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Abstract. Due to recent advances in network, storage and
data compression technologies, video-on-demand (VOD) ser-
vice has become economically feasible. It is a challenging
task to design a video storage server that can efficiently ser-
vice a large number of concurrent requests on demand. One
approach to accomplishing this task is to reduce the I/O de-
mand to the VOD server through data- and resource-sharing
techniques. One form of data sharing is thestream-merging
approach proposed in [5]. In this paper, we formalize a
static version of the stream-merging problem, derive an up-
per bound on the I/O demand of static stream merging, and
propose efficient heuristic algorithms for both static and dy-
namic versions of the stream-merging problem.
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1 Introduction

Recent advances in networking technologies and vast im-
provements of storage systems have made it feasible to
provide multimedia on-demand services, such as news dis-
tribution, advertisement, library information systems, and
movies-on-demand. Consequently, the area of multimedia
storage systems has received a great deal of attention in the
past few years.

Early research works [2,10,12] concentrated on the study
of multimedia storage systems which support the retrieval of
multimedia objects atpeakdisplay bandwidths (bits/s); for
example, assuming that the display bandwidth of the ob-
ject is fixed atBdisplay Mbps throughout the duration of
the display, the storage server retrieves that object using
Bdisplay Mbps of disk I/O bandwidth. This approach may
be applicable for video objects whose average display band-
width requirements are close to their peak display bandwidth
requirements. (The variance of a video object’s bandwidth
requirement is a function of the compression technique used
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and the actual content of that object.) Recent works con-
sider video-on-demand (VOD) architectures which can sup-
port variable display bandwidths. For example in [7–9], the
authors propose novel techniques for supporting variable dis-
play bandwidth for a disk-based storage architecture and for
a hierarchical storage architecture.

Part of the challenge of designing efficient VOD servers
is due to the large storage and bandwidth requirements of
video objects. For example, a 120-min MPEG-I video re-
quires 1.5 Mbits/s of display bandwidth and 1.3 GB of stor-
age [6]. However, the quality of MPEG-I video is at best
VHS quality and is certainly lower quality than broadcast
television. Higher quality compressed video, such as MPEG-
II or compressed HTDV video [1], requires display band-
widths of 4 to 20 Mbits/s. The storage requirements of video
objects usually precludes them from being stored in main
memory. Video objects have to be stored on magnetic disks
or tertiary storage devices such as robotic tape libraries. A
video object is displayed by scheduling an I/O stream where
the data is read from an appropriate storage device or a set
of storage devices and delivered to a display unit.

There are many approaches to improving the efficiency
of a VOD storage system; these include improvements in
data layout techniques, disk-scheduling algorithms, etc. In
this paper we concentrate on the the delivery ofpopular
objects in a VOD system. That is, we expect there to be a
skew in the distribution of access frequencies of the video
objects. Moreover, we expect that a small subset of objects
would be accessed very frequently, and the rest of the ob-
jects would be accessed infrequently; such an access pattern
would, for instance, be accurate for a movie server where
a small subset of popular movies (perhaps for that week) is
accessed simultaneously by many users. In such a system, it
is very likely that the I/O bandwidth is the critical resource
which contributes to a large fraction of the system response
time. We define system response time as the time between
a request’s arrival to the storage server and the time when
we can start streaming the bits of the requested video from
the disk storage system to the network. Although disk stor-
age costs are decreasing rapidly, bandwidth costs are not
decreasing nearly as quickly; this is partly due to the fact
that most storage improvements are due to increases in the
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number of tracks per inch, rather than the number of bits per
track (and, the number of bits per track plus the revolutions
per minute determine the bandwidth capability of a disk).
One way to improve the system response time for delivery
of popular objects is to carefully manage the I/O bandwidth
of the VOD server and “share” it among requests for the
same object. The following approaches to reducing the ag-
gregate I/O bandwidth requirements of popular objects have
been proposed in the past:

– Batching: the storage server polls the request queue pe-
riodically and serves requests, for the same object, that
have accumulated in the queue, using a single I/O stream,
e.g., [3].

– Buffering: two or more successive requests for the same
object can be served by temporarily holding the data,
retrieved by a single I/O stream, in the main memory
buffers, where the first request is serviced using the I/O
stream and successive requests are serviced from the
main memory buffers, e.g., [4, 11].

– Adaptive piggybacking or stream merging: the display
rates of requests in progress (for the same object) are dy-
namically adjusted until their corresponding I/O streams
can be “merged” into one [5].

Batching, buffering, and stream merging can serve a
group of requests, for the same object, using a single I/O
stream. Stream merging differs from batching in that it
groups requests dynamically, while displays are in progress,
so that no additional latency is experienced by the user. On
the other hand, batching requires that the displays of re-
quests of the same group start at the same time and hence
contributes to additional delays in the system. Note that, the
reduction in I/O bandwidth demand due to stream merging
is not quite as high as in the case of batching, since it takes
some time to merge the streams (and no I/O bandwidth sav-
ings are accomplished during that time). Thus, the trade-off
between the two approaches is in balancing the latency for
starting service of a request and the amount of I/O bandwidth
saved. It is important to point out that all three approaches
can be combined, as mentioned in [5].

In this paper, we concentrate on the stream-merging ap-
proach because of its effectiveness as reported in [5]. First,
we briefly elaborate on the motivation and feasibility of this
approach; a more detailed and more formal description of
stream merging is given in Sect. 2. The stream-merging ap-
proach is motivated by the fact that it is possible to time
compress or time expand a video object by a small percent-
age (e.g., 5%) without it being perceptible by the user, i.e., it
is possible to alter the duration of an object’s display with-
out affecting its (perceptible) quality. Similarly, the duration
of an audio object can be altered, for instance, using tech-
niques such as audio pitch correction. Ample evidence exists
to support the above-stated claims. In [5], the authors give a
detailed explanation of the feasibility of such video and au-
dio alteration techniques. In the interests of brevity, we only
give a brief example here and refer the reader to [5] for a
more detailed explanation. Consider, for instance, airing of
movies on television. It is common practice in the television
industry to time compress a movie for the purpose of in-
creasing the number of commercial advertisements shown.

For instance, when the movie “Amadeus” was shown on
television, its duration was altered by 3%.

There are two approaches to actually constructing the al-
tered stream of frames to be transmitted to a display station.
They are as follows:

– Online approach: the altered version of the object can
be created online or on the fly. An I/O stream retrieves
the original object, which is then time expanded or com-
pressed by the server1. The “derived” object is transmit-
ted to the display unit. In this case, the I/O bandwidth
required varies with the display rate used. There are two
possible disadvantages of the online alteration: (1) the
data layout on disks is often tuned to one delivery band-
width, and having to support multiple bandwidths can
complicate scheduling and/or require additional buffer
storage, and (2) specialized hardware may be required
to be able to produce the altered version in real time.

– Offline approach: the altered version of the video can be
created offline and stored on the disk in addition to the
original version. An I/O stream retrieves an appropriate
version of the object (be it original, time expanded, or
time compressed), which is then directly transmitted to
the display unit. An obvious disadvantage of this ap-
proach is the additional disk storage required.

