iden-
tification is especially important in network management
since many P2P applications are bandwidth-intensive.
Yet, P2P applications are even harder to identify than the
traditional network applications because of their complex-
ity. Furthermore, some newer-generation P2P applications
are incorporating various strategies to avoid detection.

Recently, some novel approaches [9,19,21] have tried to
classify network traffic by relying on statistical observations
of the flows. These approaches develop discriminatory cri-
teria based on statistical observations (such as the packet
size distribution per flow, flow duration, and the statistics
of the inter-arrival times between packets in flows, etc.),
and then employ clustering, classification and other ma-
chine learning techniques to classify the traffic. These meth-
ods provide a promising alternative for traffic classification.
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There are two challenges in identifying P2P applications
using flow properties. First, different flows in the same
application may have different flow statistics, since P2P
applications are usually complicated. For example, in the
P2P file-sharing applications, some flows are used to get
peer information, other flows are to negotiate between
peers, and other flows are involved in the actual file trans-
fer. These various kinds of flows have different statistical
properties and even different transport protocols. Second,
some flows in the given application do not have obvious
and specific flow statistics. If we only look at per-flow sta-
tistics, these flows are very similar to some flows in other
applications.

In this paper, we propose a new approach to identify
P2P applications that has three new properties. These three
properties can improve the accuracy of identifying P2P
applications.

� Profile-based. In addition to observing statistics of indi-
vidual flows, we build profiles for a given application,
which describe the communication patterns of this
application. Comparing a host’s behavior with the pro-
files is equivalent to looking at properties of multiple
flows of this host, which contain more information than
a single flow.

� Two-level matching. The first level determines whether
a host participates in a given application by comparing
its behavior with the profiles of this application. Since
a host may take part in different applications at the
same time, we then determine in the second level which
flows belong to this application and which do not.
Although flows in different applications may have simi-
lar statistics, two-level matching can reduce the rate of
false positives.

� Flow correlation. Since some flows do not have peculiar
per-flow statistics, we use correlation between these
flows and other flows that have already been identified
as belonging to the given application to reduce the rate
of false negatives.

To build profiles for a given P2P application, the first
step is to choose appropriate features to be used in the pro-
files. After that, we observe the properties of flows that are
contained in the target application. Since manually
extracting properties from large numbers of flows is diffi-
cult and time-consuming, we use a data mining technique
called association mining in this step. We process the asso-
ciation rules to build application profiles and find correla-
tions between flows satisfying different rules. Finally, in
the application identification step, the matching is imple-
mented at two levels, the host-level and the flow level.

The rest of the paper is organized as follows: we review
the related work in Section 2. Before describing our ap-
proach in detail, we first give an example of application
profiles in Section 3. After that, we explain how to build
behavioral profiles for the target application in Section 4.
In Section 5, we describe the two-level matching method
to identify the P2P application in new traffic. Experimental
results are given in Section 6. Section 7 discusses open is-
sues, practical considerations and future work directions.
Finally, we conclude our paper in Section 8.
2. Related work

Due to its wide application, the field of traffic classifica-
tion has received continuous interest. Some traffic classifi-
cation approaches develop discriminating criteria-based
on statistical observations of various flow properties in
the packet traces. Based on these statistical observations,
these studies employ classification, clustering and other
machine learning techniques to assign flows to classes.
Roughan et al. in [21] classify traffic flows into four classes
suitable for quality of service applications. They demon-
strate the performance of nearest neighbor and linear dis-
criminant analysis algorithms. Moore et al. in [19] apply
Bayesian analysis techniques to categorize traffic by
application.

In addition to these trained classification techniques,
unsupervised clustering methods are also used in several
studies. The work of Campos et al. in [11] applies a number
of different hierarchical clustering methods presented as
dendrograms to identify groups of similar communication
patterns. Similarly, in [18], McGregor et al. seek to identify
traffic with similar observable properties and apply a prob-
abilistic clustering method (the EM algorithm) to this
problem. Most of these studies that apply machine learn-
ing techniques focus only on the statistics of a single flow,
while our approach observes the patterns of multiple
flows.

Another promising traffic classification approach that is
closer to our method is shown in [13]. Instead of classifying
individual flows, Karagiannis et al. propose to associate
Internet hosts with applications, and then classify their
flows accordingly. They attempt to capture the inherent
behavior of a host at three levels of increasing detail: the
social, functional and application levels. This approach
mainly focuses on higher level communication patterns
such as the number of source ports a particular host uses
for communication, and does not make use of flow statis-
tics such as ours. Concurrent to [13], Xu et al. in [24] use
information theoretic and data mining techniques to build
behavior profiles of Internet backbone traffic.

In [5], Bernaille et al. evaluate the feasibility of applica-
tion identification at the beginning of a TCP connection.
This approach distinguishes the behavior of an application
by observing the size and the direction of the first few
packets of the TCP connection. Crotti et al. in [8] propose
a statistical approach to identify network application by
building a set of protocol fingerprints that summarize
its main IP-level statistical properties. In [17], Ma et al.
analyze three mechanisms relying on flow content to auto-
matically identify traffic that uses the same application-
layer protocol.

The stunning growth of P2P traffic has recently at-
tracted increased attention from researchers. Several stud-
ies have emphasized the identification of P2P traffic, such
as the signature-based payload methodology in [22] and
the identification method by transport-layer characteris-
tics in [12]. In [7], Collins et al. propose a set of tests for
identifying masqueraded peer-to-peer file-sharing applica-
tions. Bonfiglio et al. in [6] propose a framework to reveal
Skype traffic in real time by exploiting the randomness
introduced by the encryption process at the bit level.
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3. An example application profile

Before describing our approach in detail, we first give an
example of application profiles in this section. We take a
popular peer-to-peer file-sharing application, BitTorrent,
as an example. The BitTorrent network consists of clients
and a centralized server. Clients (called downloaders) con-
nect to each other directly to send and receive pieces of a
file. The central server (named tracker) coordinates the ac-
tion of the downloaders. Instead of describing the protocol
details, we focus here on the flow properties of communi-
cation between downloaders and between the downloader
and the tracker. We also describe the corresponding pay-
load signatures in different traffic, which are used in train-
ing and validation. However, the payload signatures are
not contained in the application profiles.

There are roughly four kinds of traffic in a BitTorrent
application: (1) users download the torrent files, (2) down-
loaders periodically check in with the tracker, (3) peers
communicate with each other, and (4) communication oc-
curs between DHT (Distributed hash table) nodes. To
download a file, a user should first get the corresponding
torrent file. This step is usually done over HTTP and com-
pleted in one connection, so this kind of traffic is negligible.

