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Abstract—Traditional decision tree classifiers work with data
whose values are known and precise. We extend such classifiers
to handle data with uncertain information. Value uncertainty
arises in many applications during the data collection process. Ex-
ample sources of uncertainty include measurement/quantisation
errors, data staleness, and multiple repeated measurements.
With uncertainty, the value of a data item is often represented
not by one single value, but by multiple values forming a
probability distribution. Rather than abstracting uncertain data
by statistical derivatives (such as mean and median), we discover
that the accuracy of a decision tree classifier can be much
improved if the “complete information” of a data item (taking
into account the probability density function (pdf)) is utilised.
We extend classical decision tree building algorithms to handle
data tuples with uncertain values. Extensive experiments have
been conducted that show that the resulting classifiers are more
accurate than those using value averages. Since processing pdf’s
is computationally more costly than processing single values
(e.g., averages), decision tree construction on uncertain data is
more CPU demanding than that for certain data. To tackle this
problem, we propose a series of pruning techniques that can
greatly improve construction efficiency.

Index Terms—Uncertain Data, Decision Tree, Classification,
Data Mining

I. INTRODUCTION

Classification is a classical problem in machine learning
and data mining[1]. Given a set of training data tuples, each
having a class label and being represented by a feature vector,
the task is to algorithmically build a model that predicts
the class label of an unseen test tuple based on the tuple’s
feature vector. One of the most popular classification models
is the decision tree model. Decision trees are popular because
they are practical and easy to understand. Rules can also be
extracted from decision trees easily. Many algorithms, such
as ID3[2] and C4.5[3] have been devised for decision tree
construction. These algorithms are widely adopted and used
in a wide range of applications such as image recognition,
medical diagnosis[4], credit rating of loan applicants, scientific
tests, fraud detection, and target marketing.

In traditional decision-tree classification, a feature (an at-
tribute) of a tuple is either categorical or numerical. For the
latter, a precise and definite point value is usually assumed. In
many applications, however, data uncertainty is common. The
value of a feature/attribute is thus best captured not by a single
point value, but by a range of values giving rise to a probability
distribution. A simple way to handle data uncertainty is to
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abstract probability distributions by summary statistics such
as means and variances. We call this approach Averaging.
Another approach is to consider the complete information
carried by the probability distributions to build a decision tree.
We call this approach Distribution-based. In this paper we
study the problem of constructing decision tree classifiers on
data with uncertain numerical attributes. Our goals are (1) to
devise an algorithm for building decision trees from uncertain
data using the Distribution-based approach; (2) to investigate
whether the Distribution-based approach could lead to a higher
classification accuracy compared with the Averaging approach;
and (3) to establish a theoretical foundation on which pruning
techniques are derived that can significantly improve the
computational efficiency of the Distribution-based algorithms.

Before we delve into the details of our data model and
algorithms, let us discuss the sources of data uncertainty
and give some examples. Data uncertainty arises naturally in
many applications due to various reasons. We briefly discuss
three categories here: measurement errors, data staleness, and
repeated measurements.

a) Measurement Errors: Data obtained from measure-
ments by physical devices are often imprecise due to mea-
surement errors. As an example, a tympanic (ear) thermometer
measures body temperature by measuring the temperature of
the ear drum via an infrared sensor. A typical ear thermometer
has a quoted calibration error of ±0.2◦C, which is about
6.7% of the normal range of operation, noting that the human
body temperature ranges from 37◦C (normal) and to 40◦C
(severe fever). Compound that with other factors such as
placement and technique, measurement error can be very
high. For example, it is reported in [5] that about 24% of
measurements are off by more than 0.5◦C, or about 17% of
the operational range. Another source of error is quantisation
errors introduced by the digitisation process. Such errors can
be properly handled by assuming an appropriate error model,
such as a Gaussian error distribution for random noise or a
uniform error distribution for quantisation errors.

b) Data Staleness: In some applications, data values are
continuously changing and recorded information is always
stale. One example is location-based tracking system. The
whereabout of a mobile device can only be approximated by
imposing an uncertainty model on its last reported location[6].
A typical uncertainty model requires knowledge about the
moving speed of the device and whether its movement is
restricted (such as a car moving on a road network) or
unrestricted (such as an animal moving on plains). Typically
a 2D probability density function is defined over a bounded
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region to model such uncertainty.
c) Repeated Measurements: Perhaps the most common

source of uncertainty comes from repeated measurements. For
example, a patient’s body temperature could be taken multiple
times during a day; an anemometer could record wind speed
once every minute; the space shuttle has a large number of heat
sensors installed all over its surface. When we inquire about a
patient’s temperature, or wind speed, or the temperature of a
certain section of the shuttle, which values shall we use? Or,
would it be better to utilise all the information by considering
the distribution given by the collected data values?

As a more elaborate example, consider the “BreastCancer”
dataset reported in [7]. This dataset contains a number of
tuples. Each tuple corresponds to a microscopic image of
stained cell nuclei. A typical image contains 10–40 nuclei. One
of the features extracted from each image is the average radius
of nuclei. We remark that such a radius measure contains
a few sources of uncertainty: (1) an average is taken from
a large number of nuclei from an image, (2) the radius of
an (irregularly-shaped) nucleus is obtained by averaging the
length of the radial line segments defined by the centroid of the
nucleus and a large number of sample points on the nucleus’
perimeter, and (3) a nucleus’ perimeter was outlined by a user
over a fuzzy 2D image. From (1) and (2), we see that a radius
is computed from a large number of measurements with a wide
range of values. The source data points thus form interesting
distributions. From (3), the fuzziness of the 2D image can be
modelled by allowing a radius measure be represented by a
range instead of a concrete point-value.

Yet another source of uncertainty comes from the limitation
of the data collection process. For example, a survey may
ask a question like, “How many hours of TV do you watch
each week?” A typical respondent would not reply with an
exact precise answer. Rather, a range (e.g., “6–8 hours”) is
usually replied, possibly because the respondent is not so sure
about the answer himself. In this example, the survey can
restrict an answer to fall into a few pre-set categories (such
as “2–4 hours”, “4–7 hours”, etc.). However, this restriction
unnecessarily limits the respondents’ choices and adds noise
to the data. Also, for preserving privacy, sometimes point
data values are transformed to ranges on purpose before
publication.

From the above examples, we see that in many applications,
information cannot be ideally represented by point data. More
often, a value is best captured by a range possibly with a pdf.
Our concept of uncertainty refers to such ranges of values.
Again, our goal is to investigate how decision trees are built
over uncertain (range) data. Our contributions include:

1) A basic algorithm for constructing decision trees out of
uncertain datasets.

2) A study comparing the classification accuracy achieved
by the Averaging approach and the Distribution-based
approach.

3) A set of mathematical theorems that allow significant
pruning of the large search space of the best split point
determination during tree construction.

4) Efficient algorithms that employ pruning techniques
derived from the theorems.

5) A performance analysis on the various algorithms
through a set of experiments.

In the rest of this paper, we first describe some related works
briefly in Section II. Then, we define the problem formally in
Section III. In Section IV, we present our proposed algorithm
and show empirically that it can build decision trees with
higher accuracies than using only average values, especially
when the measurement errors are modelled appropriately.
Pruning techniques to improve our new algorithm are devised
in Section V, and experimental studies on the performance
are presented in Section VI. Finally, we briefly discuss some
related problems for further investigation in Section VII and
conclude the paper in Section VIII.

II. RELATED WORKS

There has been significant research interest in uncertain
data management in recent years. Data uncertainty has been
broadly classified as existential uncertainty and value uncer-
tainty. Existential uncertainty appears when it is uncertain
whether an object or a data tuple exists. For example, a
data tuple in a relational database could be associated with
a probability that represents the confidence of its presence[8].
“Probabilistic databases” have been applied to semi-structured
data and XML[9], [10]. Value uncertainty, on the other hand,
appears when a tuple is known to exist, but its values are
not known precisely. A data item with value uncertainty is
usually represented by a pdf over a finite and bounded region
of possible values[11], [12]. One well-studied topic on value
uncertainty is “imprecise queries processing”. The answer to
such a query is associated with a probabilistic guarantee on its
correctness. For example, indexing solutions for range queries
on uncertain data[13], solutions for aggregate queries[14] such
as nearest neighbour queries, and solutions for imprecise
location-dependent queries[11] have been proposed.

There has been a growing interest in uncertain data min-
ing. In [12], the well-known k-means clustering algorithm is
extended to the UK-means algorithm for clustering uncertain
data. As we have explained, data uncertainty is usually cap-
tured by pdf’s, which are generally represented by sets of sam-
ple values. Mining uncertain data is therefore computationally
costly due to information explosion (sets of samples vs. single
values). To improve the performance of UK-means, pruning
techniques have been proposed. Examples include min-max-
dist pruning[15] and CK-means[16]. Apart from studies in
partition-based uncertain data clustering, other directions in
uncertain data mining include density-based clustering (e.g.,
FDBSCAN[17]), frequent itemset mining[18] and density-
based classification[19]. Density-based classification requires
that the joint probability distribution of the data attributes
be known. In [19], each data point is given an error model.
Upon testing, each test tuple is a point-valued data. These
are very different from our data model, as we do not require
the knowledge of the joint probability distribution of the data
attributes. Each attribute is handled independently and may
have its own error model. Further, the test tuples, like the
training tuples, may contain uncertainty in our model.