Whether we use the online or offline approach, the stream-
merging technique requires the capability of transmitting a
video object at several different display rates. There are mul-
tiple ways of attacking this problem, for instance, by using
techniques similar to the ones proposed in [7–9]. Note that
the details of supporting multiple display rates depend on
the particular VOD server architecture used. We do not con-
sider a specific architecture here since we are interested in
developing a general technique for reducing I/O bandwidth
demand using stream merging. Therefore, in this paper, we
do not address the details of supporting multiple display
rates.

In [5], the authors proposed several heuristic merging
policies and analyzed the subsequent performance improve-
ments using analytical models. However, many questions
about the stream-merging approach remain unanswered, for
example, determining an optimal stream-merging policy, as
well as the maximum (or minimum) achievable performance
improvements of the approach. We intend to address some of
these questions in this paper. The contributions of this work
are as follows: (1) we formalize a version of the stream-
merging problem and derive an upper bound on its I/O de-
mand, and (2) we propose two novel stream-merging algo-
rithms, which result in significant I/O demand reductions.

The organization of the paper is as follows. In Sect. 2,
we formalize thestatic version of the stream-merging prob-
lem and describe thedynamicversion of the stream-merging
problem. In Sect. 3, we propose a heuristic algorithm for
solving the static stream-merging problem and derive the
properties of optimal solutions of the static stream-merging
problem as well as the maximum I/O demand for merg-
ing n streams. We propose a novel dynamic stream-merging
algorithm, Equal-Split, in Sect. 4. Section 5 presents per-

1 We give a more precise definition of “time expansion” and “time com-
pression” of video objects in Sect. 2.
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formance analysis of algorithm Equal-Split. In Sect. 6 we
compare performance of several dynamic stream-merging
algorithms. Our conclusions are given in Sect. 7.

2 Problem definition

The stream-merging approach [5] initiates an I/O stream (or
simply stream) for each request. Then, the display rates of
the streams, corresponding to requests for the same object,
are adjusted until the streams output the same data at the
same time. At this point the I/O streams are merged into
a single stream and the corresponding requests share this
single I/O stream.

We assume that the storage server transmits frames to the
display units at a constant frame rate, e.g., the NTSC stan-
dard requires that the display units display at 30 frames per
second (fps). The stream-merging approach is viable if the
storage server cantime compressor time expandsome se-
quence of original object frames. For example, we can time
expand a sequence of original object frames by adding one
additional frame to every 19 original object frames. Then, a
display unit displays 30× 19

20 = 28.5 original object frames
per second. Similarly, we can time compress a sequence
of original object frames by removing frames. A sequence
of original object frames is time compressed if the display
time of this sequence is somehow shortened as compared
to its normal display time. Similarly, a sequence of original
object frames is time expanded if the display time of the
sequence is longer than its normal display time. More for-
mally, time expansion and time compression can be defined
as follows. Letf1, . . . , fk be a sequence of original object
frames. Letf ′

1, . . . , f
′
m be a sequence of frames which are

derived fromf1, . . . , fk and are fed to the display unit. The
sequence of original frames is time expanded ifm > k; it
is time compressed ifm < k. (The two possible approaches
to producing time-expanded or time-compressed versions of
an object are discussed in Sect. 1.)

We define the display rate alteration ratio of an I/O
stream as follows. If the I/O stream is a sequence of consec-
utive original object frames, then the display rate alteration
ratio of the I/O stream is equal to 1. If the I/O stream is
a stream of frames derived from original consecutive object
frames, then the display rate alteration ratio of the I/O stream
is equal to the number of consecutive original object frames
required to derive one frame of the I/O stream. For example,
if the frames of an I/O stream are derived by removing 1
out of every 21 original consecutive object frames, then the
display rate alteration ratio of that I/O stream is equal to
21
20 = 1.05.

The display rate of an I/O stream is defined as the number
of frames output per second× the display rate alteration
ratio of the I/O stream. Therefore, the display rate of an
I/O stream is a measure of how fast the I/O stream gets
through the content of the “original” video. Theeffective
display rateof a display unit is defined as the display rate
of the I/O stream being transmitted to the display unit. Note
that the frames of an I/O stream may be time expanded or
compressed before transmission to the display unit, if the
online approach to display rate alteration is used.

Let Sn be the normal display rate in frames per second
(fps). Let∆+ and∆− be the maximum fraction of the normal
display rate by which a stream can be sped up or slowed
down, respectively, i.e., a stream is constrained to output at
a display rate between (1− ∆−)Sn and (1 +∆+)Sn frames
per second (fps). The display rate of a request is defined
as the display rate of a stream. For convenience of further
discussion, we introduce the following definitions.

Definition 1. The playback point of a streams at time t,
ps(t), is the current position (in seconds) in the object’s dis-
play of streams at timet.

Definition 2. Two streams are said to be “synchronized”, if
playback points of the streams are the same.

Note that two streams can be merged into a single stream
when they are synchronized (at this point, system resources
can be saved). Our goal is to design a general algorithm for
synchronizing streams in an optimal way for VOD systems2.
The amount of system resources required by each stream is a
function of the system architecture, i.e., communication pro-
tocols used, storage and retrieval methods used, etc. Since
we are concerned with the delivery of popular objects, it
is reasonable to assume that I/O demand is the critical re-
source. Note that, the stream-merging approach should be
applicable to reducing demand on other system resources,
e.g., the communication network bandwidth. However, the
specific tradeoffs associated with applying this approach to
another resource may differ from those we consider here, in
the context of I/O bandwidth demand.

In this paper, we consider two possible versions of the
stream-merging problem, namely: (1) thestatic version and
(2) thedynamicversion. In both cases, our goal is to merge
streams corresponding to requests for the same object, in
order to reduce the aggregate I/O bandwidth demand on
the system. In the static case, we consider a single group
of streams such that the membership of the group is fixed
throughout the stream-merging process, i.e., no new streams
can be initiated (which would correspond to an arrival of a
new request) and no stream can be terminated (which would
correspond to an end of an object’s display). Thus, in the
static merging problem, synchronization decisions can be
made under a “complete information” assumption. The dy-
namic case differs from the static case in that new streams
can be initiated and existing streams can be terminated. As
a result, synchronization decisions have to be made “on the
fly”, without having full information about future arrivals.
More formally, the static and dynamic merging problems
can be defined as follows:

1. Static stream-merging problem: Given a set of streams
of a video object, which has an infinite display time, and
the corresponding playback points of these streams, find
an optimum way to merge them into a single stream,
where the objective is to minimize the total I/O cost (in
bits) incurred during the synchronization process3.

2 For the remainder of the paper, we use the terms “synchronizing” and
“merging” interchangeably.

3 The assumption of infinite display time of a video object is used to
prevent any stream termination due to reaching the end of an object’s
display. In later sections, we will show that one way to solve the dynamic
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2. Dynamic stream-merging problem: The problem of min-
imizing the I/O cost (in bits) of retrieving data through
merging of streams corresponding to requests for the
same object in a VOD system in which
– a new stream of a video object can be initiated due

to a request arrival,
– a stream can terminate due to reaching the end of an

object’s display, and
– the request arrival process is stochastic.