Downloaders periodically check in with the tracker to
keep it informed of their progress and receive lists of peers,
which operates over TCP. Many of these flows have the sig-
nature of ‘‘get/anounce?” in the payload. We call the direc-
tion from the connection initiator to the acceptor the
request direction, and the reverse direction the response
direction. For some of the flows, in addition to the three-
way handshake in the establishment of a TCP connection
and the four-way handshake in its termination, there is
one packet in the request direction and one packet in the
response direction, and the sizes of the request packets
in different flows are similar. Some properties of these
flows can be summarized in the following rule:

rule1: TCP, the same source IP, 5 request packets, 4
response packets, fixed size in request bytes. Rule1 means
that there are some TCP connections that are sent from
the same source IP address. Each connection has 5
request packets and 4 response packets, and the total
number of bytes in these request packets is fixed. Other
flows may have different properties. For example, the
Fig. 1. Main steps of building ap
number of packets in a TCP connection termination is
less than 4, so the numbers of request packets or
response packets are different from the ones in rule1.
The properties of these flows can be represented by
another rule.The third kind of traffic is between down-
loaders. Downloaders upload and download files from
each other via direct connections. In the original proto-
col, this traffic operates over TCP. Later in some
extended versions, UDP is also used. Most of these flows
have the payload signature ‘‘bittorrent protocol”. An
example of the flow properties of this kind of traffic is
in rule2. Rule2 represents properties of those flows that
are used to download files, so they have large flow
duration, and large number of response packets and
response bytes.
rule2: TCP, the same source IP, the number of response
packets > 100, the number of response bytes > 100,000,
flow duration > 20 s. The fourth kind of traffic is commu-
nication between DHT nodes. In trackerless DHT proto-
col [2], BitTorrent uses a ‘‘distributed sloppy hash table”
(DHT) for storing peer contact information for ‘‘tracker-
less” torrents. In effect, each peer becomes a tracker.
BitTorrent clients include a DHT node, which is used
to contact other nodes in the DHT to get the location
of peers from which to download. This protocol is
implemented over UDP. Payload signatures
‘‘d1:ad2:id20:” and ‘‘d1:rd2:id20:” are present in this
kind of traffic. The following are examples of flow
properties:
rule3: UDP, the same source IP, the same source port, 1
request packet, 1 response packet, fixed size in request
bytes, fixed size in response bytes.
rule4: UDP, the same source IP, the same source port, 1
request packet, 0 response packet, fixed size in request
bytes.
rule5: UDP, the same source IP, the same source port, 2
request packets, 2 response packets, fixed size in request
bytes. Rule3 is one example for the ‘‘GET_PEERS” request
in DHT protocol. All flows are from the same source IP
address and the same source port number. There are one
request packet and one response packet, and both have
a fixed number of bytes in all flows. Rule4 is the case that
there is no response to the ‘‘GET_PEERS” request, so the
number of response packets is 0. Rule5 is an example of
an ‘‘ANNOUNCE_PEER” message after the ‘‘GET_PEERS”
plication profiles.
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request, so there are two request packets and two
response packets.From the above example, we can see
that P2P applications usually have several different
types of traffic. There are even different cases in each
type of traffic. We summarize the properties of the
flows in each type of traffic in rules like rule1–rule5.
Flow properties include the transport-layer information
(such as protocol, whether all flows use the same IP
address and/or the same port number) and statistical
information (such as the number of packets, the num-
ber of bytes and flow duration, etc.). The profiles of
an application are a set of such rules, which character-
ize the most important communication patterns of this
application.
4. Application profiles

In this section, we explain how to build profiles for a gi-
ven P2P application. Fig. 1 describes the main steps. To
build application profiles, training traces are needed. In
the training traces, we know in advance which traffic be-
longs to the target application and which one does not.
After that, we determine what features should be chosen
to construct profiles and how to collect these features.
Having identified these flow features, flows in each train-
ing trace are represented in the form of fattribute1 ¼
value1; . . . ; attributen ¼ valueng. We then extract flow pat-
terns by discovering common properties shared by some
flows of the application. Finally, we build application pro-
files based on the resulting flow patterns. We discuss each
step in the remainder of this section.

4.1. Training traces

To build application profiles for a given P2P application,
we use training traces that contain labeled traffic of the tar-
get application. Basically there are two methods to obtain
this labeled training trace. One is to capture real traffic from
the Internet and then identify and label the target applica-
tion in the traffic trace. This step is time-consuming, and it
is very difficult to get 100% accurate results. Another meth-
od is to get the training traces in a controlled environment,
where one can accurately indicate which traffic belongs to
the target application. We used real campus traffic traces
for both training and evaluation. The datasets are packet
traces collected in the gateway of our department. We cap-
tured the packet header and the first 42 bytes of payload of
the traffic through the gateway. For privacy, we anony-
mized all the IP addresses. Based on the requirement of
the network administrator, we also stripped the payloads
of some well-known applications that could reveal the
url, email address, and other user information.

We combined several methods to identify the target
application, including payload-based methods, {IP, port}
pairs, and even manual analysis. In the payload-based
method, protocol signatures are identified either from pre-
vious studies [13,22] and public documents, or by reverse-
engineering. In this step, we process packet traces with Bro
[20], an open-source network intrusion detection system.
We added functions to Bro to match the signatures of a gi-
ven application in packet payloads and label the corre-
sponding connection records. For example, the signature
of BitTorrent is represented by this regular expression:
‘‘^get/announcen?j bittorrent protocol jd1:ad2:id20:jd1:
rd2:id20: j ^azver”.

Not all flows in the target application have traceable
signatures. We use {IP, port} pairs and even manual analy-
sis to assist identification. {IP, port} pairs associate a partic-
ular IP address and a specific port with one application,
since the service reflected at a specific port for a specific
IP does not change over a short period. For example, if con-
nection C1 and C2 have the same source IP and the same
source port and are open within the same time interval,
then we consider that C1 and C2 are involved in the same
application. Note that this method may have problems in
some cases of network address translation (NAT), which
do not appear in our datasets.

We denote the target application as tapp. We denote by
tappinst an instance of tapp that is employed by a specific
user at a specific time. To build application profiles for
tapp, we first study the communication pattern of each
individual tappinst, and then merge their patterns together.
Therefore, each training trace that we choose consists of
the flows of one tappinst and some other traffic (not tapp)
as the background data. If there is more than one tappinst
in the original traffic (e.g., several people in our depart-
ment used BitTorrent to download files at the same time),
we separate the original traffic into multiple training traces
such that each trace contains one tappinst.

4.2. Flow features collection

To build profiles, the first question is to determine what
features should be chosen to construct profiles and how to
collect these features. As we have mentioned, application
profiles are a set of rules and each rule summarizes the
common properties shared by a number of flows in the
application, which include transport-layer properties and
statistical properties. We focus on properties of bidirec-
tional flows, also known as connections. The reason for this
is that we need to differentiate the statistical observations
on the request and the response direction, which are differ-
ent in many applications.

Typically, a flow is defined by the five-tuples {srcIP, des-
tIP, srcPort, destPort, protocol}. We use the five-tuples to
study transport-layer properties. In addition, flow statistics
are also chosen as flow features to study statistical proper-
ties. Previous studies [19,23,25] have investigated the issue
of feature selection in traffic classification. For instance,
Moore et al. [19] applied Bayesian analysis techniques to
categorize traffic by application. They capitalized on
hand-classified network data, using it as input to a super-
vised Bayes estimator. Two hundred and forty eight flow
features were considered in training the classifier. They
used fast correlation-based filter (FCBF) for discriminator
selection and dimension reduction. Based on previous
studies and our own experiences, we chose several flow
statistics, as summarized in Table 1.

With the exception of flow duration, the other flow sta-
tistics are calculated in the request and response direction
separately. For example, ‘‘rpack” represents the number of
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packets in the request direction and ‘‘ppack” represents the
number of packets in the response direction. For the num-
ber of bytes (or packet size), we only calculate the payload
size, since the sizes of IP and TCP/UDP headers are not
important for application identification. Besides the flow
statistics that are commonly used, we add four additional
statistics to represent the size of the first (second) data
packet in the request (response) direction, i.e., rhbyte1,
phbyte1, rhbyte2, and phbyte2. The first data packet means
the first packet after the three-way handshake in TCP con-
nection establishment. For the UDP protocol, its first pack-
et is also the first data packet. The first few packets in
connections are important for application identification
since they usually capture the application’s negotiation
stage.