Decision tree classification on uncertain data has been
addressed for decades in the form of missing values[2], [3].
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Missing values appear when some attribute values are not
available during data collection or due to data entry errors.
Solutions include approximating missing values with the ma-
jority value or inferring the missing value (either by exact or
probabilistic values) using a classifier on the attribute (e.g.,
ordered attribute tree[20] and probabilistic attribute tree[21]).
In C4.5[3] and probabilistic decision trees[22], missing values
in training data are handled by using fractional tuples. During
testing, each missing value is replaced by multiple values
with probabilities based on the training tuples, thus allowing
probabilistic classification results. In this work, we adopt the
technique of fractional tuple for splitting tuples into subsets
when the domain of its pdf spans across the split point.
We have also adopted the idea of probabilistic classification
results. We do not directly address the problem of handling
missing values. Rather, we tackle the problem of handling data
uncertainty in a more general form. Our techniques are general
enough for the existing missing-value handling methods to
be encapsulated naturally into our framework. Based on the
previously described approaches, a simple method of “filling
in” the missing values could be adopted to handle the missing
values, taking advantage of the capability of handling arbitrary
pdf’s in our approach. We can take the average of the pdf of
the attribute in question over the tuples where the value is
present. The result is a pdf, which can be used as a “guess”
distribution of the attribute’s value in the missing tuples. Then,
we can proceed with decision tree construction.

Another related topic is fuzzy decision tree. Fuzzy informa-
tion models data uncertainty arising from human perception
and understanding[23]. The uncertainty reflects the vagueness
and ambiguity of concepts, e.g., how hot is “hot”. In fuzzy
classification, both attributes and class labels can be fuzzy
and are represented in fuzzy terms[23]. Given a fuzzy attribute
of a data tuple, a degree (called membership) is assigned to
each possible value, showing the extent to which the data
tuple belongs to a particular value. Our work instead gives
classification results as a distribution: for each test tuple, we
give a distribution telling how likely it belongs to each class.
There are many variations of fuzzy decision trees, e.g., fuzzy
extension of ID3[24], [25] and Soft Decision Tree[26]. In these
models, a node of the decision tree does not give a crisp test
which decides deterministically which branch down the tree a
training or testing tuple is sent. Rather it gives a “soft test” or
a fuzzy test on the point-valued tuple. Based on the fuzzy truth
value of the test, the tuple is split into weighted tuples (akin to
fractional tuples) and these are sent down the tree in parallel.
This differs from the approach taken in this paper, in which
the probabilistic part stems from the uncertainty embedded in
the data tuples, while the test represented by each node of our
decision tree remains crisp and deterministic. The advantage of
our approach is that the tuple splitting is based on probability
values, giving a natural interpretation to the splitting as well
as the result of classification.

Building a decision tree on tuples with numerical, point-
valued data is computationally demanding [27]. A numerical
attribute usually has a possibly infinite domain of real or
integral numbers, inducing a large search space for the best
“split point”. Given a set of n training tuples with a numerical

attribute, there are as many as n − 1 binary split points
or ways to partition the set of tuples into two non-empty
groups. Finding the best split point is thus computationally
expensive. To improve efficiency, many techniques have been
proposed to reduce the number of candidate split points[28],
[27], [29]. These techniques utilise the convex property of
well-known evaluation functions like Information Gain[2] and
Gini Index[30]. For the evaluation function TSE (Training
Set Error), which is convex but not strictly convex, one only
needs to consider the “alternation points” as candidate split
points.[31] An alternation point is a point at which the ranking
of the classes (according to frequency) changes. In this paper,
we consider only strictly convex evaluation functions. (See
Section VII-D for a brief discussion on how non-convex
functions can be handled.) Compared to those works, ours can
be considered an extension of their optimisation techniques
for handling uncertain data (see Section V-A). In addition,
we have introduced novel pruning techniques that could be
applicable in handling point-valued data when the number of
data tuples is huge (see Sections V-B, V-C and VII-E).

III. PROBLEM DEFINITION

This section formally defines the problem of decision-tree
classification on uncertain data. We first discuss traditional
decision trees briefly. Then, we discuss how data tuples with
uncertainty are handled.

A. Traditional Decision Trees
In our model, a dataset consists of d training tuples,

{t1, t2, . . . , td}, and k numerical (real-valued) feature at-
tributes, A1, . . . Ak. The domain of attribute Aj is dom(Aj).
Each tuple ti is associated with a feature vector Vi =
(vi,1, vi,2, . . . , vi,k) and a class label ci, where vi,j ∈ dom(Aj)
and ci ∈ C, the set of all class labels. The classification
problem is to construct a model M that maps each feature
vector (vx,1, . . . , vx,k) to a probability distribution Px on C
such that given a test tuple t0 = (v0,1, . . . , v0,k, c0), P0 =
M(v0,1, . . . , v0,k) predicts the class label c0 with high accu-
racy. We say that P0 predicts c0 if c0 = arg maxc∈C P0(c).

In this paper we study binary decision trees with tests
on numerical attributes. Each internal node n of a decision
tree is associated with an attribute Ajn and a split point
zn ∈ dom(Ajn), giving a binary test v0,jn ≤ zn. An internal
node has exactly 2 children, which are labelled “left” and
“right”, respectively. Each leaf node m in the decision tree
is associated with a discrete probability distribution Pm over
C. For each c ∈ C, Pm(c) gives a probability reflecting how
likely a tuple assigned to leaf node m would have a class label
of c.

To determine the class label of a given test tuple t0 =
(v0,1, . . . , v0,k, ?), we traverse the tree starting from the root
node until a leaf node is reached. When we visit an internal
node n, we execute the test v0,jn ≤ zn and proceed to the left
child or the right child accordingly. Eventually, we reach a
leaf node m. The probability distribution Pm associated with
m gives the probabilities that t0 belongs to each class label
c ∈ C. For a single result, we return the class label c ∈ C that
maximises Pm(c).



TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 4

B. Handling Uncertainty Information

Under our uncertainty model, a feature value is represented
not by a single value, vi,j , but by a pdf, fi,j . For practical
reasons, we assume that fi,j is non-zero only within a bounded
interval [ai,j , bi,j ]. (We will briefly discuss how our methods
can be extended to handle pdf’s with unbounded domains in
Section VII-C.) A pdf fi,j could be programmed analytically if
it can be specified in closed form. More typically, it would be
implemented numerically by storing a set of s sample points
x ∈ [ai,j , bi,j ] with the associated value fi,j(x), effectively
approximating fi,j by a discrete distribution with s possible
values. We adopt this numerical approach for the rest this
paper. With this representation, the amount of information
available is exploded by a factor of s. Hopefully, the richer
information allows us to build a better classification model.
On the down side, processing large numbers of sample points
is much more costly. In this paper we show that accuracy
can be improved by considering uncertainty information. We
also propose pruning strategies that can greatly reduce the
computational effort.

A decision tree under our uncertainty model resembles that
of the point-data model. The difference lies in the way the
tree is employed to classify unseen test tuples. Similar to the
training tuples, a test tuple t0 contains uncertain attributes.
Its feature vector is thus a vector of pdf’s (f0,1, . . . , f0,k).
A classification model is thus a function M that maps such
a feature vector to a probability distribution P over C. The
probabilities for P are calculated as follows. During these
calculations, we associate each intermediate tuple tx with a
weight wx ∈ [0, 1]. Further, we recursively define the quantity
φn(c; tx, wx), which can be interpreted as the conditional
probability that tx has class label c, when the subtree rooted
at n is used as an uncertain decision tree to classify tuple tx
with weight wx.

For each internal node n (including the root node), to
determine φn(c; tx, wx), we first check the attribute Ajn

and
split point zn of node n. Since the pdf of tx under attribute
Ajn spans the interval [ax,jn , bx,jn ], we compute the “left”
probability pL =

∫ zn

ax,jn
fx,jn

(t) dt (or pL = 0 in case
zn < ax,jn

) and the “right” probability pR = 1 − pL. Then,
we split tx into 2 fractional tuples tL and tR. (The concept of
fractional tuples is also used in C4.5[3] for handling missing
values.) Tuples tL and tR inherit the class label of tx as well
as the pdf’s of tx for all attributes except Ajn

. Tuple tL is
assigned a weight of wL = wx · pL and its pdf for Ajn

is
given by

fL,jn
(x) =

{
fx,jn

(x)/wL if x ∈ [ax,jn
, zn]

0 otherwise
Tuple tR is assigned a weight and pdf analogously. We define
φn(c; tx, wx) = pL·φnL

(c; tL, wL)+pR·φnR
(c; tR, wR) where

nL and nR are the left child and the right child of node n,
respectively.