In the remainder of this section and in Sect. 3, we con-
centrate on the static stream-merging problem. Before pro-
ceeding to characterize the stream-merging problem further
and describing our algorithms, we make the following ob-
servation about the display rate adjustment decisions. The
sooner merging (in an object’s display) occurs, the more I/O
bandwidth can be conserved and used by the storage sys-
tem to serve other requests. Hence, we limit our algorithms
to consider the slowest display rate,Smin = (1 − ∆−)Sn,
the normal display rate,Sn, and the fastest display rate,
Smax = (1 + ∆+)Sn; the corresponding I/O bandwidths are
Cmin, Cn, and Cmax, respectively. The relative values of
Cmin, Cn, andCmax depend on the display rate alteration
technique used. We restrict the rest of the discussion in this
paper to the class of display rate alteration approaches where
∀S′ ∈ [Smin, Smax], Cmin ≤ the I/O bandwidth corre-
sponding to display rateS′ ≤ Cmax.

Suppose we would like to synchronizen streams corre-
sponding to requests for the same video object. Let{s1, . . .
. . . , sn} be this set of streams. Without loss of generality,
we assume that (1)∀i, j if i < j, thenpsi

(0) > psj
(0) (i.e.,

s1 is the leading stream andsn is the trailing stream), (2) the
synchronization of streamss1, . . . , sn begins at timet = 0,
and (3) if two streamssi andsj are merged andi < j, the
I/O resources used bysj are released and the requests being
served bysj are served bysi.

For the purpose of solving the static stream synchro-
nization problem, we are only interested in the differences
between the playback points of the streams, where the objec-
tive is to reduce the differences between the playback points
of all streams to zero, i.e., to come to a point where each
stream outputs the same video data at the same time. In the
following definition, we introduce the concept of a relative
playback point as a measure of the relative position of a
stream.

Definition 3. The relative playback point of a streamsi at
time t, rsi(t), is psi(t) − t − psn(0).

Note that the relative playback point of streamsi changes
when si is sped up or slowed down. For example, ifsi

is sped up by 5% of the normal display rate, the relative
playback point ofsi increases by 0.05 seconds per second.

We can represent the process of synchronization of
streams by a synchronization tree, which can be defined as
follows.

stream-merging problem is by: (1) partitioning the streams of the same
video object into disjoint sets such that all the streams in each set can
be merged into a single stream without any stream terminations and (2)
applying a static stream-merging algorithm to merge the streams in each
set.

Definition 4. A synchronization treeT is a tree in which the
root node represents the final stream resulting from synchro-
nization ofn (original) streams, the leaf nodes represent the
n (original) streams,s1, . . . , sn, and each internal node rep-
resents a stream derived from the synchronization of its child
nodes (streams).

Let Cs(t) be the I/O bandwidth demand (in bits/s) of
streams at time t. If streams has been discarded at timet
due to merging with another stream, thenCs(t′) = 0 ∀t′ > t.
Then, we can define the cost of a synchronization tree as
follows.

Definition 5. The cost of a synchronization treeT , corre-
sponding to a set ofn (original) streams,{s1, . . . , sn}, is
defined as

cost(T ) =
n∑

i=1

∫ P

0
Csi(t) dt ,

whereP is the time required for the synchronization.

As will become more apparent in Sect. 3, our goal of
solving the static stream-merging problem will translate into
the goal of constructing an optimum synchronization tree.

Definition 6. A synchronization treeT is said to be optimal
if cost(T ′) ≥ cost(T ) ∀ synchronization treesT ′ with leaves
s1, . . . , sn.

3 Complexity of static stream merging

In this section, we characterize the properties of an optimal
synchronization tree as well as propose an efficient algo-
rithm for solving the static stream-merging problem, based
on the idea of constructing a synchronization tree. We re-
strict the class of algorithms considered in this section, to the
algorithms with the following property: once a decision to
merge two streams has been made, their display rates remain
unchanged until the completion of the merging process.

In an optimal synchronization tree, the leading stream
s1 is always slowed down by a fraction of∆− and the
trailing streamsn is always sped up by a fraction of∆+. The
synchronization process completes when the trailing stream
and the leading stream are synchronized. Hence, we have
the following lemma.

Lemma 1. The time,P , to synchronize the set of streams
{s1, . . . , sn} is

ps1(0) − psn (0)
∆++∆−

.

Proof. At any time t ∈ [0, P ], the trailing streamsn has
a display rate of (1 +∆+)× the normal display rate, and
the leading streams1 has a display rate of (1− ∆−)× the
normal display rate. Hence, the trailing stream and the lead-
ing stream move towards each other at a rate of∆+ + ∆−
seconds per each second of display. Therefore, it takes
P =

ps1(0) − psn (0)
∆++∆−

seconds to synchronize all the streams.

Lemma 2. An optimal synchronization tree is a binary tree.
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Proof. From Definition 4, each internal node, including the
root of the tree, has at least two children. Suppose there
exists an optimal cost treeT which contains a node with
three childrensa, sb, and sc. Without loss of generality,
we assume thatrsa

(t) < rsb
(t) < rsc

(t). This situation is
illustrated in Fig. 1a. Let the display rates ofsa, sb, andsc

be Sa, Sb, andSc, respectively. Note thatSa > Sb > Sc ≥
Smin, because the three streams are merged at the same
time. Let the I/O bandwidths ofsa, sb, andsc be Ca, Cb,
andCc, respectively. LetP1 be the time of synchronization
of streams inT1. The cost of subtreeT1, coveringsa, sb,
andsc in Fig. 1a, is

P1(Ca + Cc) + P1Cb ,

whereCmin ≤ Cb ≤ Cmax. The first term indicates the I/O
cost for mergingsa andsc, while the second term indicates
the I/O cost for mergingsb.

We can now show that a subtreeT2 with a cost lower
than that ofT1 can be constructed to coversa, sb, and sc

by synchronizing streamssa andsb first 4, followed by syn-
chronization of streamssa andsc. In this case, the display
rate ofsb is Smin. This situation is illustrated in Fig. 1b. Let
P2 be the synchronization time ofsa andsb. Sincesa andsb

are merged first,P2 < P1. The cost of subtreeT2, covering
sa, sb, andsc in Fig. 1b, is

P1(Ca + Cc) + P2Cmin .

The first term represents the I/O cost for mergingsa andsc,
while the second term indicates the I/O cost for mergingsb.
SinceCmin ≤ Cb and P2 < P1, the cost of subtreeT2 is
less than that of subtreeT1. Therefore, the synchronization
tree in Fig. 1b has a lower cost than the synchronization tree
in Fig. 1a. Hence, an optimal tree cannot have a node with
three children. Similarly, we can show that an optimal tree
cannot have a node with four or more children by merging
streams in a pair-wise manner. The result follows.

The cost of stream synchronization depends on the order
in which the streams are synchronized. For example, suppose
∆+ = ∆− = 0.05, Cn = Cmin = Cmax = 1.5 Mbits/s, and
there are four streamss1, s2, s3, ands4, whereps1(0) = 15 s,
ps2(0) = 9.5 s, ps3(0) = 5.5 s, andps4(0) = 0 s. Two
possible synchronization treesT1 andT2 are shown in Fig. 2.
T1 is an optimal synchronization tree; it synchronizess1 and
s2 at timet = 55,s3 ands4 at timet = 55, and all streams
at timet = 150. Hence,cost(T1) = (55 + 55 + 150 + 150)×
1.5 Mbits = 615 Mbits.T2 synchronizess2 and s3 at time
t = 40, s2 and s4 at time t = 95, and all streams at
t = 150. Hence,cost(T2) = (40 + 95 + 150 + 150)× 1.5
Mbits = 652.5 Mbits. Note that, if we were given a slightly
different input, e.g., one whereps2(0) andps3(0) are 8 s and
7 s, respectively, thenT2 would be the optimal tree, at a
cost of 585 Mbits.