The flow features that are chosen to construct applica-
tion profiles are the basic five-tuples plus all the flow sta-
tistics summarized in Table 1. We further divide the flow
statistics into axis attributes and extra attributes. Intuitively
the axis attributes are the essential attributes of a connec-
tion, while the extra attributes provide complementary
information. The five-tuples of flow are also regarded as
axis attributes. The axis attributes are applicable to all con-
nections, while the extra attributes are only used to de-
scribe large flows (i.e., where the number of packets is
large), since the average packet size and the inter-arrival
time between packets do not have much meaning when
there are only a few packets in a connection. In addition,
the axis and extra attributes are handled differently in
the later steps in building application profiles.

To collect the flow features, we process packet traces
with Bro. All the flow statistics can be updated on-line in
a streaming fashion, which means that we do not need to
store data per packet, but rather per connection.
4.3. Extract flow patterns

As we have mentioned, P2P applications usually have
different types of traffic, and flows in each type of traffic
share some common properties. We call these common
properties flow patterns, as summarized in rule1–rule5.
The profiles of an application are a set of such rules. Man-
ually extracting flow patterns from large numbers of flows
is hard and time-consuming. We use data mining tech-
Table 1
The flow statistics.

Statistics

Axis attributes
rpack (ppack)a

rbyte (pbyte)
rhbyte1 (phbyte1)
rhbyte2 (phbyte2)

Extra attributes
Duration
rsizeavg (psizeavg)
rsizevar (psizevar)
rduravg (pduravg)
rdurvar (pdurvar)

a Statistics that begin with ‘‘r” represent the statistics in the request direction, a
niques for the extraction of frequent itemsets and associa-
tion rules [10] in this step. Association rule mining is used
to find inter-relationships (correlations) among members
of a data set. The application of association rule mining
to network traffic is widely deployed in the realm of net-
work security, especially intrusion detection [15,16], and
recently in traffic analysis [4].

A set of items is referred to as an itemset. The occur-
rence frequency of an itemset is the number of transactions
that contain the itemset, which is also known as the sup-
port of the itemset. If the support of itemset I satisfies a
predefined minimum support threshold, then I is a fre-
quent itemset. Association rules are extracted from frequent
itemsets and show correlations among contained ele-
ments. Association rules are usually in this form:
A) Bðsupport; confidenceÞ, where A and B are itemsets,
and A \ B ¼ /. A is often referred to as the body of the rule,
while B as the head of the rule. The support is the number
of transactions that contain A [ B, divided by the total
number of transactions. The confidence is the support of
sets that contain A [ B, divided by the support of sets that
contain A. Finally, we have:

supportðA) BÞ ¼ PðA [ BÞ ð1Þ

confidenceðA) BÞ ¼ PðBjAÞ ¼ supportðA [ BÞ
supportðAÞ ð2Þ

Association rule mining can be viewed as a two-step
process: (1) find all frequent itemsets that occur at least
as frequently as a predetermined minimum support, (2)
generate association rules from the frequent itemsets,
which must satisfy minimum support and minimum confi-
dence requirements. Apriori [3] is a widely used algorithm
for mining frequent itemsets and association rules.

Association rule mining satisfies our need to extract
common properties shared by some flows (flow patterns)
from a large number of flows, since we need to discover
correlations between flow patterns and the target applica-
tion. Based on the flow features and the application
labels, we develop various attributes for the flows. Each
flow is represented in the form of fattribute1 ¼ value1; . . . ;

attributen ¼ valueng. The attributes include the flow fea-
tures and the application label, and the values are the cor-
responding values of each attribute. The problem is that
Apriori is an algorithm for mining frequent itemsets for
Meaning

Number of packets in request (response) direction
Number of bytes
Size of the first data packet
Size of the second data packet

Flow duration
Average packet size
Variance of the packet size
Average inter-arrival time between packets
Variance of inter-arrival time between packets

nd statistics that begin with ‘‘p” denote the ones in the response direction.
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Boolean association rules. However, flows have richer attri-
bute types. The five-tuples of flows are categorical, while
the other flow statistics are quantitative. Boolean attri-
butes can be considered as a special case of categorical
attributes. Categorical attributes can be processed by Apri-
ori using the following method. We input transactions in
the form of {srcPort = 2119, destPort = 80, . . .} to Apriori,
then Apriori will regard ‘‘srcPort = 2119” as a Boolean attri-
bute, instead of regarding ‘‘srcPort” as a categorical
attribute.

Unlike categorical attributes, quantitative attributes
cannot be simply processed as boolean attributes. Quanti-
tative attributes have different types (some are in integer
form, e.g., rpack and rbyte, and others are in floating-point
form, e.g., rsizeavg), and have a wide range of values defin-
ing their domain. In addition, quantitative attributes have
an implicit ordering among their values. For example,
{rbyte = 150} and {rbyte = 151} are similar statistical
observations for the attribute ‘‘rbyte”. To do this, we first
partition the ranges of those quantitative attributes into
‘‘bins”. The partitioning strategy that we use is equal-fre-
quency binning [10], where each bin has approximately
the same number of tuples assigned to it. Another common
strategy is equal-width binning where the interval size of
each bin is the same. We choose equal-frequency binning
rather than equal-width binning because of the uneven
distribution of these quantitative attributes. With the par-
titions of the quantitative attributes, we then replace the
exact values of the flow attributes with the ranges of the
bins that contain the exact values. An example is given
below.

Example 1. {srcIP = 193.169.140.183, srcPort = 3946/6,
rpack = 11, rbyte = 408. . .450, duration = 4.0. . .22870.5, rsi-
zeavg = 34.7. . .43.1, rhbyte1 = 156, rhbyte2 = 168, . . .,
signame = bittorrent}.

We regard the five-tuples of a flow as four keys: (srcIP,
destIP, srcPort, destPort), because port numbers are mean-
ingful only when combined with protocol type. In the
example, ‘‘srcPort = 3946/6” means the port number is
3946 and the protocol type is 6 (TCP). Some bins only have
one value because there are enough flows having this value
for the corresponding attribute (e.g., rpack). As for the four
flow features rhbyte1, rhbyte2, phbyte1, and phbyte2, they
are intended to capture the application’s negotiation stage.
Therefore, their actual values are kept, and no partition is
processed. ‘‘signame = bittorrent” means this connection
is identified as ‘‘BitTorrent”.

The only parameter that needs to be set in this step is
the number of bins for each quantitative attribute. We
choose a larger number of bins for the axis attributes (eg.
20 for rpack and rbyte), and a smaller number of bins for
the extra attributes (eg. 5 for duration). For flow duration,
we only care whether the flow is short or long, and the in-
ter-arrival time between packets would be affected by net-
work conditions.

To automatically extract common properties shared by
partial flows of the target application from the large num-
ber of flows, we input all the flows in a training trace to
Apriori [1] in the form as in Example 1. To improve the effi-
ciency and reduce the number of association rules that are
generated, we restrict the head of the rules to the target
application, since we want to discover the correlations be-
tween flow patterns and the target application. Examples
of the resulting association rules are given below.

Example 2. signame = bittorrent � srcIP = 193.169.140.183,
srcPort = 19270/17, rpack = 1, ppack = 1, rbyte = 98,
pbyte = 272 (721, 100.0). signame = bittorrent � srcIP =
193.169.140.183, srcPort = 19270/17, rpack = 1, ppack = 0,
rbyte = 98 (1311, 100.0).

