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Abstract

Background: A genomic signal track is a set of genomic intervals associated with
values of various types, such as measurements from high-throughput experiments.
Analysis of signal tracks requires complex computational methods, which often make
the analysts focus too much on the detailed computational steps rather than on their
biological questions.

Results: Here we propose Signal Track Query Language (STQL) for simple analysis of
signal tracks. It is an Structured Query Language (SQL)-like declarative language,
which means one only specifies what computations need to be done but not how these
computations are to be carried out. STQL provides a rich set of constructs for
manipulating genomic intervals and their values. To run STQL queries, we have
developed the Signal Track Analytical Research Tool (START,
http://yiplab.cse.cuhk.edu.hk/start/), a system that includes a Web-based user
interface and a back-end execution system. The user interface helps users select data
from our database of around 10,000 commonly-used public signal tracks, manage their
own tracks, and construct, store and share STQL queries. The back-end system
automatically translates STQL queries into optimized low-level programs and runs them
on a computer cluster in parallel. We use STQL to perform 14 representative analytical
tasks. By repeating these analyses using bedtools, Galaxy and custom Python scripts,
we show that the STQL solution is usually the simplest, and the parallel execution
achieves significant speed-up with large data files. Finally, we describe how a biologist
with minimal formal training in computer programming self-learned STQL to analyze
DNA methylation data we produced from 60 pairs of hepatocellular carcinoma (HCC)
samples.

Conclusions: Overall, STQL and START provide a generic way for analyzing a large
number of genomic signal tracks in parallel easily.
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Background
The rapid development of new applications of high-throughput sequencing and the
sharp reduction of cost have made it common to produce large amounts of se-
quencing data that measure a variety of biological signals in a single study. For
instance, large-scale disease studies can involve the sequencing of hundreds or even
thousands of disease and control samples [1]. Major collaborative projects such as
Encyclopedia of DNA Elements (ENCODE) [2] and Roadmap Epigenomics [3] have
performed tens of thousands of high-throughput sequencing experiments that sur-
vey the genomes, transcriptomes and epigenomes of a large number of samples,
creating rich and complex sets of data.

After standard data processing, sequencing data are commonly represented as
signal tracks. A signal track is a set of genomic intervals each associated with a signal
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value. Depending on the analytical needs, the intervals can be defined in various
ways. For example, when the data from a ChIP-seq (chromatin immunoprecipitation
followed by high-throughput sequencing) experiment are represented as a signal
track, at the basic level, each interval corresponds to a single genomic location
and the associated value is the number of aligned reads that cover the location.
At the next level, one could use the distribution of signal values to define signal
peaks, and consider each peak as an interval with a fixed value of one (which means
“present”) or a value that indicates the enrichment score of the peak as compared to
control. One could also use a gene annotation set to define intervals of interest (e.g.,
promoters), and compute the average number of covering reads at each interval as
its signal value. In each of these three cases, the ChIP-seq data are represented by
a signal track. The generality of representing high-throughput sequencing data by
signal tracks is exemplified by its prevalent use in genome browsers for displaying
many types of sequencing data.

Analysis of signal tracks usually involves multiple steps. Typical operations at each
step include selection of intervals based on certain criteria, comparison of intervals
from the same or different tracks, and aggregation of multiple intervals to form new
intervals. There are software tools for particular types of operation, and pipelines
can be set up by writing scripts that invoke the different tools and convert the
outputs of one tool into the inputs of another [4–6].

As the volume and complexity of signal track data have both increased dramat-
ically in recent years, this paradigm of data analysis is facing several challenges.
First, many existing tools have a fixed set of functions. When they do not exactly
match the needs of an analytical pipeline, one would need to modify a tool or
implement a new one. Second, pipelines are usually developed in an imperative lan-
guage. Researchers are required to specify the detailed computational steps, which
could distract him/her from focusing on the biological questions. Third, in order to
perform analysis efficiently, a researcher needs to decide on proper data structures,
algorithms and parallel execution environments, which impose a strong requirement
on his/her computational backgrounds.

With a goal of providing a single platform that can support a large variety of
analytical needs, here we describe the Signal Track Query Language (STQL) that
we specifically designed for signal track data analysis. It is a declarative language
with a syntax similar to the Structured Query Language (SQL) commonly used in
relational database systems, which makes STQL easy to learn. Users only need to
specify what operations they want to perform using some high-level constructs, but
not the detailed steps of how these operations are to be performed, thereby allowing
them to focus on the analytical goals rather than the technical details.