From the above example, it should be clear that the shape
of an optimal synchronization tree depends on the initial val-
ues of the playback points of all streams. Thus, we have to
consider how the remaining streams will be synchronized
when making a choice of a pair of adjacent streams to be
synchronized. Consider constructing the synchronization tree

4 The resources used bysb are released after it has been merged with
sa.

by choosing one pair of nodes (to merge) at a time, starting
with the leaf nodes and working our way up. Then we would
haven − 1 possible pairs of streams from which to choose
the first time,n − 2 possible pairs of streams from which
to choose the second time, andn − i − 1 possible pairs of
streams from which to choose thei-th time. Therefore, there
are (n − 1)! non-unique binary synchronization trees5. Due
to the inter-dependence between choices of pairs of streams
to merge and a large number of possible ways to build a
synchronization tree, it would be difficult or impossible to
find an efficient algorithm which finds an optimal synchro-
nization tree for all possible inputs. Thus, we concentrate on
simple heuristic algorithms.

To simplify our discussion in the remainder of this sec-
tion, we assume that∆+ = ∆− = ∆. For 2 ≤ i ≤ n,
let life(si) be the period between time 0 and the time when
the resources used bysi are released due to merging with
another stream. Letlife(s1) be the synchronization time of
the set ofn streams,{s1, . . . , sn}.

Definition 7. The time cost of a synchronization tree T, cor-
responding to the set ofn streams,{s1, . . . , sn}, is defined
as

time(T ) =
n∑

i=1

life(si).

Lemma 3. Given a synchronization treeT ,

time(T )Cmin ≤ cost(T ) ≤ time(T )Cmax

Proof. Since ∀i(1 ≤ i ≤ n), Cmin ≤ Csi
(t) ≤ Cmax for

t ∈ [0, P ],
n∑

i=1

life(si) × Cmin ≤
n∑

i=1

∫ P

0
Csi

(t) dt

≤
n∑

i=1

life(si) × Cmax

The result follows.

Theorem 1. An upper bound on the time cost of a synchro-
nization tree with the minimum time cost for the set of streams
{s1, . . . , sn} is equal to(log2(n) + 1)P , for all n ≥ 2, where

P =
ps1(0) − psn (0)

2∆ .

Proof. We use mathematical induction to prove the theo-
rem. Let P (n) be “the minimum time cost of synchroniz-
ing a set ofn streams{s1, . . . , sn} is less than or equal to

(log2(n) + 1)P , whereP =
ps1(0) − psn (0)

2∆ .”

Basis step.For n = 2, it takesP =
ps1(0) − ps2(0)

2∆ s
to synchronize the streams. Hence, the time cost = 2P =
(log2(2) + 1)P . Hence,P (n) is true forn = 2.

Inductive step.AssumeP (n) is true forn ≤ k for some
positive integerk ≥ 2. For n = k + 1, we divide the
streams into two groupsS1 and S2 such that∀s ∈ S1,
ps(0) <

ps1(0) + psn (0)
2 and∀s ∈ S2, ps(0) ≥ ps1(0) + psn (0)

2 .

5 The trees are not unique, because the same binary tree can be con-
structed in two or more different ways (i.e., corresponding to two or more
different sequences of stream merges).
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Fig. 1a,b.Theleft treecontains a node with three children. Theright treereduces the cost by synchronizing
the streams in a pair-wise manner

Fig. 2. The left and right binary treesareT1 andT2 respectively

Fig. 3. Synchronization tree

We synchronize streamss1, . . . , sn using the following pro-
cedure: streams inS1 are synchronized to become a stream
denoted bys′; streams inS2 are synchronized to become a
stream denoted bys′′; finally, s′ and s′′ are synchronized
to become a single stream. The synchronization treeT for
streamss1, . . . , sn is shown in Fig. 3. LetT1 andT2 be the
synchronization trees forS1 andS2, respectively. Letn1 and
n2 be | S1 | and | S2 |, respectively. LetP1 and P2 be the
synchronization time ofS1 and the synchronization time of
S2, respectively. LetD1 andD2 be P

2 −P1 and P
2 −P2, re-

spectively. SinceS1 andS2 must contain at least one stream,
we have 1 ≤ n1 ≤ k and 1 ≤ n2 ≤ k. From Fig. 3,
we have

time(T ) = 2 × P
2 + D1 + D2 + time(T1) + time(T2) .

By the inductive hypothesis,

time(T ) ≤ P + D1 + D2 + (log2(n1) + 1)P1

+(log2(n2) + 1)P2 .

SinceD1 log2(n1) ≥ 0 andD2 log2(n2) ≥ 0, we have

time(T ) ≤ P + (P1 + D1)(log2(n1) + 1)

+(P2 + D2)(log2(n2) + 1) .

By P
2 = D1 + P1 = D2 + P2,

time(T ) ≤ P +
P

2
(log2(n1) + 1) +

P

2
(log2(n2) + 1)

⇒ time(T ) ≤ P +
P

2
(log2(n1 × n2) + 2) .

Sincen1 + n2 = k + 1, n1 × n2 has the maximum value
whenn1 = n2 = k+1

2 . Therefore,

time(T ) ≤ P +
P

2
(log2(

(k + 1)2

22
) + 2)

⇒ time(T ) ≤ (log2(k + 1) + 1)P .

Thus,P (n) is true forn = k + 1.

Corollary 1. The cost of an optimal synchronization tree
corresponding to streamss1, . . . , sn is not greater than
P (log2(n) + 1)Cmax, whereP =

ps1(0)−psn (0)
2∆ .

Proof. The result follows from Theorem 1 and Lemma 3.

Using the proof of Theorem 1, we can construct a recur-
sive algorithm for finding a synchronization tree which has
a time cost not greater than (log2(n) + 1)P . This recursive
algorithm is used by the function BuildSyncTree, which is
given below. (The function returns the root of the synchro-
nization tree.)

function BuildSyncTree(set of streamsS): tree node pointer
var

set of streamsS1, S2;
streams′, s′′;
tree node pointert;

begin
t := new(tree node);
if | S | > 1 then

begin
s′ := first stream ofS;
s′′ := last stream ofS;

S1 := {s ∈ S | ps(0) <
ps′ (0) + ps′′ (0)

2 };

S2 := {s ∈ S | ps(0) ≥ ps′ (0) + ps′′ (0)
2 };

left child of t := BuildSyncTree(S1);
right child of t := BuildSyncTree(S2);

end
else

begin
left child of t := NULL ;
right child of t := NULL ;
stream oft := the stream inS;

end;
return (t);

end

Theorem 2. Given a set ofn streams,{s1, . . . , sn}, algo-
rithm BuildSyncTree requiresO(n log(n)) comparisons to
find a synchronization tree corresponding to thesen streams.