For every leaf node m, recall that it is associated with a
probability distribution Pm over C. We define φm(c; tx, wx) =
wx ·Pm(c). Finally, for each class c, let P (c) = φr(c; t0, 1.0),
where r is the root node of the decision tree. Obtained this
way, each probability P (c) indicates how likely it is that
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P (A) = 0× 0.172 + 0.3× 0.977 + 0.2× 0.0 + 0.15× 0.052 + 0.35× 0.821 = 0.59
P (B) = 0× 0.828 + 0.3× 0.023 + 0.2× 1.0 + 0.15× 0.948 + 0.35× 0.179 = 0.41

Fig. 1. Classifying a test tuple

the test tuple t0 has class label c. These computations are
illustrated in Figure 1, which shows a test tuple t0 with one
feature whose pdf has the domain [−2.5, 2]. It has a weight
of 1.0 and is first tested against the root node of the decision
tree. Based on the split point −1, we find that pL = 0.3 and
pR = 0.7. So, t0 is split into two tuples tL and tR with weights
wL = 0.3 and wR = 0.7. The tuple tL inherits the pdf from
t0 over the sub-domain [−2.5,−1], normalised by multiplying
by a factor of 1/wL. Tuple tR inherits the pdf from t0 in a
similar fashion. These tuples are then recursively tested down
the tree until the leaf nodes are reached. The weight distributed
in such a way down to each leaf node is then multiplied with
the probability of each class label at that leaf node. These are
finally summed up to give the probability distribution (over
the class labels) for t0, giving P (A) = 0.59; P (B) = 0.41.

If a single class label is desired as the result, we select the
class label with the highest probability as the final answer. In
the example in Figure 1, the test tuple is thus classified as
class “A” when a single result is desired.

The most challenging task is to construct a decision tree
based on tuples with uncertain values. It involves finding
a good testing attribute Ajn and a good split point zn for
each internal node n, as well as an appropriate probability
distribution Pm over C for each leaf node m. We describe
algorithms for constructing such trees in the next section.

IV. ALGORITHMS

In this section, we discuss two approaches for handling un-
certain data. The first approach, called “Averaging”, transforms
an uncertain dataset to a point-valued one by replacing each
pdf with its mean value. More specifically, for each tuple ti and
attribute Aj , we take the mean value1 vi,j =

∫ bi,j

ai,j
xfi,j(x) dx

as its representative value. The feature vector of ti is thus
transformed to (vi,1, . . . , vi,k). A decision tree can then be
built by applying a traditional tree construction algorithm.

To exploit the full information carried by the pdf’s, our
second approach, called “Distribution-based”, considers all the
sample points that constitute each pdf. The challenge here is

1One may alternatively use median or other summary statistics.
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that a training tuple can now “pass” a test at a tree node
probabilistically when its pdf properly contains the split point
of the test. Also, a slight change of the split point modifies
that probability, potentially altering the tree structure. We
present details of the tree-construction algorithms under the
two approaches in the following subsections.

A. Averaging

A straight-forward way to deal with the uncertain infor-
mation is to replace each pdf with its expected value, thus
effectively converting the data tuples to point-valued tuples.
This reduces the problem back to that for point-valued data,
and hence traditional decision tree algorithms such as ID3
and C4.5[3] can be reused. We call this approach AVG (for
Averaging). We use an algorithm based on C4.5. Here is a
brief description.

AVG is a greedy algorithm that builds a tree top-down.
When processing a node, we examine a set of tuples S. The
algorithm starts with the root node and with S being the set
of all training tuples. At each node n, we first check if all the
tuples in S have the same class label c. If so, we make n a leaf
node and set Pn(c) = 1, Pn(c′) = 0 ∀c′ 6= c. Otherwise, we
select an attribute Ajn

and a split point zn and divide the tuples
into two subsets: “left” and “right”. All tuples with vi,jn

≤ zn

are put in the “left” subset L; the rest go to the “right” subset
R. If either L or R is empty (even after exhausting all possible
choices of Ajn

and zn), it is impossible to use the available
attributes to further discern the tuples in S. In that case, we
make n a leaf node. Moreover, the population of the tuples in
S for each class label induces the probability distribution Pn.
In particular, for each class label c ∈ C, we assign to Pn(c)
the fraction of tuples in S that are labelled c. If neither L
nor R is empty, we make n an internal node and create child
nodes for it. We recursively invoke the algorithm on the “left”
child and the “right” child, passing to them the sets L and R,
respectively.

To build a good decision tree, the choice of Ajn and zn

is crucial. At this point, we may assume that this selection
is performed by a blackbox algorithm BestSplit, which takes
a set of tuples as parameter, and returns the best choice of
attribute and split point for those tuples. We will examine this
blackbox in details. Typically, BestSplit is designed to select
the attribute and split point that minimises the degree of disper-
sion. The degree of dispersion can be measured in many ways,
such as entropy (from information theory) or Gini index[30].
The choice of dispersion function affects the structure of the
resulting decision tree.2 In this paper we assume that entropy is
used as the measure since it is predominantly used for building
decision trees. (Our methods are also valid for Gini index. See
Section VII-D.) The minimisation is taken over the set of all
possible attributes Aj (j = 1, . . . , k), considering all possible
split points in dom(Aj). Given a set S = {t1, . . . , tm} of m
tuples with point values, there are only m−1 ways to partition

2Analysis in [32] has discovered that using Gini index tends to put tuples
of the majority class into one subset and the remaining tuples into the other
subset. Entropy, on the other hand, prefers to balance the sizes of the resulting
subsets.

TABLE I
EXAMPLE TUPLES

tuple class mean probability distribution
-10 -1.0 0.0 +1.0 +10

1 A +2.0 8/11 3/11
2 A −2.0 1/9 8/9
3 A +2.0 5/8 1/8 2/8
4 B −2.0 5/19 1/19 13/19
5 B +2.0 1/35 30/35 4/35
6 B −2.0 3/11 8/11

A: 1/3
B: 2/3

A: 2/3
B: 1/3

x
≤
−2 x

>
−2

(a) Averaging

A: 0.800
B: 0.200

A: 0.212
B: 0.788

x
≤ −

1 x
> −1

(b) Distribution-based

Fig. 2. Decision tree built from example tuples in Table I

S into two non-empty L and R sets. For each attribute Aj , the
split points to consider are given by the set of values of the
tuples under attribute Aj , i.e., {v1,j , . . . vm,j}. Among these
values, all but the largest one give valid split points. (The
largest one gives an empty R set, so invalid.)

For each of the (m − 1)k combinations of attributes (Aj)
and split points (z), we divide the set S into the “left” and
“right” subsets L and R. We then compute the entropy for
each such combination:

H(z,Aj) =
∑

X=L,R

|X|
|S|

(∑
c∈C

−pc/X log2 pc/X

)
(1)

where pc/X is the fraction of tuples in X that are labelled
c. We take the pair of attribute Aj∗ and split point z∗ that
minimises H(z,Aj) and assign to node n the attribute Aj∗

with split point z∗.3

Let us illustrate this classification algorithm using the ex-
ample tuples shown in Table I. This set consists of 6 tuples
of 2 class labels “A” and “B”. Each tuple has only 1 attribute,
whose (discrete) probability distribution is shown under the
column “probability distribution”. For instance, tuple 3 has
class label “A” and its attribute takes the values of −1, +1,
+10 with probabilities 5/8, 1/8, 2/8 respectively. The column
“mean” shows the expected value of the attribute. For example,
tuple 3 has an expected value of +2.0. With Averaging, there
is only 1 way to partition the set: the even numbered tuples go
to L and the odd-numbered tuples go to R. The tuples in each
subset have the same mean attribute value, and hence cannot
be discerned further. The resulting decision tree is shown in
Figure 2(a). Since the left subset has 2 tuples of class B and
1 tuple of class A, the left leaf node L has the probability
distribution PL(A) = 1/3 and PL(B) = 2/3 over the class
labels. The probability distribution of class labels in the right
leaf node R is determined analogously. Now, if we use the 6
tuples in Table I as test tuples4 and use this decision tree to

3To alleviate the problem of over-fitting, we apply the techniques of pre-
pruning and post-pruning (see [33], [3] for details).

4 In practice and in the following experiments, disjoint training sets and
testing sets are used. In this hand-crafted example, however, we use the same
tuples for both training and testing just for illustration.
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classify them, we would classify tuples 2, 4, 6 as class “B”
(the most likely class label in L) and hence misclassify tuple
2. We would classify tuples 1, 3, 5 as class “A”, thus getting
the class label of 5 wrong. The accuracy is 2/3.