Example 2 illustrates the resulting association rules.
The heads of all the rules are restricted to ‘‘signame = bit-
torrent” when the target application is ‘‘BitTorrent”, and
the body of the rules contains various flow properties. In
the first rule, in the (support, confidence) pair ‘‘(721,
100.0)”, the 721 means that there are a total of 721 connec-
tions satisfying this rule, and 100.0 means that the confi-
dence of the rule is 100%.

4.4. Build application profiles

Given these flow patterns, the next step is to build pro-
files for the target application. Several issues need to be
considered here. First, there are usually a large number
of association rules generated from Apriori, so we want
to reduce the number of rules by removing redundant
rules and keeping meaningful ones. The second issue is
how to get a common set of flow patterns across different
training traces. As we know, network applications may
have different versions of software implementation. In
addition, different configurations or even different users
may result in various flow patterns. Therefore, we need
to combine the different flow patterns to get a common
set. The third question is whether there is any correlation
among these different flow patterns? We discuss ways to
solve these problems in the remainder of this section.

4.4.1. Maximal association rules
A major challenge in association rule mining from a

large data set is the fact that such mining often generates
a huge number of frequent itemsets and association rules
satisfying the minimum support ðmin supÞ and minimum
confidence ðmin conf Þ conditions, especially when these
are set low. To overcome this difficulty, the concepts of
closed frequent itemset and maximal frequent itemset are
introduced [10]. An itemset X is a closed frequent itemset
in a data set S if X is frequent, and there exists no proper
super-itemset Y such that Y has the same support as X in
S. An itemset X is a maximal frequent itemset in S if X is
frequent, and there exists no proper super-itemset Y such
that X � Y and Y is frequent in S.

As shown in Example 2, the heads of the association
rules are restricted to ‘‘signame ¼ tapp”, and the bodies of
the rules contain various flow properties. Acting as flow
patterns in application profiles, the bodies of the associa-
tion rules had better contain more flow properties, so max-
imal association rules are kept. In other words, we keep the
association rule r1 ‘‘signame ¼ tapp( B1” if r1 satisfies
min sup and min conf , and there exists no association rule
r2 ‘‘signame ¼ tapp( B2” such that B1 � B2 and r2 satis-
fies min sup and min conf . Here, B1 and B2 are itemsets
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with items in the form of ‘‘attributei ¼ valuei”. This step of
the process can greatly reduce the number of association
rules while keeping most of the information.

4.4.2. Generalize rules
Network applications usually have different versions or

software implementations. In addition, different configura-
tions or even different users may result in different flow
patterns. To build profiles for the target application, we
try to capture the most significant communication patterns
of this application, which are common in each instance of
the target application. So we need to merge different rules
from different training traces together. Our approach of
merging rules is based on the fact that even the same
behavior will have differences between different training
traces. Therefore, we should not expect the mined rules
to match exactly. Instead we need to combine similar pat-
terns into more generalized ones.

Two methods are used to generalize rules. The first one
is to normalize attribute values. Take the following associa-
tion rule in Example 2 as an example: signame = bittorrent
� srcIP = 193.169.140.183, srcPort = 19270/17, rpack = 1,
ppack = 1, rbyte = 98, pbyte = 272 (0.40/721, 100.0). This rule
indicates that 721 bittorrent flows have the same srcIP,
srcPort and rpack, etc. From another training trace, we
may get a similar rule but with different srcIP and srcPort.
For IP address and port number, we only care if the flows
are sent from (or received by) the same IP address and port
number, but we do not care about the specific values.
Therefore, we normalize these attribute values across dif-
ferent training traces.

Formally, suppose there are two rules r3 and r4,

r3 : signame ¼ tapp( a1 ¼ vx1; . . . ; aj ¼ vxj; ajþ1

¼ vxjþ1; . . . ; ak ¼ vxk

r4 : signame ¼ tapp( a1 ¼ vy1; . . . ; aj ¼ vyj; ajþ1

¼ vyjþ1; . . . ; ak ¼ vyk

where fai;1 6 i 6 kg are the attributes, which are the same
in r3 and r4, and fvxi;1 6 i 6 kg and fvyi;1 6 i 6 kg are the
corresponding values. Attributes fai;1 6 i 6 jg are from the
four flow keys, while attributes fai; jþ 1 6 i 6 kg are from
the other flow statistics. If fvxi ¼ vyi; jþ 1 6 i 6 kg, then
r3 and r4 will be merged together. The merged rule is rep-
resented by

r5 : signame ¼ tapp( a1; . . . ; aj; ajþ1 ¼ vxjþ1; . . . ; ak ¼ vxk

We keep the attributes fai;1 6 i 6 jg in r3, which shows
that the flows have the same value for those attributes. In
addition, if fvxi ¼ vyi;1 6 i 6 jg, then the actual value for
the attribute faig will also be kept in the merged rule. This
means that the actual value is important for the applica-
tion, especially when faig is srcPort or destPort. The follow-
ing is an example of the sort of rule obtained by merging
rules from different trace files.

Example 3. signame = bittorrent � srcIP, srcPort, rpack =
1, ppack = 1, rbyte = 98, pbyte = 272.

In addition to normalizing the attribute values, another
method for generalizing rules is to extract a common rule
subset. Assume we get a rule r6 ‘‘signame ¼ tapp( A1”
from one training trace, and another rule r7 ‘‘signame ¼
tapp( A2” from another trace, then the merged rule be-
comes r8 ‘‘signame ¼ tapp( A1

T
A2”, as long as r8 itself

is a mined rule (i.e., satisfies min sup and min conf ). To re-
duce the number of association rules and improve the
interpretability of the model, we have already obtained
maximal association rules for each training traces. How-
ever, some maximal association rules are not exactly the
same across different traces, so their intersections are kept
in the merged rules.

The basic association mining algorithms do not con-
sider any domain knowledge and as a result they can gen-
erate some ‘‘irrelevant” rules. The issue of finding
interesting rules from large sets of discovered association
rules has been studied in [14]. Klemettinen et al. propose
to use rule templates specifying the allowable attributes
values to post-process the discovered rules. A challenge
of this approach is that one has to know what rules are
interesting, which demands strong prior knowledge on
the target application. We use the axis attributes and ex-
tra attributes as item constraints. As we have mentioned
in Section 4.2, the axis attributes are the essential attri-
butes of a connection, while the extra attributes provide
complementary information to large flows. As a form of
item constraints for interesting rules, we require that
the body of the association rule must contain at least
three axis attributes.

4.4.3. Correlation among flow patterns
Until now, we have been discussing how to find inter-

relationships between items of one record (connection),
where each relationship is represented by one association
rule. In addition to these intra-record relationships, we fur-
ther discover inter-record patterns, i.e., correlations be-
tween the flows that satisfy different rules. Suppose
there are two rules, ru1 and ru2 as follows.