Proof. Represent the set of streams by an array ofn ele-
ments sorted in the descending order of the initial values
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of playback points. In the worst case, each call to func-
tion BuildSyncTree splits the set of streamsS into a set
containing only a single stream and another set contain-
ing | S | −1 streams. Using binary search, we can lo-
cate the split point ofS in O(log(| S |)) comparisons.
Therefore, in the worst case, the number of comparisons
is O(

∑n
i=2 log(i)) = O(n log(n)).

Let K be the set of all possible sets ofn streams with
the same synchronization timeP , where an element inK
is characterized by the initial relative playback points of
the n streams. In other words, since the time cost and the
synchronization cost ofn streams depend only on the relative
playback points of those streams, we do not need to make a
distinction between two sets of streams with identical initial
relative playback points.

Theorem 3. Let S = {s1, . . . , sn} be a set ofn streams,
whereS ∈ K andS has the largest optimal time cost among
the elements ofK . Then the time cost of a synchroniza-
tion tree with the minimum time cost, corresponding toS, is
greater than or equal toP log2(n), whereP =

ps1(0)−psn (0)
2∆

for all n ≥ 2.

Proof. Let P (n) be “the minimum time cost of synchro-
nization of streamss1, . . . , sn is at leastnτ log2(n) for some

input whereτ =
ps1(0)−psn (0)

2(n−1)∆ .”
For n = 2, P (n) is true.
AssumeP (n) is true forn ≤ k for some positive integer
k ≥ 2.
For n = k + 1, we chooses1, . . . , sn such that∀0 ≤ i ≤
n−1, psi

(0) − psi+1(0) = d for some positive real number
d > 0.
Let T be a synchronization tree fors1, . . . , sn. Let T1 and
T2 be the subtrees ofT . Let n1 and n2 be the number of
streams that are covered byT1 andT2, respectively. We have

n1 + n2 = k + 1,
τ = d

2∆ .

By Lemma 1, the streams ofT1 and the streams ofT2 will
be synchronized at timet = (n1 − 1)τ andt = (n2 − 1)τ ,
respectively, and all streams will be synchronized at time
t = kτ . Therefore, the remaining lifetime of the stream
at the root ofT1, after merging all streams inT1, and the
remaining lifetime of the stream at the root ofT2, after merg-
ing all streams inT2, arekτ − (n1 −1)τ andkτ − (n2 −1)τ ,
respectively. Thus,

time(T ) = kτ − (n1 − 1)τ + kτ − (n2 − 1)τ

+time(T1) + time(T2)

⇒ time(T ) ≥ (k + 1)τ + n1 log2(n1)τ

+n2 log2(n2)τ (by n1 + n2 = k + 1

and inductive hypothesis) .

Let F (x) = x log2(x) + (n−x) log2(n−x) for 1 ≤ x ≤ n−1
wheren ≥ 2 is a constant.

dF (x)
dx = log2(x) − log2(n − x)

For x = n
2 , dF (x)

dx = 0.
For x > n

2 , dF (x)
dx > 0.

For x < n
2 , dF (x)

dx < 0.
Hence, F (x) is minimum whenx = n

2 or F (x) ≥
n(log2(n) − 1).
Letting x = n1 andn = k + 1, we have:

time(T ) ≥ (k + 1)τ + F (k+1
2 )τ

⇒ time(T ) ≥ (k + 1)τ + (k + 1)(log2(k + 1) − 1)τ
⇒ time(T ) ≥ (k + 1) log2(k + 1)τ
⇒ P (n) is true forn = k + 1 .

By mathematical induction,P (n) is true for all positive inte-
gersn ≥ 2. Therefore,time(T ) ≥ n log2(n)τ ≥ P log2(n).
The result of the theorem follows as the time cost in the
worst case is greater than or equal to the time cost in the
case described above.

Corollary 2. The cost of an optimal synchronization tree
corresponding to the set of streams{s1, . . . , sn} is greater
than or equal toP log2(n)Cmin for some input whereP =
ps1(0)−psn (0)

2∆ .

Proof. By Theorem 3, there exists some input such that if
T ′ is the synchronization tree with the minimum time cost,
then

time(T ′) ≥ P log2(n) .

Let T be an optimal synchronization tree. We have

P log2(n) ≤ time(T ′) ≤ time(T )

⇒ P log2(n)Cmin ≤ time(T )Cmin

⇒ P log2(n)Cmin ≤ time(T )Cmin

≤ cost(T ) (by Lemma 3) .

Recall thatK is the set of all possible sets ofn streams
with the same synchronization timeP , where an element in
K is characterized by the initial relative playback points of
the n streams. Then we have the following corollary.

Corollary 3. Let S ∈ K be the set ofn streams with the
largest optimal synchronization cost among the elements of
K ; thenS satisfies the following condition:

Plog2(n)Cmin ≤ the optimal synchronization cost ofS

≤ P (log2(n) + 1)Cmax .

Proof. The result follows from Corollary 1 and Corollary 2.

Note that the upper and lower bounds diverge logarithmi-
cally, so the bounds on the worst case cost are tight.

4 Dynamic stream-merging algorithms

In a VOD system, a stream is initiated for an object when a
new request for that object arrives, and it is removed from
the system when the stream reaches the end of the object’s
display. Therefore, we have to consider the dynamic stream-
merging problem in order to optimize the I/O demand re-
duction resulting from the stream-merging approach. Thus,
in this section, we describe several dynamic stream-merging
algorithms. We consider a class of dynamic stream-merging
algorithms which make speed adjustments when one of the
following two types of events occurs:arrival or merge.
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An arrival event corresponds to an initiation of a new I/O
stream. Amergeevent corresponds to a merge of two I/O
streams.

The dynamic stream-merging problem is much more
complex than the static stream-merging problem. When an
event occurs, an algorithm which minimizes the I/O demand
must consider many factors, such as, the request arrival pro-
cess and the current playback points of the existing streams.
Complex stochastic modeling and optimization would be re-
quired to find the best way to merge the streams correspond-
ing to requests for the same object.

However, we can find a good heuristic for solving the
dynamic stream-merging problem by making use of an al-
gorithm constructed for solving the static stream-merging
problem. More specifically, we can break down a dynamic
stream-merging problem into several smaller static stream-
merging problems. The basic idea is to partition the streams
of the same video object into disjoint sets such that the
streams in each set can be merged into a single stream be-
fore any of the streams in this set terminate (due to reaching
the end of an object’s display). One possible partitioning
approach is to group the streams according to their arrival
times such that all the streams in the same group have ar-
rived within a time period, called thecatch-up window. We
use the term ‘window-based’ stream-merging algorithm to
refer to a dynamic stream-merging algorithm that partitions
streams into disjoint sets using a catch-up window. In the re-
mainder of this section, we present several dynamic merging
algorithms, whose performance is analyzed and compared in
Sects. 5 and 6, respectively.

4.1 Baseline algorithm

This is the normal situation. When a request arrives, there
is no attempt to adjust the display rates, i.e., all requests are
assigned the normal display rate, and there are no merging
events in the system.