B. Distribution-based

For uncertain data, we adopt the same decision tree building
framework as described above for handling point data. After
an attribute Ajn

and a split point zn has been chosen for a
node n, we have to split the set of tuples S into two subsets
L and R. The major difference from the point-data case lies
in the way the set S is split. Recall that the pdf of a tuple
ti ∈ S under attribute Ajn

spans the interval [ai,jn
, bi,jn

]. If
bi,jn

≤ zn, the pdf of ti lies completely on the left of the split
point and thus ti is assigned to L. Similarly, we assign ti to R
if zn < ai,jn . If the pdf properly contains the split point, i.e.,
ai,jn

≤ zn < bi,jn
, we split ti into two fractional tuples tL

and tR in the same way as described in Section III-B and add
them to L and R, respectively. We call this algorithm UDT
(for Uncertain Decision Tree).

Again, the key to building a good decision tree is a good
choice of an attribute Ajn and a split point zn for each node n.
With uncertain data, however, the number of choices of a split
point given an attribute is not limited to m − 1 point values.
This is because a tuple ti’s pdf spans a continuous range
[ai,j , bi,j ]. Moving the split point from ai,j to bi,j continuously
changes the probability pL =

∫ zn

ai,jn
fi,jn

(x) dx (and likewise
for pR). This changes the fractional tuples tL and tR, and
thus changes the resulting tree. If we model a pdf by s sample
values, we are approximating the pdf by a discrete distribution
of s points. In this case, as the split point moves from one
end-point ai,j to another end-point bi,j of the interval, the
probability pL changes in s steps. With m tuples, there are
in total ms sample points. So, there are at most ms − 1
possible split points to consider. Considering all k attributes,
to determine the best (attribute, split-point) pair thus require
us to examine k(ms− 1) combinations of attributes and split
points. Comparing to AVG, UDT is s time more expensive.

Note that splitting a tuple into two fractional tuples involves
a calculation of the probability pL, which requires an inte-
gration. We remark that by storing the pdf in the form of a
cumulative distribution, the integration can be done by simply
subtracting two cumulative probabilities.

Let us re-examine the example tuples in Table I to see how
the distribution-based algorithm can improve classification
accuracy. By taking into account the probability distribution,
UDT builds the tree shown in Figure 3 before pre-pruning
and post-pruning are applied. This tree is much more elaborate
than the tree shown in Figure 2(a), because we are using more
information and hence there are more choices of split points.
The tree in Figure 3 turns out to have a 100% classification
accuracy! After post-pruning, we get the tree in Figure 2(b).
Now, let us use the 6 tuples in Table I as testing tuples4 to test
the tree in Figure 2(b). For instance, the classification result
of tuple 3 gives P (A) = 5/8× 0.80 + 3/8× 0.212 = 0.5795
and P (B) = 5/8 × 0.20 + 3/8 × 0.788 = 0.4205. Since the
probability for “A” is higher, we conclude that tuple 3 belongs

A: 0.172
B: 0.828

A: 0.977
B: 0.023

A: 0.821
B: 0.179

A: 0.000
B: 1.000
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x
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x
≤
−10

x
>
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x
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x
≤
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>
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Fig. 3. Example decision tree before post-pruning

TABLE II
SELECTED DATASETS FROM THE UCI MACHINE LEARNING REPOSITORY

Data Training No. of No. of Test
Set Tuples Attributes Classes Tuples

JapaneseVowel 270 12 9 370
PenDigits 7494 16 10 3498
PageBlock 5473 10 5 10-fold

Satellite 4435 36 6 2000
Segment 2310 14 7 10-fold
Vehicle 846 18 4 10-fold

BreastCancer 569 30 2 10-fold
Ionosphere 351 32 2 10-fold

Glass 214 9 6 10-fold
Iris 150 4 3 10-fold

to class “A”. All the other tuples are handled similarly, using
the label of the highest probability as the final classification
result. It turns out that all 6 tuples are classified correctly.
This hand-crafted example thus illustrates that by considering
probability distributions rather than just expected values, we
can potentially build a more accurate decision tree.

C. Experiments on Accuracy

To explore the potential of achieving a higher classification
accuracy by considering data uncertainty, we have imple-
mented AVG and UDT and applied them to 10 real data
sets (see Table II) taken from the UCI Machine Learning
Repository[34]. These datasets are chosen because they con-
tain mostly numerical attributes obtained from measurements.
For the purpose of our experiments, classifiers are built on the
numerical attributes and their “class label” attributes. Some
data sets are already divided into “training” and “testing”
tuples. For those that are not, we use 10-fold cross validation
to measure the accuracy.

The first data set contains 640 tuples, each representing an
utterance of Japanese vowels by one of the 9 participating
male speakers. Each tuple contains 12 numerical attributes,
which are LPC (Linear Predictive Coding) coefficients. These
coefficients reflect important features of speech sound. Each
attribute value consists of 7–29 samples of LPC coefficients
collected over time. These samples represent uncertain infor-
mation, and are used to model the pdf of the attribute for
the tuple. The class label of each tuple is the speaker id. The
classification task is to identify the speaker when given a test
tuple.

The other 9 data sets contain “point values” without un-
certainty. To control the uncertainty for sensitivity studies,
we augment these data sets with uncertainty information
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generated as follows. We model uncertainty information by
fitting appropriate error models on to the point data. For
each tuple ti and for each attribute Aj , the point value vi,j

reported in a dataset is used as the mean of a pdf fi,j ,
defined over an interval [ai,j , bi,j ]. The range of values for
Aj (over the whole data set) is noted and the width of
[ai,j , bi,j ] is set to w · |Aj |, where |Aj | denotes the width
of the range for Aj and w is a controlled parameter. To
generate the pdf fi,j , we consider two options. The first is
uniform distribution, which implies fi,j(x) = (bi,j − ai,j)−1.
The other option is Gaussian distribution5, for which we use
1
4 (bi,j − ai,j) as the standard deviation. In both cases, the pdf
is generated using s sample points in the interval. Using this
method (with controllable parameters w and s, and a choice
of Gaussian vs. uniform distribution), we transform a data set
with point values into one with uncertainty. The reason that we
choose Gaussian distribution and uniform distribution is that
most physical measures involve random noise which follows
Gaussian distribution, and that digitisation of the measured
values introduces quantisation noise that is best described by
a uniform distribution. Of course, most digitised measurements
suffer from a combination of both kinds of uncertainties. For
the purpose of illustration, we have only considered the two
extremes of a wide spectrum of possibilities.

The results of applying AVG and UDT to the 10 datasets are
shown in Table III. As we have explained, under our uncer-
tainty model, classification results are probabilistic. Following
[3], we take the class label of the highest probability as the
final class label. We have also run an experiment using C4.5[3]
with the information gain criterion. The resulting accuracies
are very similar to those of AVG and are hence omitted. In
the experiments, each pdf is represented by 100 sample points
(i.e., s = 100), except for the “JapaneseVowel” data set. We
have repeated the experiments using various values for w.
For most of the datasets, Gaussian distribution is assumed as
the error model. Since the data sets “PenDigits”, “Vehicle”
and “Satellite” have integer domains, we suspected that they
are highly influenced by quantisation noise. So, we have also
tried uniform distribution on these three datasets, in addition
to Gaussian.6 For the “JapaneseVowel” data set, we use the
uncertainty given by the raw data (7–29 samples) to model the
pdf.

From the table, we see that UDT builds more accurate
decision trees than AVG does for different distributions over a
wide range of w. For the first data set, whose pdf is modelled
from the raw data samples, the accuracy is improved from
81.89% to 87.30%; i.e., the error rate is reduced from 18.11%
down to 12.70%, which is a very substantial improvement.
Only in a few cases (marked with “#” in the table) does UDT
give slightly worse accuracies than AVG. To better show the
best potential improvement, we have identified the best cases
(marked with “∗”) and repeated them in the third column of the

5Strictly speaking, Gaussian distribution has non-zero density on the whole
real-number line. Here, we assume the Gaussian distribution is chopped at
both ends symmetrically, and the remaining non-zero region around the mean
is renormalised.

6 For the other datasets, we did not use uniform distribution, and we indicate
this with “N/A” (meaning “not applicable”) in the table.