Example 4. ru1: signame = bittorrent � srcIP srcPort
rpack = 1 ppack = 1 rhbyte1 = 101 phbyte1 = 302 (133).
ru2: signame = bittorrent � srcIP srcPort rpack = 2 ppack =
2 rhbyte1 = 101 rhbyte2 = 149 phbyte1 = 302 phbyte2 = 53
(387).
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856 Y. Hu et al. / Computer Networks 53 (2009) 849–863
In one instance of BitTorrent, there are 133 flows satis-
fying ru1 and 387 flows satisfying rul2. We call the set of
the 133 flows fru1, and the set of the 387 flows frul2.
Among these flows, if no flow satisfies both ru1 and ru2
simultaneously, i.e., frul1

T
frul2 ¼ U, then we call these

two rules mutex.
Ru1, ru2 and their correlations are depicted in Fig. 2. The

first line of rectangles indicates the attributes and corre-
sponding values of ru1, and the second line indicates ru2.
Each rectangle represents one attribute whose label is above
the rectangle, and the number inside the rectangle is the va-
lue for the attribute. For those rectangles denoted by dashed
lines, the rule does not contain the attributes, but there are
correlations between them. For brevity, some attributes
(e.g., rhbyte2) are not shown in the figure. Correlations are
represented by the lines between the rectangles.

The first correlation is that the values for srcPort in ru1
and ru2 are the same. In other words, not only all flows in
fru1 have the same srcPort1, and the flows in fru2 have the
same srcPort2, but also srcPort1 = srcPort2. The second and
third correlations exist in the attributes of destIP and dest-
Port, which even do not appear in rul1 and rul2. Fig. 3 ex-
plains the correlation on destPort. In the figure, each
node indicates one value for the three attributes: srcIP, src-
Port and destPort, and each line indicates one flow. The so-
lid lines represent the flows in fru1 (e.g., f11, f12, f13, . . .)
while the dashed line represent the flows in fru2 (e.g.,
f21, f22, f23, . . .). All flows are sent from the same host
and the same srcPort. The correlation in destPort indicates
that although flows in fru1 use different destPort and flows
in fru2 also use different destPort, some flows in fru1 have
the corresponding flows in fru2, which use the same dest-
Port as the flows in fru1, such as f12 and f21, f13 and f22,
and so on. The other three correlations, in srcIP, rhbyte1
and phbyte1, are more obvious and can be directly ob-
served from the two rules.

Next we describe the practical meanings of ru1, ru2 and
their correlations. We have given an example of an applica-
tion profile for BitTorrent in Section 3. Rule3 to rule5 pres-
ent examples of flow patterns for the DHT traffic. In
Example 4, ru1 matches rule3 and ru2 matches rule5. All
the flows in fru1 and fru2 are from one DHT node since they
use the same srcIP. Most of the flows in fru1 and fru2 use
different destIP, so this DHT node communicates with dif-
ferent hosts. The correlation in srcPort indicates that this
DHT node uses the same srcPort for all the communication
with different hosts, while the correlations in destPort and
destIP indicate that there are some flows in fru1 communi-
cating with the same destIP and using the same destPort as
that of some flows in fru2. The correlations among different
flow patterns not only provide more information for the
application profile, but can also be used in the application
identification step, as will be discussed later.

4.4.4. Description of steps
After describing several approaches to processing asso-

ciation rules, we can now summarize the main steps in-
volved in building application profiles:

(1) partition quantitative attributes;
(2) prepare training trace files (each for one instance of

tapp): label connections of tapp and collect features
for each connection;

(3) for each training trace file use Apriori for association
mining; get maximal association rule;

(4) merge rules from multiple training traces;
(5) find correlations among flow patterns.

We use tapp to denote the target application. The first
step is to partition the ranges of the quantitative attributes
into intervals, as described in Section 4.3. We then choose
several training trace files, each including flows of one in-
stance of tapp and the corresponding background flows.
For each file, we label all connections that are identified
as tapp using the methods explained in Section 4.1, and
then collect the features of each connection as described
in Section 4.2, so that each connection is represented in
the form of Example 1. Next, we input all the connections
in a training trace file to Apriori for association rule mining.
We use all the connections for mining, instead of only the
connections belonging to tapp since we need some back-
ground data. If we only used the connections belonging
to tapp, we could not be sure that the resulting association
rules were unique to tapp. In other words, other applica-
tions may also have the patterns described by the associa-
tion rules. After that, we restrict the mined rules to
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maximal association rules to reduce the number of associ-
ation rules, and merge the rules from multiple training
traces to obtain generalized rules. The last step is to find
correlations among the resulting flow patterns.

TCP and UDP connections are mined and processed sep-
arately. The resulting TCP and UDP flow patterns are repre-
sented as gTcprul and gUdprul, respectively. Next we give
an example of the resulting profile for BitTorrent. We se-
lect five training traces for the target application from
the campus dataset described in Section 4.1. Each trace
contains one instance of BitTorrent. The training traces
are processed by the steps discussed in the previous part.
Finally we get 15 rules for gTcprul and 12 rules for
gUdprul. Some of them are given in Table 2. For brevity,
the head of the rules is shown as ‘‘bittorrent” to represent
‘‘signame = bittorrent”.

From these examples, one can see that the flow patterns
are coincident with the application profile examples given
in Section 3. Take t1 as an example: it depicts the behavior
patterns of some connections from the same srcIP. Each
connection has five packets in the request direction and
four packets in the response direction. The size of the first
data packet (and the only data packet) in the request pack-
et is 68. This flow pattern matches rule1 very well, which
describes the traffic by which downloaders periodically
talk to the tracker. t2 also agrees with rule1. In this case,
the downloader does not get any response from the tracker
(pbyte = 0). t5 agrees with rule2, which is used for down-
loading files between peers. u1–u6 are flow patterns for
Table 2
Examples of flow patterns for BitTorrent.

Flow patterns for TCP
t1: bittorrent � srcIP rpack = 5 ppack = 4 rbyte = 53. . .69 rhbyte1 = 68
t2: bittorrent � srcIP rpack = 5 ppack = 3 rbyte = 53. . .69 pbyte = 0 rhbyte1 = 68
t3: bittorrent � srcIP ppack = 4 rbyte = 53. . .69 pbyte = 0 rhbyte1 = 68
t4: bittorrent � srcIP ppack = 5 rhbyte1 = 68
t5: bittorrent � srcIP rpack = 64. . .746 rbyte > 13,185 rhbyte1 = 68 rsizeavg > 41
t6: bittorrent � srcIP rhbyte1 = 68 phbyte1 = 68 duration > 25.3

Flow patterns for UDP
u1: bittorrent � srcIP srcPort rpack = 1 ppack = 1 rhbyte1 = 101 phbyte1 = 302
u2: bittorrent � srcIP srcPort rpack = 1 ppack = 0 rhbyte1 = 101
u3: bittorrent � srcIP srcPort rpack = 1 ppack = 1 rhbyte1 = 98 phbyte1 = 272
u4: bittorrent � srcIP srcPort destPort rpack = 1
u5: bittorrent � srcIP srcPort rpack = 2 ppack = 2 rhbyte1 = 101 phbyte2 = 62
u6: bittorrent � srcIP srcPort rpack = 2 ppack = 2 rhbyte1 = 101 rhbyte2 = 149 p
UDP, following rule3 to rule5, respectively. These flow pat-
terns describe communication patterns between DHT
nodes.

Fig. 4 gives the correlations among t1, t2, t3 and t4.
Among the four flow patterns, t1 and t3 are not mutex,
and we only find correlations among mutex rules. Com-
pared with Fig. 2, a new kind of correlation appears on
phbyte1. This correlation indicate that although not all
flows satisfying t1 have the same phbyte1, some flows sat-
isfying t1 have the same phbyte1 as other flows satisfying
t4. Fig. 4 only gives some examples of the correlations, and
there are similar correlations among other flow patterns.
The resulting application profiles are used in the applica-
tion identification step. The flow patterns can also be di-
rectly reported to the network operators, because of their
good readability.