4.2 Equal-Split algorithm

This algorithm partitions I/O streams into groups using a
catch-up window. For each group of streams, algorithm
BuildSyncTree is used to find a way to merge the streams in
the group. The streams are partitioned into groups such that
the period between the arrivals of any two streams in the
same group is bounded byW seconds, whereW is the size
of the catch-up window. (If the offline approach to speed
alteration is used (see Sect. 1), then the value ofW should
be chosen to strike a balance between the additional disk
storage required and the resulting I/O demand reduction.
Section 6.2 discusses this tradeoff in more detail, and Fig. 9
illustrates it.) The partitioning of I/O streams is done as fol-
lows. If a streams arrives at timet and there does not exist
a group of streams such that the arrival time of the leading
stream (the group leader) is less thant−W , thens becomes
the leader of a new group. All streams which arrive in the
period between timet andt + W belong to this new group.
The termcurrent group refers to the group of streams that
has been created most recently. The details of the algorithm
Equal-Split are given below.

procedure Equal-Split(Event event,float W )
var

set of streamsG;
begin

if (event is an arrival of streams at timet) then
if (there does not exist a group of streams such that the leading
stream of the group has arrived after timet − W ) then

begin
create a new group and puts into the new group;
speed ofs := Smin

end
else

begin
G := the set of streams in the current group;
put s into G;
call BuildSyncTree(G) to find a synchronization tree
for the streams inG;

end
else if (event is a merge of streamssi andsj ) then

begin
discardsj ;
if (si is the only stream in its group)then

speed ofsi := Sn

else if (si is going to merge with a slower stream according to
an already constructed synchronization tree)then

speed ofsi := Smin

else
speed ofsi := Smax;

end
end

The size of a catch-up window, i.e.,W , is a tuning pa-
rameter of the window-based algorithms. Note that there are
limitations on the actual value ofW ; thus we proceed by
deriving the maximum possible value ofW . The time re-
quired to merge the leading stream and the trailing stream
in some group must be less than the remaining lifetime of
the leading stream. Note that the leading stream is at most
(1 − ∆−)W seconds ahead of the trailing stream, because
the leading stream moves at a speed of (1− ∆−)Sn until
all streams have been merged. Hence, ifL is the normal
playback time of a video object, then

(1 − ∆−)W
∆+ + ∆−

≤ L − (1 − ∆−)W
1 − ∆−

,

or

W ≤ (∆+ + ∆−)L
(1 + ∆+)(1 − ∆−)

.

4.3 Brute-force algorithm

This algorithm is the same as the Equal-Split algorithm, ex-
cept that it finds an optimal synchronization tree for the
streams in each group by evaluating all the possible syn-
chronization trees. As mentioned in Sect. 3, given a group
of n streams, we can construct (n−1)! (corresponding) non-
unique binary synchronization trees.

4.4 Offline brute-force algorithm

This algorithm is the same as the brute-force algorithm, ex-
cept that it knows the arrival times of requests a priori, and
hence it performs better than the online brute-force algorithm
and the Equal-Split algorithm.
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Fig. 4. Synchronization tree forn streams under algorithm Equal-Split

5 Performance analysis

In this section, we present performance analysis of the
stream-merging algorithms described in Sect. 4, using the
mean total I/O demand, on a storage server, as the measure
of performance. We define the following notation to be used
in the derivations of this section. All analysis is done with
respect to a particular video object. Finally, we assume that
the request arrival process is Poisson.

L = normal playback time of a video object
λ = mean request arrival rate
ta = random variable representing the time between suc-

cessive I/O stream initiations
Wa = size of a catch-up window for algorithma (note

that we have already definedW in Sect. 4)
BWa = mean total I/O bandwidth demand under algorithm

a (bits/s)

Since the request arrival process is Poisson with rateλ,
the probability density function ofta is

fta
(x) = λe−λx for x ≥ 0 .

5.1 Analysis of the baseline algorithm

There is no merging of streams in the baseline algorithm.
Thus, the mean total bandwidth demand under this algo-
rithm is the product of the average number of streams that
are active simultaneously and the normal display bandwidth.
Hence, the expected I/O demand is

BWb = λLCn .

5.2 Analysis of the Equal-Split algorithm

The behavior of the Equal-Split algorithm is such that each
group of streams is statistically identical. We can therefore
analyze the mean I/O demand for one such group of streams
(and then use the results to compute the mean I/O demand
for the system). Consider Fig. 4, which depicts a system with
n streams.

Let d(w, k) and B(w, k) be the mean time between ar-
rivals of si and si+k−1 and the mean I/O cost (in bits) of
merging streamssi, . . . , si+k−1, respectively, given that (a)
exactlyk streams have arrived in a period ofw time units,
(b) streamsi has arrived at the beginning of the period, and

(c) streamssi+1, . . . , si+k−1 have arrived during this period.
Given thatk streams have arrived in a catch-up window of
length w, d(w, k) is the mean time between the arrivals of
the leading and the trailing streams in this set ofk streams,
andB(w, k) is the mean I/O cost (in bits) of merging these
k streams. Hence,d(Wes, n) and B(Wes, n) are the mean
time between arrivals ofs1 and sn and the mean I/O cost
of merging streamss1, . . . , sn, respectively.d(w, k) can be
expressed as

d(w, k) =
k − 1

k
w if k > 1 .

At this point we can deriveB(w, k). When k = 2, two
streams,si and si+1, are merged into one stream. Since
si has a display rate ofSmin = (1 − ∆−)Sn before the
merge and the time between arrivals ofsi andsi+1 is d(w, 2),
psi

(t) − psi+1(t) = (1 − ∆−)d(w, 2) when the merge begins
at time t. Then the cost of mergingsi andsi+1, B(w, 2), is
equal tod(w, 2)((1+∆+)Cmin

∆++∆−
+ (1−∆−)Cmax

∆++∆−
). Whenk > 2, let

i+ 1 be the number of streams covered by the left subtree of
the root of the synchronization tree. The probability that the
left subtree coversi + 1 streams is given by the following
binomial distribution,

2−(k−2) (k − 2)!
(k − 2 − i)!i!

, where 0≤ i ≤ k − 2 .

By taking the products of this probability and the corre-
sponding I/O cost and then summing over all possible cases,
we can derive the value ofB(w, k), which can be expressed
as

B(w, k) =




d(w, 2)(U1 + U2) if k = 2,

2−(k−2){∑k−3
i=1 Ck−2

i [B(d(w,k)
2 , i + 1)

+B(d(w,k)
2 , k − i − 1)+

(d(w, k) − d(d(w,k)
2 , i + 1))U1

+(d(w, k) − d(d(w,k)
2 , k − i − 1))U2]+

(2d(w, k) − d(d(w,k)
2 , k − 1))(U1 + U2)

+2B(d(w,k)
2 , k − 1)} if k > 2,

where U1 = (1+∆+)Cmin

∆++∆−
, U2 = (1−∆−)Cmax

∆++∆−
, and Ck

i =
k!

(k−i)!i! . Since,B(w, k) = B(1, k)w, we can expressB(w, k)
as

B(w, k) = wB′(k) ,

where

B′(k) =




U1+U2
2 if k = 2.

k−1
k2k−2 { 1

2

∑k−3
i=1 Ck−2

i [B′(i + 1)
+B′(k − 1 − i) + i+2

i+1U1

+ k−i
k−i−1U2]+

3k−2
2(k−1)(U1 + U2) + B′(k − 1)} if k > 2.