TABLE III
ACCURACY IMPROVEMENT BY CONSIDERING THE DISTRIBUTION

UDT
Data Set AVG Best Gaussian Distribution Uniform Distribution

Case w=1% w=5% w=10% w=20% w=2% w=10% w=20%
JapaneseVowel 81.89 87.30 ∗87.30 (The distribution is based on samples from raw data)

Pen-Digit 90.87 96.11 91.66 92.18 93.79 95.22 91.68 93.76 ∗96.11
PageBlock 95.73 96.82 ∗96.82 96.32 95.74 94.87# N/A

Satellite 84.48 87.73 85.18 87.1 ∗87.73 86.25 85.9 87.2 85.9
Segment 89.37 92.91 91.91 ∗92.91 92.23 89.11# N/A
Vehicle 71.03 75.09 72.44 72.98 73.18 ∗75.09 69.97# 71.04 71.62

BreastCancer 93.52 95.93 94.73 94.28 95.51 ∗95.93 N/A
Ionosphere 88.69 91.69 89.65 88.92 ∗91.69 91.6 N/A

Glass 66.49 72.75 69.6 ∗72.75 70.79 69.69 N/A
Iris 94.73 96.13 94.47# 95.27 96 ∗96.13 N/A

table. Comparing the second and third columns of Table III, we
see that UDT can potentially build remarkably more accurate
decision trees than AVG. For example, for the “Iris” data set,
the accuracy improves from 94.73% to 96.13%. (Thus, the
error rate is reduced from 5.27% down to 3.87%.)

Using Gaussian distribution gives better accuracies in 8
out of the 9 datasets where we have modelled the error
distributions as described above. This suggests that the effects
of random noise dominates quantisation noise. The exception
is “PenDigits”. As we have pointed out, this dataset contains
integral attributes, which is likely subject to quantisation noise.
By considering a uniform distribution as the error model,
such noise is taken into consideration, resulting in a high
classification accuracy.

We have repeated the experiments and varied s, the number
of sample points per pdf, from 50 to 200. There is no signifi-
cant change in the accuracies as s varies. This is because we
are keeping the pdf generation method unchanged. Increasing
s improves our approximation to the distribution, but does not
actually change the distribution. This result, however, does not
mean that it is unimportant to collect measurement values. In
real applications, collecting more measurement values allow us
to have more information to model the pdf’s more accurately.
This can help improve the quality of the pdf models. As
shown above, modelling the probability distribution is very
important when applying the distribution-based approach. So,
it is still important to collect information on uncertainty. (We
will discuss about this further in Section VII-A.)

D. Effect of Noise Model

How does the modelling of the noise affect the accuracy?
In the previous section, we have seen that by modelling the
error, we can build decision trees which are more accurate.
It is natural to hypothesise that the closer we can model the
error, the better the accuracy will be. We have designed the
following experiment to verify this claim.

In the experiment above, we have taken data from the
UCI repository and directly added uncertainty to it so as to
test our UDT algorithm. The amount of errors in the data
is uncontrolled. So, in the next experiment, we inject some
artificial noise into the data in a controlled way. For each
dataset (except “JapaneseVowel”), we first take the data from
the repository. For each tuple ti and for each attribute Aj , the
point value vi,j is perturbed by adding a Gaussian noise with
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Fig. 4. Experiment with controlled noise on dataset “Segment”

zero mean and a standard deviation equal to σ = 1
4 (u · |Aj |),

where u is a controllable parameter. So, the perturbed value is
ṽi,j = vi,j +δi,j , where δi,j is a random number which follows
N
(
0, σ2

)
. Finally, on top of this perturbed data, we add

uncertainty as described in the last subsection (with parameters
w and s). Then, we run AVG and UDT to obtain the accuracy,
for various values u and w (keeping s = 100).

If the data from the UCI repository were ideal and 100%
error-free, then we should expect to get the highest accuracy
whenever u = w. This is because when u = w, the uncertainty
that we use would perfectly model the perturbation that we
have introduced. So, if our hypothesis is correct, UDT would
build decision trees with the higher accuracy. Nevertheless, we
cannot assume that the datasets are error-free. It is likely that
some sort of measurement error is incurred in the collection
process of these datasets. For simplicity of analysis, let us
assume that the errors are random errors εi,j following a Gaus-
sian distribution with zero mean and some unknown variance
σ̌2. So, if v̌i,j is the true, noise-free (but unknown to us) value
for attribute Aj in tuple ti, then vi,j = v̌i,j + εi,j . Hence, in
the perturbed dataset, we have ṽi,j = v̌i,j + εi,j + δi,j . Note
that the total amount of noise in this value is εi,j +δi,j , which
is the sum of two Gaussian-distributed random variables. So,
the sum itself also follows the Gaussian distribution N(0, σ̃2)
where σ̃2 = σ̌2 + σ2. If our hypothesis is correct, then UDT
should give the best accuracy when w matches this σ̃, i.e.,

when
(

w·|Aj |
4

)2

= σ̃2 = σ̌2 + σ2 = σ̌2 +
(

u·|Aj |
4

)2

, i.e.,

w2 = (κ · σ̌)2 + u2 (2)

for some constant κ.
We have carried out this experiment and the results for the

dataset “Segment” is plotted in Figure 4. Each curve (except
the one labelled “model”, explained below) in the diagram
corresponds to one value of u, which controls the amount of
perturbation that has been artificially added to the UCI dataset.
The x-axis corresponds to different values of w—the error
model that we use as the uncertainty information. The y-axis
gives the accuracy of the decision tree built by UDT. Note
that for points with w = 0, the decision trees are built by
AVG. To interpret this figure, let us first examine each curve
(i.e., when u is fixed). It is obvious from each curve that UDT

gives significantly higher accuracies than AVG. Furthermore,
as w increases from 0, the accuracy rises quickly to up a
plateau, where it remains high (despite minor fluctuations).
This is because as w approaches the value given by (2), the
uncertainty information models the error better and better,
yielding more and more accurate decision trees. When w
continues to increase, the curves eventually drop gradually,
showing that as the uncertainty model deviates from the error,
the accuracy drops. From these observations, we can conclude
that UDT can build significantly more accurate decision trees
than AVG. Moreover, such high accuracy can be achieved over
a wide range of w (along the plateaux). So, there is a wide
error-margin for estimating a good w to use.

Next, let us compare the different curves, which correspond
to different values of u—the artificially controlled pertur-
bation. The trend observed is that as u increases, accuracy
decreases. This agrees with intuition: the greater the degree
of perturbation, the more severely are the data contaminated
with noise. So, the resulting decision trees become less and
less accurate. Nevertheless, with the help of error models and
UDT, we are still able to build decision trees of much higher
accuracies than AVG.

Last but not least, let us see if our hypothesis can be verified.
Does a value of w close to that given by (2) yield a high
accuracy? To answer this question, we need to estimate the
value of κ · σ̌. We do this by examining the curve for u = 0.
Intuitively, the point with the highest w should give a good
estimation of κ·σ̌. However, since the curve has a wide plateau,
it is not easy to find a single value of w to estimate the value.
We adopt the following approach: Along this curve, we use
the accuracy values measured from the repeated trials in the
experiment to estimate a 95%-confidence interval for each data
point, and then find out the set of points whose confidence
interval overlaps with that of the point of highest accuracy.
This set of points then gives a range of values of w, within
which the accuracy is high. We take the mid-point of this
range as the estimate for κ · σ̌. Based on this value and (2), we
calculate a value of w for each u, and repeat the experiments
with each such pair of (u,w). The accuracy is measured and
plotted in the same figure as the curve labelled “model”. From
the figure, it can be seen that the points where the “model”
curve intersects the other curves lie within the plateau of them.
This confirms our claim that when the uncertain information
models the error closely, we can get high accuracies.

We have repeated this experiment with all the other datasets
shown in Table II (except “JapaneseVowel”), and the obser-
vations are similar. Thus, we conclude that our hypothesis is
confirmed: The closer we can model the error, the better will
be the accuracy of the the decision trees build by UDT.

V. PRUNING ALGORITHMS

Although UDT can build a more accurate decision tree,
it is not as efficient as AVG. As we have explained, to
determine the best attribute and split point for a node, UDT
has to examine k(ms − 1) split points, where k = number
of attributes, m = number of tuples, and s = number of
samples per pdf. (AVG has to examine only k(m − 1) split
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points.) For each such candidate attribute Aj and split point
z, an entropy H(z,Aj) has to be computed (see (1)). Entropy
calculations are the most computation-intensive part of UDT.
Our approach to developing more efficient algorithms is to
come up with strategies for pruning candidate split points and
entropy calculations.

Note that we are considering safe pruning here. We are
only pruning away candidate split points that give sub-optimal
entropy values.7 So, even after pruning, we are still finding
optimal split points. Therefore, the pruning algorithms do not
affect the resulting decision tree, which we have verified in our
experiments. It only eliminates sub-optimal candidates from
consideration, thereby speeding up the tree building process.

A. Pruning Empty and Homogeneous Intervals

Recall that the BestSplit function in UDT is to solve
the optimisation problem of minimising H(z,Aj) over all
attributes Aj and all possible split points in dom(Aj). Let
us first focus on finding the best split point for one particular
attribute Aj . (Note that there may be more than one best split
point, each giving the same entropy value. Finding any one
of them suffices.) We then repeat the process to find the best
split point for every other attribute. The attribute with the best
split point giving the lowest entropy is taken as the result of
BestSplit.