5. Application identification

Based on the behavioral profiles of network applica-
tions, we use a two-level matching method to identify
new traffic. Before describing the two-level matching
method, we first discuss a simple alternative method.
The simple method is to observe the properties of each
individual connection by comparing this connection with
each rule in the profile. If the connection satisfies any of
the rules, then it is identified as the target application,
since every rule is considered as a flow pattern. There are
two problems with this simple method. First, it will have
6.4

hbyte1 = 302 phbyte2 = 53
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a high false positive rate, since some of the flow patterns
are not unique to the target application. Second, the appli-
cation profile is set up to discover the most significant flow
patterns of the target application. Some flows that belong
to tapp are not described by these flow patterns, so there
will be a large false negative rate. We use a two-level
matching approach to solve these two problems.

5.1. Host-level matching

To identify tapp in a new trace file, we first locate those
hosts that participate in tapp. In studying the behavior of
each host, the first step is to group all connections sent
from and received by this host together. To avoid double
counting the connections, we assign each connection to
only one side of the communication (either the source or
the destination). The connection is assigned to the host
that has the larger number of connections, since we can
get a more complete view of its behavior. For example,
for the P2P applications in our trace files, we focus on the
behavior of the hosts inside our department instead of
those outside. The reason for this connection assignment
is that we can get a complete view of the behavior of the
hosts inside the department, but only a partial view of
those outside. Next, for each host, we find the flow patterns
Rti in gTcprul that are satisfied by connections of this host.
To compare connections with flow patterns, we need to
examine multiple connections simultaneously, taking the
normalized attributes into consideration.

u1: bittorrent � srcIP srcPort rpack = 1 ppack = 1
rhbyte1 = 101 phbyte1 = 302.

For example, we compare a host’s connections with u1.
This rule is mined from multiple connections, i.e., it satis-
fies a minimum support ðmin supÞ. Therefore, it is neces-
sary that multiple connections satisfy u1, and these
connections should have the same srcIP and srcPort,
although their exact values are not restrained.

We denote the number of connections that satisfy Rti by
NumConnðRtiÞ, and the total number of Rti that satisfied by
connections as NumRulðRtÞ. Similarly, we also calculate
Table 3
Examples of flow patterns for PPLive.

Flow patterns for TCP
t1: pplive � srcIP destPort rbyte = 81 pbyte = 0 rhbyte1 = 4

rhbyte2 = 61
t2: pplive � srcIP rpack = 6 ppack = 5 rbyte = 53. . .69 pbyte = 16

rhbyte1 = 4 rhbyte2 = 61 phbyte1 = 4 phbyte2 = 12
t3: pplive � srcIP rpack = 8 rhbyte1 = 4 rhbyte2 = 61 phbyte1 = 4
t4: pplive � srcIP ppack = 4 rhbyte1 = 4
t5: pplive � srcIP rpack = 1 ppack = 1 rbyte = 0. . .53 pbyte = 0

rhbyte1 = 28

Flow patterns for UDP
u1: pplive � srcIP srcPort rpack = 2 ppack = 2 rhbyte1 = 61

phbyte1 = 545 phbyte2 = 61
u2: pplive � srcIP srcPort rpack = 1 ppack = 1 rhbyte1 = 61

phbyte1 = 545
u3: pplive � srcIP srcPort rpack = 1 ppack = 1 rhbyte1 = 61

phbyte1 = 529
u4: pplive � srcIP srcPort rpack = 1 ppack = 0 rhbyte1 = 61
u5: pplive � destIP destPort rhbyte1 = 61
NumConnðRuiÞ and NumRulðRuÞ for UDP. If NumRulðRtÞ
and NumRulðRuÞ are large, which means this host satisfies
multiple-flow patterns of the target application, and if
NumConnðRtiÞ and NumConnðRuiÞ are large, which means
there are many connections of the host that match the flow
patterns, then we conclude that this host participates in
the target application (denoted as an ahost). This host-level
matching that is based on multiple-pattern and multiple-
flow can decrease the false positive rate, especially for
complex network applications. If the flow patterns from
the training trace files are complete and generalized, we
hope this level of matching can identify the hosts partici-
pating in the target application with high accuracy and a
low false positive rate.

5.2. Flow-level matching

After we identify those ahosts, the second step is flow-
level matching. Since a host may take part in different
applications at the same time, in this step, we study all
the flows of every ahost to determine which flows belong
to this application and which ones do not. As we have
mentioned, some flows that belong to tapp are not de-
scribed by the flow patterns in the profile, since the appli-
cation profile represents only the most significant flow
patterns of the target application. There are two reasons
for these false negatives.

The first one is that the flow patterns are maximal asso-
ciation rules since they contain more flow properties.
However, the choice of maximal association rule is a lossy
compression method. Some flows only satisfy a subset of
the maximal rules. These flows cannot be identified if only
the maximal rules are used in identification. To solve this
problem, we use the closed association rule in flow-level
matching, which is a lossless compression method. The
rule r1 ‘‘signame ¼ tapp( B1” is a closed association rule,
if r1 satisfies min sup and min conf , and there is no associ-
ation rule r2 ‘‘signame ¼ tapp( B2” such that B1 � B2 and
r2 has the same support as r1. For example, given the fol-
lowing two rules:

Example 5. r1: signame = bittorrent � srcIP srcPort
rpack = 2 ppack = 2 rhbyte1 = 101 rhbyte2 = 149 phbyte1 =
302 phbyte2 = 53 (7792). r2: signame = bittorrent � srcIP
srcPort rpack = 2 rhbyte1 = 101 rhbyte2 = 149 phbyte1 =
302 (8531).

There are 8531 flows satisfying r2. Among them, 7792
flows satisfy r1. In building the application profiles, we
use the maximal association rule to get more flow proper-
ties in the flow patterns, so only r1 is kept. However, if we
use r1 in flow-level matching, the other (8531 � 7792)
flows will be missed since they do not satisfy r1. Therefore,
the closed association rule r2 is used in this step.

The second reason is that to get a compact set of flow
patterns, we set a relatively high min sup. However, some
patterns of tapp cannot be discovered since fewer than
min sup connections satisfy them. To identify these flows,
we decrease min sup and min conf to get more rules. The
new problem is that a low min sup and min conf may gen-
erate too many association rules, and some of them will be
irrelevant. We use the correlations among rules to solve
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this problem. Since gTcprul and gUdprul describe significant
patterns of tapp, we only keep those new generated rules
that have correlations with rules in gTcprul or gUdprul. This
process can help to remove some irrelevant rules, which
produce false positives in flow-level matching.

As shown in Figs. 2 and 4, we look for correlations on
the following attributes: srcPort, destIP, destPort, rhbyte1
and phbyte2. Take destIP as an example: if some of the
new generated rules have flow correlation on destIP with
some rules in gTcprul or gUdprul, then these new rules
are kept. The reason is that the flows with the same remote
host are likely to belong to the same application. Finally,
for each connection in ahost, if it satisfies any flow pattern
in application profiles or the newly generated relevant
rule, we classify this connection as belonging to the target
application.

6. Experimental evaluation

We evaluate our approach using the campus traffic
traces. In this section, we first describe the training trace
files and validation trace files. After that, we show the
training results and the accuracy of the application identi-
fication on validation trace files.