Since B′(k) can be solved recursively, we can compute
B(w, k). Let BWn

es be the mean total I/O cost for then
streams in Fig. 4. Then,BWn

es can be expressed as follows.

BWn
es =




WesCmin + [L − (1 − ∆−)Wes]Cn if n = 1

B(Wes, n) + [L − (1−∆−)d(Wes,n)
∆++∆−

]Cn if n ≥ 2



38

Since a new group of streams is initiated when a request
arrives after the end of the catch-up window of the previous
group and is terminated when the new catch-up window ex-
pires, the mean time between initiations of two consecutive
groups isWes+1/λ. The expected I/O demand for algorithm
Equal-Split is the product of the initiation rate of groups of
streams and the mean total I/O cost of a group; this expected
I/O demand can be expressed as

BWes =
1

Wes + 1/λ

∞∑
n=0

(λWes)ne−λWes

n!
BWn+1

es .

5.3 Validation of analytic result

In conclusion of this section, we validate our (approximate)
analysis of algorithm Equal-Split by comparing it with re-
sults obtained through simulation. The performance measure
which we consider is the percentage reduction of (or im-
provement in) the average bandwidth requirement of a sys-
tem, due to algorithm Equal-Split, as compared to the base-
line algorithm. Figure 5 shows the percentage bandwidth
improvement for several different catch-up windows. The
curves in Fig. 5 indicate that the analytic results match the
simulation results closely (for most cases we have consid-
ered). Therefore, the analytic results should be sufficient for
the performance evaluation of the algorithm under differ-
ent catch-up windows and arrival rates. Note however, that
the difference between analytic results and simulation results
becomes larger when the length of the catch-up window is
maximum (in this case, whenWa = 12 min). This is due to
the fact that, in the analysis of Sect. 5.2, we assumed that the
arrival times of all streams in the same group are known a
priori, and thus the synchronization tree can be constructed
according to the arrival times of all the streams in the group6.
The error caused by this assumption increases as the number
of requests in the group increases.

6 Performance of merging algorithms

In this section, we compare the performance of the Equal-
Split algorithm, the brute-force algorithm, the offline brute-
force algorithm, and two algorithms proposed in [5]. In [5],
the authors proposed the odd-even, simple, and greedy algo-
rithms. The odd-even algorithm attempts to reduce I/O de-
mand by at most 50%. The basic idea behind the odd-even
algorithm is to pair up and merge two consecutive streams
whenever possible. The simple algorithm merges streams in
a group by slowing down the leading stream of the group and
accelerating all streams trailing the leader. In the greedy al-
gorithm, adjacent streams are merged until no further merg-
ing of streams is possible. (It is basically a recursive appli-
cation of the odd-even algorithm.) We have evaluated the

6 That is, assuming that arrival times of all streams in the same group
are known a priori results in the assumption that merging decisions are
never “reversed”. This is not the case in algorithm Equal-Split, where it is
possible to “waste” some effort, because some merging decisions may be
“reversed” as a result of new arrivals.

Table 1. Values of parameters used in simulation

Parameter Value
L 120 min
Smin 28.5 frames/s
Sn 30 frames/s
Smax 31.5 frames/s
∆+ 0.05
∆− 0.05
Cmin 1.425 Mbits/s
Cn 1.5 Mbits/s
Cmax 1.575 Mbits/s

performance of the merging algorithms by computer simu-
lation, because we do not have the analytic results for the
brute-force and the offline brute-force algorithms7.

The maximum possible catch-up window (for the cases
discussed in this section) isWa = 12 min, when the
normal display time of a video object is 120 min and
∆+ = ∆− = 0.05. We have evaluated the performance of
the algorithms for the maximum catch-up window (Wa = 12
min), a catch-up window of medium length (Wa = 6 min),
and a relatively short catch-up window (Wa = 2 min). The
performance of each stream-merging algorithm was mea-
sured as the percentage reduction of (or improvement in) the
average bandwidth requirement of a system, as compared to
the baseline algorithm. The values of the parameters used
in the simulations are given in Table 1. The stream arrival
process was modeled as a Poisson process. The results are
presented with 95% confidence intervals where the length
of each confidence interval is bounded by 0.1%. Figures 6-
8 show the performance results for the maximum possible
catch-up windowWa = 12 min,Wa = 6 min, andWa = 2
min, respectively8.

Because of the extremely long computation time (O((n−
1)!)) of algorithm Brute-force, the simulation results for this
algorithm could not be obtained for high arrival rates, at
least not within 480 h of CPU time whenWes was between
6 min and 12 min.

The online brute-force, Equal-Split, and greedy algo-
rithms achieve a high I/O demand reduction at high arrival
rates. The brute-force and Equal-Split algorithms can re-
sult in reductions in I/O demand of more than 80% when
the mean inter-arrival time is 0.5 min and of more than
30% at relatively low arrival rates9. The results in Figs. 6-8
show that algorithm Equal-Split outperforms the odd-even
and greedy algorithms in all cases. With a catch-up window
of 12 min and the mean inter-arrival times of 0.5 to 10 min,
algorithm Equal-Split outperforms the odd-even algorithm
by 28% to 70%, and it outperforms the greedy algorithm by
5–20%.

The (online) brute-force algorithm performs only slightly
better than the Equal-Split algorithm in all cases for which

7 It appears, from the graphs reported in [5], that the simple algorithm
performs worse than the other two algorithms presented in the same paper,
at least for the Poisson arrival process. Hence, we do not include the simple
algorithm in our comparison.

8 We have modified the original odd-even and greedy algorithms in [5]
such thatWa is a tuning parameter of the algorithms rather than something
that is computed by the algorithm itself, as was defined in [5].

9 We refer to the cases for which it was possible to compute performance
results.
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Fig. 5. Validation of analysis of algorithm Equal-Split

Fig. 6. Performance of merging algorithms whenWa = 12 min

Fig. 7. Performance of merging algorithms whenWa = 6 min

Fig. 8. Performance of merging algorithms whenWa = 2 min

Fig. 9. Algorithm Equal-Split
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Table 2. Bandwidth improvement whenWa = 12 min

Mean inter-arrival Bandwidth improvement (%)
time (min) Offline brute-force Brute-force Equal-Split
0.5 NA NA 82.88
1.0 NA NA 73.96
2.0 NA 63.00 62.37
4.0 52.59 49.42 49.17
8.0 38.04 35.74 35.66
10.0 33.58 31.58 31.53

Table 3. Bandwidth improvement whenWa = 6 min

Mean inter-arrival Bandwidth improvement (%)
time (min) Offline brute-force Brute-force Equal-Split
0.5 NA NA 83.16
1.0 NA 74.57 74.06
2.0 63.82 62.19 62.00
4.0 49.05 47.91 47.87
8.0 34.05 33.34 33.32
10.0 29.50 28.90 28.90

it was possible to compute performance results. Indeed, the
performance difference of the two algorithms is under 1%.