We define the set of end-points of tuples in S on attribute
Aj as Qj = {q | (q = ah,j) ∨ (q = bh,j) for some th ∈ S}.
We assume that there are v such end-points, q1, q2, . . . , qv ,
sorted in ascending order. Within [q1, qv], we want to find an
optimal split point for attribute Aj .

Definition 1: For a given set of tuples S, an optimal split
point for an attribute Aj is one that minimises H(z,Aj). (Note
that the minimisation is taken over all z ∈ [q1, qv].)

The end-points define v− 1 disjoint intervals: (qi, qi+1] for
i = 1, . . . , v − 1. We will examine each interval separately.
For convenience, an interval is denoted by (a, b].

Definition 2 (Empty interval): An interval (a, b] is empty if∫ b

a
fh,j(x) dx = 0 for all th ∈ S.
Definition 3 (Homogeneous interval): An interval (a, b] is

homogeneous if there exists a class label c ∈ C such that∫ b

a
fh,j(x) dx 6= 0⇒ ch = c for all th ∈ S.
Intuitively, an interval is empty if no pdf’s intersect it; an

interval is homogeneous if all the pdf’s that intersect it come
from tuples of the same class.

Definition 4 (Heterogeneous interval): An interval (a, b] is
heterogeneous if it is neither empty nor homogeneous.

Theorem 1: If an optimal split point falls in an empty
interval, then an end-point of the interval is also an optimal
split point.

Proof: By the definition of information gain, if the
optimal split point can be found in the interior of an empty
interval (a, b], then that split point can be replaced by the end-
point a without changing the resulting entropy.

7 We may prune away some optimal split points (as in the case of uniform
distribution), but we only do so when we are sure that at least one other
optimal split point (with the same entropy) remains in our candidate pool for
consideration.

As a result of this theorem, if (a, b] is empty, we only need
to examine the end-point a when looking for an optimal split
point. There is a well-known analogue for the point-data case,
which states that if an optimal split point is to be placed
between two consecutive attribute values, it can be placed
anywhere in the interior of the interval and the entropy will
be the same[28]. Therefore, when searching for the optimal
split point, there is no need to examine the interior of empty
intervals.

The next theorem further reduces the search space:
Theorem 2: If an optimal split point falls in a homogeneous

interval, then an end-point of the interval is also an optimal
split point.

Proof Sketch: Using the substitution x =∑
c∈C γc,j(a, z) and y =

∑
c∈C γc,j(z, b) (see Definition 6

below for the γc,j function), the entropy H(z,Aj) can be
rewritten in terms of x and y. It can be shown that the Hessian
matrix 52H is negative semi-definite. Therefore, H(x, y) is
a concave function and hence it attains its minimum value
at the corners of the domain of (x, y), which is a convex
polytope. It turns out that these corners correspond to z = a
or z = b.

The implication of this theorem is that interior points in
homogeneous intervals need not be considered when we are
looking for an optimal split point. The analogue for the point-
data case is also well known. It states that if some consecutive
attribute values come from tuples of the same class, then we
do not need to consider splits with split points between those
values[28].

Definition 5 (Tuple Density): Given a class c ∈ C, an
attribute Aj , and a set of tuples S, we define the tuple density
function gc,j as:

gc,j =
∑

th∈S:ch=c

whfh,j

where wh is the weight of the fractional tuple th ∈ S (see
Section III-B).
This is a weighted sum of the pdf’s fh,j of those tuples th ∈ S
whose class labels are c. With this function, we can define the
tuple count of any class label within an interval:

Definition 6 (Tuple Count): For an attribute Aj , the tuple
count for class c ∈ C in an interval (a, b] is:

γc,j(a, b) =
∫ b

a

gc,j(x) dx

The intention is that γc,j(a, b) gives the total number of
tuples within the interval (a, b] having a class label c, taking
into account both the probability of occurrence of that class
in the interval, and the tuples’ weights. Now, we are ready to
state our next theorem, which is analogous to a similar result
in [29] concerning data without uncertainty.

Theorem 3: Suppose the tuple count for each class in-
creases linearly in a heterogeneous interval (a, b] (i.e., ∀c ∈
C, ∀t ∈ [0, 1], γc,j(a, (1 − t)a + tb) = βct for some constant
βc). If an optimal split point falls in (a, b], then an end-point
of the interval is also an optimal split point.

Proof Sketch: We use the substitution z = (1− t)a+ tb
to rewrite the entropy H(z,Aj) as a function of t. It can be
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shown that d2H
dt2 ≤ 0 and hence H(t) is a concave function.

Consequently, H attains its minimum value at one of the
extreme points t = 0 and t = 1, which correspond to z = a
and z = b, respectively.

One typical situation in which the condition holds is when
all the pdf’s follow the uniform distribution. In that case, the
fraction of each tuple increases linearly in (a, b], therefore the
sum of a subset of them must also increase linearly. This has
an important consequence: If all the pdf’s are uniform distri-
butions, then the optimal split point can be found among the
2|S| end-points of the intervals of the tuples in S. Theorem 3
thus reduces the number of split points to consider to O(|S|).

In case the pdf’s do not follow uniform distributions,
Theorem 3 is not applicable. Then, we apply Theorems 1 and 2
to UDT to prune the interior points of empty and homogeneous
intervals. This gives our Basic Pruning algorithm UDT-BP.
Algorithm UDT-BP thus has to examine all end-points of
empty and homogeneous intervals as well as all sample points
in heterogeneous intervals.

B. Pruning by Bounding

Our next algorithm attempts to prune away heterogeneous
intervals through a bounding technique. First we compute
the entropy H(q, Aj) for all end-points q ∈ Qj . Let H∗j =
minq∈Qj

{H(q, Aj)} be the smallest of such end-point entropy
values. Next, for each heterogeneous interval (a, b], we com-
pute a lower bound, Lj , of H(z,Aj) over all candidate split
points z ∈ (a, b]. If Lj ≥ H∗j , we know that none of the
candidate split points within the interval (a, b] can give an
entropy that is smaller than H∗j and thus the whole interval
can be pruned.

We note that the number of end-points is much smaller
than the total number of candidate split points. So, if a lot
of heterogeneous intervals are pruned in this manner, we
can eliminate many entropy calculations. So, the key to this
pruning technique is to find a lower bound of H(z,Aj) that
is not costly to compute, and yet is reasonably tight for
the pruning to be effective. We have derived such a bound
Lj given below. First, we introduce a few symbols to make
the expression of the bound more compact and manageable:
nc = γc,j(−∞, a); mc = γc,j(b,+∞); kc = γc,j(a, b);
n =

∑
c∈C nc; m =

∑
c∈C mc; N = n +

(∑
c∈C kc

)
+ m;

νc = nc+kc

n+kc
and µc = mc+kc

m+kc
. Note that all these quantities are

independent of the split point z. Our lower bound for H(z,Aj)
is given by:

Lj = − 1
N

∑
c∈C

[nc log2 νc +mc log2 µc

+kc log2(max{νc, µc})] (3)

We remark that the calculation of the lower bound is similar
to entropy calculation. It thus costs about the same as the
computation of a split point’s entropy. So, if an interval is
pruned by the lower-bound technique, we have reduced the
cost of computing the entropy values of all split points in the
interval to the computation of one entropy-like lower bound.
Combining this heterogeneous interval pruning technique with
those for empty and homogeneous intervals gives us the Local
Pruning algorithm UDT-LP.

With UDT-LP, each attribute is processed independently:
We determine a pruning threshold H∗j for each attribute Aj to
prune intervals in dom(Aj). A better alternative is to compute
a global threshold H∗ = min1≤j≤k H

∗
j for pruning. In other

words, we first compute the entropy values of all end-points
for all k attributes. The smallest such entropy is taken as the
global pruning threshold H∗. This threshold is then used to
prune heterogeneous intervals of all k attributes. We call this
algorithm the Global Pruning algorithm UDT-GP.

C. End-point sampling

As we will see later in Section VI, UDT-GP is very effective
in pruning intervals. In some settings, UDT-GP reduces the
number of “entropy calculations” (including the calculation of
entropy values of split points and the calculation of entropy-
like lower bounds for intervals) to only 2.7% of that of UDT.
On a closer inspection, we find that many of these remaining
entropy calculations come from the determination of end-point
entropy values. In order to further improve the algorithm’s
performance, we propose a method to prune these end-points.

We note that the entropy H(q, Aj) of an end-point q is
computed for two reasons. Firstly, for empty and homogeneous
intervals, their end-points are the only candidates for the
optimal split point. Secondly, the minimum of all end-point
entropy values is used as a pruning threshold. For the latter
purpose, we remark that it is unnecessary that we consider
all end-point entropy values. We can take a sample of the
end-points (say 10%) and use their entropy values to derive
a pruning threshold. This threshold might be slightly less
effective as the one derived from all end-points, however,
finding it requires much fewer entropy calculations. Also, we
can concatenate a few consecutive intervals, say I1, I2, I3, into
a bigger interval I , compute a lower bound for I based on
(3), and attempt to prune I . If successful, we have effectively
pruned the end-points of I1, I2 and I3.