6.1. Experimental setup

The datasets that we use to evaluate our approach are
packet traces collected in our department. We captured
the packet header and the first 42 bytes of payload of
the traffic going through the gateway. For privacy consid-
erations, we anonymized the IP addresses and stripped
the payloads of some well-known applications such as
HTTP, FTP. We captured the traffic from October 16,
2006 to November 9, 2006, and from September 13,
2007 to October 2, 2007. We also generated packet traces
of the two applications using several computers outside
our department. This self-generated traffic can be accu-
rately labeled.

For the reasons described below, we choose two popu-
lar P2P applications from the datasets to evaluate our ap-
proach: one is BitTorrent (P2P file-sharing), and the other
is PPLive (P2P streaming). First, to build application pro-
files at the training phase, sufficient application instances
are required from the trace data. There is enough traffic
in our datasets for these two P2P applications. In addition,
the prior labelling application on the training data must be
accurate to guarantee the effectiveness of our approach.
Although other P2P applications such as skype also appear
in the datasets, it is very difficult to identify skype traffic
from the training traces since it uses strong encryption
mechanisms. In our experiments, both the training and
the matching are performed offline. For the training stage,
we chose trace files from the first period (October 16, 2006
to November 9, 2006). For the validation stage, we chose
three kinds of trace files. One is other trace files from the
first period, which represent the best sample. Another is
trace files from the second period (September 13, 2007 to
October 2, 2007), which we used to test the temporal sta-
bility. The last kind of file is the self-generated traffic
traces.
6.2. Training results

We have given an example of the resulting profile for
BitTorrent in Section 4.4. We selected five training traces.
Each trace contains one instance of BitTorrent, and the
duration for each instance is about several hours. There
are 2000–5000 TCP BitTorrent connections, and 5000–
50,000 UDP BitTorrent connections in each instance. We
chose at most 50,000 UDP tapp connections, although
some of the instances lasted longer than our time period,
i.e., longer than 10 h. In building the application profiles,
we needed to provide min sup and min conf when using
Apriori for association mining. In this step, our method ap-
plies association mining to get significant flow patterns. To
get a relatively compact set of flow patterns, we chose a
relative high min sup, which we set to 100–300 according
to the number of tapp connections in each instance, and
we set min conf to 80%. The training traces are processed
by the steps discussed in the previous sections. Finally,
we obtained 15 rules for gTcprul and 12 rules for gUdprul.
Some of these are given in Table 2.

We also tested the stability of the training results. We
selected 4–8 training traces. The numbers of rules for
gTcprul that we obtained varied between 14 and 19, and
the numbers of rules for gUdprul range varied between
10 and 12. UDP flow patterns are very stable, since they
are very similar across different instances. In addition,
there are many UDP connections in each instance, which
provide a large training dataset. Most of the rules from dif-
ferent sets of training traces are exactly the same, and at
most one or two rules are different. The TCP flow patterns
are relatively less stable than those for UDP, since the com-
munication patterns for TCP connections are more compli-
cated and there are less TCP connections in each instance.
In the application identification step, we used the profiles
obtained from five training traces.

Next we briefly introduce the training results for PPLive.
From five training traces, we obtained 15 rules for gTcprul
and 25 rules for gUdprul. Some examples of the flow pat-
terns are given in Table 3.

6.3. Matching results

In this section, we present the accuracy results of iden-
tifying BitTorrent and PPLive in new trace files. We first
present the best case result, that is, other trace files from
the same venue and the same time period. The five training
traces were chosen from between October 16 and October
30. In the validation stage, we chose 10 trace files from be-
tween October 16 and October 30 as well as between Octo-
ber 31 and November 9. Each validation trace contains
about 50,000 connections. For BitTorrent, there are 1 or 2
instances in each validation trace. For PPLive, there are
1–3 instances in each trace.

In host-level matching, we identify the hosts that par-
ticipate in the two applications with 100% accuracy and 0
false positives. In this step, we need to set thresholds for
NumRulðRtÞ and NumRulðRuÞ. Since the dominant commu-
nication patterns are described by application profiles,
the thresholds can be safely selected from a range of val-
ues. For example, there are 15 rules in gTcprul and 12 rules
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Fig. 5. Accuracy results.
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in gUdprul for BitTorrent. For the hosts that have BitTorrent
traffic in the validation traces, they satisfy 13–14 TCP flow
patterns and 10–12 UDP flow patterns. On the other hand,
other hosts satisfy at most 1–3 TCP flow patterns and 1
UDP flow pattern (u4 in Table 2).

In the flow-level matching, we extended the rule set
using the two methods described in Section 5.2. We ob-
tained 39 TCP rules and 17 UDP rules for BitTorrent and
62 TCP rules and 70 UDP rules for PPLive. These extended
Table 4
The accuracy results.

conn app idencon avgAccuracy fpos

PPL2 (tcp) 14,475 9229 9058 98.1 206
PPL2 (udp) 129,627 127,757 123,618 96.8 712
BTself (tcp) 13,928 11,729 11,008 93.9 366
BTself (udp) 61,191 61,141 58,883 96.3 2
PPLself (tcp) 9239 8964 8301 92.6 52
PPLself (udp) 34,181 34,039 33,612 98.7 0
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Fig. 6. Percentages of the matched connections.
rule sets were used for the flow-level matching. For the
ith trace file, we define appi as the number of connections
that participate in tapp, and idenconi as the number of con-
nections that we identify as tapp and are also tapp. Then
the average accuracy is defined by:

avgAccuracy ¼
XN

i¼1

idenconi=
XN

i¼1

appi

where N is the number of validation trace files.
The accuracy results for connections are given in Fig. 5.

The four bars are avgAccuracy for TCP BitTorrent connec-
tions, UDP BitTorrent connections, TCP PPLive connections,
and UDP PPLive connections, respectively. The results
show that our approach has very high accuracy. Fig. 6
shows the percentage of the matched connections when
we only use the flow patterns in the application profile,
i.e., rules in gTcprul and gUdprul to do flow-level matching.
The flow patterns in the profile are a compact set, and are
used to describe significant communication patterns. In
Fig. 6, we see that most of the UDP connections can be de-
scribed by the dominant patterns. However, more than half
of the TCP connections need to be identified by the ex-
tended flow pattern set generated in the flow-level match-
ing step.

In addition to these 10 validation traces from the same
period as the training traces, we also chose several valida-
tion traces from the second period, which was several
months after the training traces, and several self-generated
traces. In the second period, there is little BitTorrent traffic,
because at that time, the P2P file-sharing traffic was re-
quired to go through a proxy server and was thus not in-
cluded in the dataset. Therefore we can only validate
PPLive in these traces. The evaluation results are shown
in Table 4. ‘‘PPL2” means the PPLive traffic in the second
period, ‘‘BTself” is the self-generated BitTorrent traffic,
and ‘‘PPLself” is the self-generated PPLive traffic. The ‘‘app”
column indicates the total number of connections in tapp
in the selected training traces. ‘‘conn” means the total
number of connections among all ahost (having tapp traf-
fic), not the total number of connections in the trace files.
‘‘fpos” means false positives, which is the number of con-
nections that we identified as tapp but are not tapp. From
these results, one can see that our approach can obtain
very high accuracy and very few false positives.
7. Discussion

7.1. Open issues

Our approach has several limitations. Note that many of
the limitations are not specific to our approach, but are
inherent to the problem. In this section, we discuss several
open issues in traffic classification.

7.1.1. Evasion
The biggest challenge to traffic classification techniques

in general is evasion. For example, rhbyte1 (the first data
packet in the request direction) is an important flow feature
for building profiles and appears often in the resulting appli-
cation profiles (e.g., Table 2). If the application developers



Table 5
Running time.