6.1 Offline brute-force algorithm

We evaluated the performance of the offline brute-force al-
gorithm for several different catch-up windows. Tables 2–4
show the percentage bandwidth improvement of the Equal-
Split, brute-force, and offline brute-force algorithms for 12-,
6-, and 2-min catch-up windows, respectively. Note that we
can only obtain the performance of the (online) brute-force
and the offline brute-force algorithms for low-to-medium ar-
rival rates because of the extremely long computation time of
the algorithms. We ran the simulations on a Sun Sparc 2000
workstation with 20 processors. We parallelized the proce-
dure for searching for the optimal synchronization tree to
harness the power of 20 processors. Each table entry marked
with ’NA’ corresponds to a case in which a simulation run
could not be completed within 480 h of CPU time.

Since the offline brute-force algorithm has perfect knowl-
edge of arrival times of requests, it performs better than the
Equal-Split algorithm and the online brute-force algorithm10.
However, for low-to-medium arrival rates, it performs only
slightly better than its online counterpart, brute-force algo-
rithm, or the Equal-Split algorithm. Also, the online (or of-
fline) brute-force algorithm can perform slightly better than
the Equal-Split algorithm when the window length is 2 min
and the mean inter-arrival time is 0.5 min.

6.2 Limited merging

The alteration of display rates can be implemented by stor-
ing replicas of a video object for display rates (1− ∆−)Sn

and (1 +∆+)Sn. If replication of data is used to perform
display rate alteration, then we need to consider the amount
of additional disk space that would be necessary to store the
replicated data. Note that replicated data for speed-up and

10 Note that the offline brute-force does not necessarily minimize the I/O
cost for the dynamic stream-merging problem.

Table 4. Bandwidth improvement whenWa = 2 min

Mean inter-arrival Bandwidth improvement (%)
time (min) Offline brute-force Brute-force Equal-Split
0.5 76.46 75.84 75.82
1.0 62.87 62.43 62.40
2.0 46.59 46.42 46.29
4.0 31.00 30.82 30.82
8.0 18.56 18.46 18.46
10.0 15.35 15.27 15.27

slow-down is required while the streams in a group are be-
ing merged and is not required after the streams in a group
have been merged into a single stream. A smaller amount
of additional storage is required for a smaller catch-up win-
dow, because the amount of replicated data grows with the
time required to merge all streams in a group and hence
grows with the length of the catch-up window. On the other
hand, the larger the catch-up window, the greater the oppor-
tunity for I/O bandwidth demand reduction. Thus, there is
a tradeoff between the increase in storage requirements and
the reduction in I/O bandwidth demand.

We have investigated the performance of algorithm
Equal-Split under different lengths of catch-up windows. The
results are shown in Fig. 9. Given fairly small mean inter-
arrival times, most of the reduction in I/O demand can be
achieved using fairly small catch-up windows. This implies
that most of the reduction in I/O demand can be achieved
with only a small amount of storage overhead. For example,
when the mean inter-arrival time is 0.5 min and the catch-
up window is 1 min long, the reduction in I/O demand is
64.58%, as compared to 82.88% when using the maximum
possible catch-up window. However, the corresponding in-
crease in disk storage (for 120 min video) would be≈ 235
MB or 17% of the size of a video object for the 1-min catch-
up window and≈ 2.7 GB or 200% of the size of a video
object for the maximum possible catch-up window.

7 Conclusions

In summary, we have formalized the static stream-merging
problem, which minimizes the cost of merging a set ofn
streams, corresponding to requests for the same object, into a
single stream, given that it is possible to merge alln streams.
Our cost model is general and can be applied to many dif-
ferent architectures of VOD systems. The time required to
merge a set of streams depends only on the initial differ-
ence of the playback points of the trailing and the leading
streams in that set (Lemma 1), the maximum fraction of
the display rate by which a stream can be sped up, and the
maximum fraction of the display rate by which a stream can
be slowed down. We have also proposed an efficient heuris-
tic algorithm (BuildSyncTree), which requiresO(n log(n))
comparisons and finds a stream-merging order with an I/O
cost not higher thanP (log2(n) + 1)Cmax, for n > 1, where

P =
ps1(0)−psn (0)

2∆ is the time required to merge alln streams
in a set andCmax is the bandwidth requirement of the max-
imum display rate. Based on algorithm BuildSyncTree, we
have proposed a heuristic algorithm, Equal-Split, for solv-
ing the dynamic stream-merging problem. Although the of-
fline brute-force algorithm (also introduced in the context of
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dynamic stream-merging) has perfect knowledge of request
arrival times and can find an optimal way to merge each
group of streams of the same object which have arrived in
a catch-up window, simulation results indicate that the per-
formance of the Equal-Split algorithm is very close to that
of the offline brute-force algorithm11.

Moreover, we have shown that the optimum cost of
merging n streams, in the static merging problem, is not
greater thanP (log2(n) + 1)Cmax (Corollary 1). Algorithm
Equal-Split partitions the streams of the same video ob-
ject into disjoint sets using a catch-up window of length
W seconds and calls Algorithm BuildSyncTree to merge
the streams in each set. The playback points of the leading
stream and the trailing stream of a set of streams differ by
at most (1− ∆)W when the trailing stream arrives to the
system12. Hence, the total I/O cost of a set ofn streams13 is
not greater thanP (log2(n)+1)Cmax+(L−P )Cn+nWCmax,
whereP = (1−∆)W

2∆ ≤ L andL is the normal display time of
the video. Therefore, the total I/O cost of a set ofn streams
is not greater than (P log2(n) + L)Cmax + nWCmax ≤
(log2(n)+1)LCmax + 2∆

(1+∆)(1−∆)nLCmax. Thus, the total I/O
cost of the set ofn streams is reduced by at least a factor
of nCn

{log2(n)+1+ 2∆
(1+∆)(1−∆) n}Cmax

. The savings in I/O bandwidth

are substantial even for a small number of streams.
The cost/benefit tradeoff considered in this paper is the

balance between the reduction in I/O bandwidth demand and
the amount of storage overhead required for each video, i.e.,
we should only apply the stream-merging approach to a re-
quest for a given video when the benefit due to the I/O band-
width demand reduction is greater than the cost of the storage
overhead. Note that, in our algorithms, we have considered
merging of requests for a single object, without consider-
ing how that affects requests for other objects. i.e., we have
treated the I/O bandwidth resource allocated for servicing
requests for one object independently of servicing requests
for other objects. In practice, these are not independent; the
I/O bandwidth demand of a pair of streams in the process of
being merged could be larger than in the case where no at-
tempts at merging are made, depending on the relative values
of Cmin andCmax. Therefore, merging of two streams cor-
responding to requests for one object could deprive requests
for another object of the necessary bandwidth. However, we
expect this effect to be quite small, since the deviation from
the normal display rate is only a few percent, and thus we
expect the difference betweenCmin andCmax to be small.

Further work is required to either prove that there is
an efficient algorithm for finding an optimal way to merge
streams, both in the case of the static and the dynamic
stream-merging problems, or prove that the problem of find-
ing an optimal way to merge streams is in NP.

11 Note that the offline brute-force does not necessarily minimize the I/O
cost for the dynamic stream-merging problem.

12 The display rate of the leading stream isSmin before all the streams
in the set are merged.

13 Recall that the definition of the static merging problem guarantees that
it is possible to merge alln streams into a single stream. When the solution
to the static merging problem, Equal-Split, is used to construct a solution
to the dynamic merging algorithm, the actual value ofn depends on the
inter-arrival distribution as well as on the size of the catch-up window,W .
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