We incorporate these End-point Sampling strategies into
UDT-GP. The resulting algorithm is called UDT-ES. We
illustrate UDT-ES by an example shown in Figure 5. (In
this example, we ignore Theorems 1 and 2, concentrating on
how end-point sampling works.) The figure shows 9 rows,
illustrating 9 steps of the pruning process. Each row shows an
arrowed line representing the real number line. On this line are
end points (represented by crosses) or intervals (represented
by line segments) drawn. Row 1 shows the intervals obtained
from the domains of the pdf’s. The collection of end-points
of these intervals constitute the set Qj (row 2). From these
end-points, disjoint intervals are derived (row 3). So far, the
process is the same as global-pruning. The next step differs
from the global-pruning algorithm: Instead of using the set
of all end-points Qj (row 2), we take a sample Q′j (row 4)
of these points. The choice of the sample size is a tradeoff
between fewer entropy calculations for the end-points and
a stronger pruning power. Our experiments have shown that
10% is a good choice of the end-point sample size. Then, we
continue with the global pruning algorithm as before, using
the sampled end-points Q′j instead of Qj . The algorithm thus
operates on the intervals derived from Q′j (row 5) instead of
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(pruned)

(pruned)

(pruned)

(pruned)

1) pdf domains [aij , bij ]
2) endpoints in Qj

3) intervals for Qj

4) sampled endpoints Q′j
5) intervals for Q′j

6) coarse candidates Y ′

7) refined endpoints Q′′j
8) intervals for Q′′j

9) refined candidates Y ′′

Fig. 5. Illustration of end-point sampling

those derived from Qj (row 3). Note that intervals in row 3
are concatenated to form intervals in row 5 and hence fewer
intervals and end-points need to be processed. After all the
prunings on the coarser intervals are done, we are left with
a set Y ′ of candidate intervals (row 6). (Note that a couple
of end-points are pruned in the second interval of row 5.)
For each unpruned candidate interval (qy, qy+1] in row 6, we
bring back the original set of end-points inside the interval
(row 7) and their original finer intervals (row 8). We re-invoke
global-pruning again using the end-points in Q′′j (carefully
caching the already calculated values of H(q,Aj) for q ∈ Q′j).
The candidate set of intervals obtained after pruning is Y ′′

(row 9), which is a much smaller candidate than the set of
candidate intervals when no end-point sampling is used. For
the candidate intervals in Y ′′, we compute the values H(z,Aj)
for all pdf sample points to find the minimum entropy value.

Experiments, to be presented in the next section, show that
using end-point sampling reduces a large number of entropy
computations at the end-points. It does lose some pruning
effectiveness, but not significantly. Thus, end-point sampling
pays off and improves the performance of the global-pruning
algorithm.

VI. EXPERIMENTS ON EFFICIENCY

The algorithms described above have been implemented8

in Java using JDK 1.6 and a series of experiments were
performed on a PC with an Intel Core 2 Duo 2.66GHz CPU
and 2GB of main memory, running Linux kernel 2.6.22 i686.
Experiments on the accuracy of our novel distribution-based
UDT algorithm has been presented already in Section IV-B.
In this section, we focus on the pruning effectiveness of our
pruning algorithms and their run-time performance.

The data sets used are the same as those used in Sec-
tion IV-B. The same method is used to synthesise data uncer-
tainty. Only Gaussian distribution is used for the experiments
below. We use the parameters s = 100 (no. of sample points
per pdf) and w = 10% (width of the pdf’s domain, as a
percentage of the width of the attribute’s domain) as the
baseline settings.

8The source code is available for download from http://www.cs.hku.hk/
∼dbgroup/UDT/.
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For the data set “JapaneseVowel”, since its uncertainty is
taken from raw data (7–29 samples per pdf), we cannot control
its properties for sensitivity studies. So, it is excluded from
Figures 8 and 9. The bars for “JapaneseVowel” in Figures 6
and 7 are given for reference only.

A. Execution Time

We first examine the execution time of the algorithms, which
is charted in Figure 6. In this figure, 6 bars are drawn for each
data set. The vertical axis, which is in log scale, represents the
execution time in seconds. We have given also the execution
time of the AVG algorithm (see Section IV-A). Note that
AVG builds different decision trees from those constructed
by the UDT-based algorithms, and that AVG generally builds
less accurate classifiers. The execution time of AVG shown
in the figure is for reference only. From the figure, we
observe the following general (ascending) order of efficiency:
UDT, UDT-BP, UDT-LP, UDT-GP, UDT-ES. This agrees
with the successive enhancements of these pruning techniques
discussed in Section V. Minor fluctuations are expected as
the pruning effectiveness depends on the actual distribution
of the data. The AVG algorithm, which does not exploit
the uncertainty information, takes the least time to finish,
but cannot achieve as high an accuracy compared to the

http://www.cs.hku.hk/~dbgroup/UDT/
http://www.cs.hku.hk/~dbgroup/UDT/


TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 12

distribution-based algorithms (see Section IV-C). Among the
distribution-based algorithms, UDT-ES is the most efficient. It
takes 62% (“Ionosphere”) to 865% (“Segment”) more time to
finish than AVG. We remark that in the experiment, each pdf
is represented by 100 sample points (i.e., s = 100). Except
for the data set “JapaneseVowel”, all UDT-based algorithms
thus have to handle 99 times more data than AVG, which only
processes one average per pdf. For the datasets “PenDigits”
and “Ionosphere”, our pruning techniques are so effective that
the execution time of UDT-ES is less than 1.7 times of that of
AVG, while we achieve a much better classification accuracy
(see Table III). It worths to spend the extra time with the
distribution-based algorithms for the higher accuracy of the
resulting decision trees.

B. Pruning Effectiveness

Next, we study the pruning effectiveness of the algorithms.
Figure 7 shows the number of entropy calculations performed
by each algorithm. As we have explained, the computation
time of the lower bound of an interval is comparable to that
of computing an entropy. Therefore, for UDT-LP, UDT-GP,
and UDT-ES, the number of entropy calculations include the
number of lower bounds computed. Note that Figure 7 is also
in log scale. The figure shows that our pruning techniques
introduced in Section V are highly effective. Comparing the
various bars against that for UDT, it is obvious that a lot of
entropy calculations are avoided by our bounding techniques
(see Section V-B). Indeed, UDT-BP only needs to perform
14%–68% of the entropy calculations done by UDT. This
corresponds to a pruning of 32%–86% of the calculations.
UDT-LP does even fewer calculations: only 5.4%–54% of
those of UDT. By using a global pruning threshold, UDT-
GP only needs to compute 2.7%–29% of entropy values
compared with UDT. By pruning end-points, UDT-ES further
reduces the number of entropy calculations to 0.56%–28%.
It thus achieves a pruning effectiveness ranging from 72%
up to as much as 99.44%. As entropy calculations dominate
the execution time of UDT, such effective pruning techniques
significantly reduce the tree-construction time.

C. Effects of s

To study the effects of the number of sample points per pdf
(s) on the performance, we ran UDT-ES with different values
of s. The results are shown in Figure 8. The y-axis is in linear
scale. For every data set, the execution time rises basically
linearly with s. This is expected because with more sample
points, the computations involved in the entropy calculation
of each interval increases proportionately.

D. Effects of w

Another set of experiments were carried out to study the
effects on the width of the pdf’s domain as a percentage of
the width of an attribute’s domain (w). This parameter affects
the distribution of the pdf’s that are synthesised. In particular,
the standard deviation chosen is a quarter of the width of the
pdf’s domain. Figure 9 shows the execution times of the UDT-
ES algorithm. The effects of w is different for different data
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sets. In general, a larger w causes the pdf’s to span a wider
range, increasing the chances that the pdf of one tuple overlaps
with that of another tuple of a different class. Thus, there
is a higher chance of getting heterogeneous intervals. Since
UDT-ES spends most of its time on processing heterogeneous
intervals, an increase in w causes UDT-ES to spend more
time in general. This effect can vary from data set to data
set, though, because the appearance of heterogeneous intervals
depend very much on the distribution of data. For instance, in
our experiments, the “PenDigits” data set does not follow the
general trend.