Process Input Output Time

Training stage
Prepare training

trace
Traffic (18 h) Training traces 52 min

1,317,041 conn 1,004,014 conn
272,280
tapp_conn

267,000 tapp_conn

Build profiles Training traces Application
profiles

129 s

Validation stage
Identify application file1

(50,000 conn)
44 s

Identify application file2
(100,000 conn)

Flows belong to
tapp

188 s

Identify application file3
(150,000 conn)

314 s
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want to evade our method, they can modify the size of the
first few packets in connections by randomly padding
packet payloads. The accuracy of our approach would be
decreased if those rhbyte1 related properties were removed
from the application profiles. However, all classification
methods can be evaded: payload-based analysis cannot
classify encrypted packets, port-based methods are de-
feated by a simple change of port, and approaches relying
on flow statistics are sensitive to alterations of packet sizes
and inter-arrival times.

Compared with other techniques, our approach should
be more difficult to evade. This is because the application
profiles summarize multiple aspects of communication
patterns. First, the flow tuples describes the transport-
layer properties, i.e., whether many flows use the same src-
Port, or destPort or to the same destIP. Second, protocol
signatures such as rhbyte1 usually capture the application’s
negotiation stage. Third, flow statistics such as average
packet size characterize traffic statistical properties. It is
very hard for applications to disguise their behavior with-
out adding large amounts of overhead. Nevertheless, build-
ing classifiers that are robust to evasion is an interesting
topic for future research.

7.1.2. Training
Training is an important step for most traffic classifica-

tion approaches using machine learning techniques. It has
several challenges. First, the accuracy of the classifier
highly depends on the quality of the training data. How-
ever, preparing accurately labeled and complete training
data is very hard and time-consuming. If real traffic from
the Internet is used, it is very difficult to accurately identify
and label some applications, e.g., skype which uses encryp-
tion mechanisms. Some studies [6] propose possible ap-
proaches to identify Skype traffic, which can help to label
skype traffic in the training data. We did not include skype
in our experiments because these approaches cannot guar-
antee a very high identification accuracy. On the other
hand, if the training data is generated in a controlled envi-
ronment, then the completeness of the training data is
hard to guarantee, although labeling traffic becomes easy.
Second, since the classifier is learned from the training
data, the accuracy of these approaches will decrease when
new applications originate or old applications change their
behaviors. In this case, we would like the classification sys-
tem to adapt accordingly, i.e., automatically detect the
need for retraining and update the classifier.

7.1.3. Encryption
Our approach is based on the packet header and flow

statistics (packet size and inter-arrival time). Therefore,
our technique can characterize encrypted traffic as long
as the encryption is limited to the transport-layer payload.
If layer-3 packet headers are also encrypted, such as in IP-
Sec, then our approach cannot work. However, this is prob-
ably true for most classification techniques. Please note
that this encryption issue is different from the one when
we discussed skype. Our approach would be able to work
on skype if we had adequate training data that accurately
labeled skype traffic.

7.2. Practical considerations

7.2.1. Application identification vs. traffic classification
Our approach aims to identify a target application,

especially P2P application. There are some studies focusing
on the problems of classifying traffic flows into several pre-
defined classes. These two problems are interrelated but
are different in practice. One difference is that traffic clas-
sification methods usually cannot identify specific applica-
tion sub-types [13]. For instance, they can identify P2P
flows, but do not differentiate the specific P2P protocol
(e.g., BitTorrent vs. Gnutella). Our approach can identify
the specific P2P protocol or even different versions of one
P2P protocol if they have marked difference. Another dif-
ference exists in preparing the training data. For applica-
tion identification, we only need to label those
connections that participate in the application, and do
not need to determine the applications of other connec-
tions. However, in traffic classification, all connections
should be labelled as one target class, which is more
difficult.

7.2.2. Point of observation
In this paper, our approach is evaluated in traces col-

lected at the edge of the network. In addition, almost all
traffic from the targeted hosts is monitored. A complete
view of the hosts’ behavior facilitates both building good
application profiles and accurately identifying the applica-
tion in new traffic. The identification accuracy should not
be affected if part of the targeted hosts’ flows are missed.
However, applying our approach at the backbone network
may present different challenges. For example, individual
user behavior might be hard to identify if only several of
its flows are monitored.

7.2.3. Computational performance
In our experiments, both the training and the validation

are performed offline. Table 5 gives some examples of the
running time. The processing took place on a Dell optiplex
GX755 with a 2 GHz processor and 2GB of memory. In the
training stage, we first generated training traces from raw
traffic, which last about 18 h. ‘‘1317041 conn” and
‘‘272280 tapp_conn” in Table 5 represent that there are
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totally 1,317,041 connections and 272,280 connections of
the target application. This step took about 52 min. Build-
ing application profiles from the training traces, including
association mining using Apriori and the subsequent steps,
was very fast. Therefore, the total running time of the
training stage is less than 1 h. In Table 5, we also give the
running times of identifying the target application in new
validation files of different sizes. In the validation stage,
the maximum memory usage is about 14%.

7.3. Future work

There are several interesting future directions. The first
one is to extend our approach to build application profiles
without training data, or with only part of the training
data. With this improvement quite a few drawbacks of
the current solution could be overcome. For example, it
will be robust to the deliberate evasion issue. Identification
for unknown application also would become possible.

The second one is to build general profiles from the traf-
fic. Sometimes network administrators have specific
requirements in identifying certain applications, such as
identifying P2P traffic or anomaly detection. Other times,
there are some other network management requirements
which seek to have a more general understanding of the
network traffic, such as what are the significant behaviors
among the vast amount of traffic data. While there exist
many prior works on anomaly detection and application
identification, there has been less attempt to build general
profiles from the traffic. Specifically, there are two aspects:
(1) Automatically extract significant behaviors from the
vast amount of unstructured traffic data, and (2) Provide
profiles of these significant behaviors to help network
operators understand the traffic in their network.

Limited by our trace files, we only evaluate two P2P
applications with on-campus traffic traces. Another inter-
esting study is to generate more traffic in a controlled envi-
ronment. Take BitTorrent as an example, it has different
versions of implementations. Training and validation traf-
fic can be generated using multiple BitTorrent clients of
different versions, tweaking all possible protocol’s param-
eters (max bandwidth, number of connections, etc.) and
even using some traffic shaping tools. By tuning training
traffic, we can study which factors (different software ver-
sions, protocol’s parameters, etc.) affect the resulting appli-
cation profiles, and which one is irrelevant to the profiles.
By tuning validation traffic, we can see how the approach
performs with non-standard traffic profiles.

8. Conclusions

In this paper, we propose a novel profile-based ap-
proach to identify P2P applications. In contrast to classify-
ing traffic based on statistics of individual flows, as has
been done in previous studies, we build behavior profiles
of the target application, which describe its significant pat-
terns. We choose the five flow tuples and some flow statis-
tics as flow features, and use association mining to acquire
the correlations between various flow properties and the
target application. To achieve a compact set of flow pat-
terns and generalized rules, we obtain maximal association
rules and merge rules from multiple training traces by nor-
malizing the axis attributes. Correlations are then discov-
ered among multiple-flow patterns. Using the resulting
application profiles, a two-level matching method is used
to identify the application in new traffic. We choose BitTor-
rent and PPLive to evaluate our approach with on-campus
traffic traces. The application profiles generated are consis-
tent with the application behaviors. The results show that
our approach can obtain very high accuracy and very low
false positive rates when identifying applications in valida-
tion trace files.
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