Our experiments have thus shown that our novel algorithms,
especially UDT-ES, are practical for a wide range of settings.
We have experimented it with many real data sets with a
wide range of parameters including the number of tuples,
the number of attributes, and different application domains.
We have also synthesised pdf’s covering a wide range of
error models, including Gaussian and uniform distribution and
various widths (w) and granularities (s). Although UDT-ES
inevitably takes more time than the classical approach AVG in
building decision trees, it can potentially build more accurate
trees because it takes the uncertainty information into account.
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VII. DISCUSSIONS

A. The Uncertainty Model

In our discussion, uncertainty models of attributes have
been assumed known by some external means. In practice,
finding a good model is an application-dependent endeavour.
For example, manufacturers of some measuring instruments do
specify in instruction manuals the error of the devices, which
can be used as a source of information for modelling error
distributions. In some other cases, repeated measurements
can be taken and the resulting histogram can be used to
approximate the pdf (as we have done in Section IV-C with
the “JapaneseVowel” dataset). In the case of random noise,
for example, one could fit a Gaussian distribution5 using
the sample mean and variance, thanks to the Central Limit
Theorem[35].

During the search for datasets appropriate for our experi-
ments, we have hit a big obstacle: There are few datasets with
complete uncertainty information. Although many datasets
with numerical attributes have been collected via repeated
measurements, very often the raw data has already been
processed and replaced by aggregate values, such as the mean.
The pdf information is thus not available to us. One example
is the “BreastCancer” dataset (see Table II) from the UCI
repository[34]. This dataset actually contains 10 uncertain
numerical features collected over an unspecified number of re-
peated measurements. However, when the dataset is deposited
into the repository, each of these 10 features is replaced by
3 attribute values, giving the mean, the standard score and
the mean of the three largest measured values. With these 3
aggregate values, we are unable to recover the distribution
of each feature. Even modelling a Gaussian distribution is
impossible: These 3 aggregate values are insufficient for us to
estimate the variance. Had the people preparing this dataset
provided the raw measured values, we would be able to
model the pdf’s from these values directly, instead of injecting
synthetic uncertainty and repeating this for different parameter
values for w (see Section IV-D).

Now that we have established in this work that using
uncertainty information modelled by pdf’s can help us con-
struct more accurate classifiers, it is highly advisable that data
collectors preserve and provide complete raw data, instead of
a few aggregate values, given that storage is nowadays very
affordable.

B. Handling Categorical Attributes

We have been focusing on processing uncertain numerical
attributes in this paper. How about uncertain categorical
attributes? Like their numerical counterparts, uncertainty can
arise in categorical attributes due to ambiguities, data staleness,
and repeated measurements. For example, to cluster users
based on access logs of HTTP proxy servers using (besides
other attributes such as age) the top-level domain names (e.g.
“.com”, “.edu”, “.org”, “.jp”, “.de”, “.ca”) as an
attribute, we obtain repeated “measurements” of this attribute
from the multiple log entries generated by each user. The
multiple values collected from these entries form a discrete

distribution, which naturally describes the uncertainty embed-
ded in this categorical attribute. The colour of a traffic light
signal, which is green at the time of recording, could have
changed to yellow or even red in 5 seconds, with probabilities
following the programmed pattern of the signal. This is an
example of uncertainty arising from data staleness. Colours of
flowers recorded in a survey may divide human-visible colours
into a number of categories, which may overlap with one
another. Such ambiguities could be recorded as a distribution,
e.g. 80% yellow and 20% pink. In all these cases, using a
distribution to record the possible values (with corresponding
probabilities) is a richer representation than merely recording
the most likely value.

For a tuple ti with uncertain categorical attribute Aj , the
value uncertainty can be modelled by a discrete probability
distribution function fi,j : dom(Aj) → [0, 1] satisfying∑

x∈dom(Aj)
fi,j(x) = 1. This is analogous to the case of

uncertain numerical attribute. An internal node n in the
decision tree corresponding to a categorical attribute Aj is not
associated with a split point, though. Rather, n has many child
nodes, each corresponding to a distinct value in dom(Aj).9

The test to perform at node n is to check the value of Aj in
the test tuple, and the action taken is to follow the branch to
the child node corresponding to that attribute value.

To build a decision tree on uncertain data with a com-
bination of numerical and categorical attributes, the same
approach as described before can be followed: The tree is built
recursively in a top-down manner, starting from the root. At
each node, all possible attributes (numerical or categorical)
are considered. For each attribute, the entropy of the split
is calculated and the attribute giving the highest information
gain is selected. The node is assigned that attribute (and
split point, if it is a numerical attribute) and the tuples are
(fractionally) propagated to the child nodes. Each child node
is then processed recursively.

To evaluate the entropy of a categorical attribute Aj , we
(fractionally) split the tuples in question into a set of buckets
{Bv|v ∈ dom(Aj)}. Tuple tx is copied into Bv as a new tuple
ty with weight wy = fx,j(v) if and only if wy > 0. The pdf’s
of ty are inherited from tx, except for attribute Aj , which
is set to fy,j(v) = 1 and fy,j(w) = 0 for all w 6= v. The
entropy for the split on Aj is calculated using all the buckets.
As a heuristic, a categorical attribute that has already been
chosen for splitting in an ancestor node of the tree need not
be reconsidered, because it will not give any information gain
if the tuples in question are split on that categorical attribute
again.

C. Handling Unbounded pdf’s

We have been assuming that the pdf’s are bounded, so
that their end-points (Qj) partition the real number line into
a finite number of intervals for our pruning algorithms in
Section V to work with. As suggested by the theorems in
Section V-A, there are good reasons to focus on the end-points.
For instance, when the pdf’s are uniform, the end-points are
the only candidate split points that need to be considered.

9Typically, dom(Aj) has a relatively small cardinality.
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However, in case the pdf’s are unbounded, the pruning
techniques can as well be applied to some artificial “end-
points”. For example, suppose we are handling attribute Aj .
For each class c, we could treat the tuple count γc,j(−∞, t)
as a cumulative frequency function (of variable t) and select
the 10-, 20-, . . . , 90- percentile points as the “end-points”.
This generates 9 end-points for each class, and 9|C| of them
in total for all classes. These points can then be used with
the UDT-GP and UDT-ES algorithms. The resulting intervals
may not have the nice properties of the intervals defined by the
real end-points, such as the concavity of the entropy function.
Yet it could still reduce the number of entropy computations.
The actual effectiveness is subject to further research and
experimentation.

D. Generalising the Theorems

In Section V-A, we have presented several theorems for
pruning candidate split points when searching for an optimal
split. We have assumed that entropy is used as the measure
of dispersion. Indeed, these theorems also hold when Gini
index[30] is used as the dispersion measure. The proofs are
similar and are omitted due to space limitations. Consequently,
the pruning techniques (Section V) can been applied to Gini
index as well. A different lower bound formula for Lj is
needed, though:

L(Gini)
j = 1− 1

N

(
n
∑

c∈C ν
2
c +m

∑
c∈C µ

2
c

+ min
{[∑

c∈C kc(ν2
c + µ2

c)
]
,

k ·max
{[∑

c∈C ν
2
c

]
,
[∑

c∈C µ
2
c

]}}) (4)

Using this bound in the place of (3) and Gini index instead
of entropy, we have repeated the experiments presented pre-
viously and got similar findings: UDT builds more accurate
decision trees than AVG, and the pruning algorithms are
highly effective, with UDT-ES being the most outstanding in
performance.

Another popular dispersion measure used in the literature
is gain ratio[3]. Unfortunately, we cannot prove Theorem 2
for gain ratio. This means that we can no longer prune away
homogeneous intervals. Nevertheless, since Theorem 1 still
holds, empty intervals can still be pruned away. Therefore, to
handle gain ratio, we have to modify our pruning algorithms
slightly: Empty intervals can still be pruned away as before;
however, for both homogeneous and heterogeneous intervals,
we have to apply the pruning by bounding technique.

E. Application to Point-Data

While the techniques developed in this paper are mainly
for the UDT algorithm for uncertain data, they can also be
used to speed up the building of decision trees for point-data.
The techniques of pruning by bounding (Section V-B) and
end-point sampling (Section V-C) can be directly applied to
point-data to reduce the amount of entropy computations. The
saving could be substantial when there are a large number of
tuples.

VIII. CONCLUSIONS

We have extended the model of decision-tree classification
to accommodate data tuples having numerical attributes with
uncertainty described by arbitrary pdf’s. We have modified
classical decision tree building algorithms (based on the frame-
work of C4.5[3]) to build decision trees for classifying such
data. We have found empirically that when suitable pdf’s are
used, exploiting data uncertainty leads to decision trees with
remarkably higher accuracies. We therefore advocate that data
be collected and stored with the pdf information intact. Perfor-
mance is an issue, though, because of the increased amount of
information to be processed, as well as the more complicated
entropy computations involved. Therefore, we have devised
a series of pruning techniques to improve tree construction
efficiency. Our algorithms have been experimentally verified
to be highly effective. Their execution times are of an order
of magnitude comparable to classical algorithms. Some of
these pruning techniques are generalisations of analogous
techniques for handling point-valued data. Other techniques,
namely pruning by bounding and end-point sampling are
novel. Although our novel techniques are primarily designed to
handle uncertain data, they are also useful for building decision
trees using classical algorithms when there are tremendous
amounts of data tuples.
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