To demonstrate the broad applications of STQL, we have implemented a sys-
tem for executing STQL queries called Signal Track Analytical Research Tool
(START, http://yiplab.cse.cuhk.edu.hk/start/). It contains a Web interface
that guides users to construct STQL queries, and provides example queries for
various types of data analysis. At the back end, the submitted queries are au-
tomatically translated into executable programs, which are then run on a clus-
ter of machines in parallel. START provides a variety of pre-loaded public data
that facilitate integrated analysis of both public and private data, including data
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from ChromHMM [7], dbSNP [8], ENCODE, FANTOM5 (Functional Annotation
of The Mammalian Genome Phase 5) [9], RoadMap Epigenomics, UCSC Genome
Browser[10] and Yip et al.[11]. START also provides storage for both users’ data
files and executed queries, allows sharing of queries among users, and contains
features for protecting security and data privacy. Users who want to execute
STQL queries locally on their own machines can download our installable pack-
age, with a detailed installation guide at https://github.com/stql/start/wiki/
Install-START-in-your-own-cluster describing the steps for installing the pack-
age, pre-processing data, loading signal tracks, organizing the tracks and using the
system.

The flexibility of analyzing genomic data with a query language has been clearly
demonstrated in a number of recent studies [4, 12–16]. Most of these languages were
designed for raw sequencing reads and cannot be used for analyzing signal tracks.
GenoMetric Query Language [4] is a language designed for signal track analysis.
Compared to this language, STQL provides a large set of interval comparison rela-
tions that help simplify queries, constructs for manipulating signal values (based on
the EACH MODEL and TOTAL MODEL), several types of loop statements,
complex queries such as those involving sub-queries, the discretize operation for
creating non-overlapping intervals, and has an SQL-like design that makes it easier
to learn for people with SQL experience.

In the followings we describe the different components of STQL and how it can be
used to analyze genomic signal tracks. We present illustrative example queries that
correspond to commonly performed analytical operations. These example queries
include both simple ones that show individual language features of STQL, as well
as composite ones that involve multiple steps.

To evaluate the correctness, simplicity and execution efficiency of STQL, we used
several other popular approaches to carry out the same analytical tasks, including
bedtools [5], Galaxy [6] and custom Python scripts we specifically wrote for these
tasks. We show that many of these tasks are most easily carried out by using
STQL, and for tasks involving large data files, the transparent parallelization of
STQL provided by START leads to significant speed-ups.

We further demonstrate the usability of STQL by describing how a biologist with
minimal training in computer programming self-learned STQL to identify genes
affected by differential promoter methylation by integrating private sequencing data
from 60 pairs of hepatocellular carcinoma (HCC) case-control samples and public
signal tracks. The STQL queries written serve as a succinct log of the analyses
taken, allowing anyone to reproduce the same results and apply the pipeline to
other data sets easily.

Results
Data model of STQL

In STQL, each track is composed of a set of intervals all with the same at-
tributes (possibly with null values). Each interval contains four mandatory at-
tributes, namely its chromosome (‘.chr’), starting position (‘.chrstart’, one-based
inclusive), ending position (‘.chrend’, inclusive), and value (‘.value’). Each signal
track can define any number of additional attributes for its intervals. For example,
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a .strand attribute can be defined to contain the strand of each interval, with values
‘+’, ‘−’ and ‘.’ for the positive strand, negative stand, and don’t care/not available,
respectively. Each interval is therefore equivalent to a tuple in a relational table
with a list of single-valued attributes.

Basic constructs in STQL

The formal grammar of STQL is given in the Methods section. Basically, each STQL
query contains three main parts, namely a SELECT clause for specifying interval
attributes to be included in the results, a FROM clause for the signal tracks to
query from, and an optional WHERE clause for criteria for filtering intervals. For
example, the following query returns all attributes of the intervals on chromosome
1 from a signal track T:

SELECT *
FROM T
WHERE T.chr = ’chr1’;

If the query result includes all the four mandatory attributes, it will be considered
a signal track itself and can be used as an input track of another query.

The SELECT clause
The SELECT clause includes a comma-separated list of attributes of the queried
intervals to be returned, which can include both the four mandatory attributes and
any of the additional attributes defined for the tracks involved. STQL also supports
other syntactic constructs commonly used in the SELECT clause of SQL, such as
the DISTINCT keyword for removing duplicates, standard arithmetic operations
(addition, subtraction, multiplication and division), and the AS keyword for re-
naming attributes. As in SQL, if the signal track from which an attribute comes is
unambiguous, the attribute can be listed without stating the track name. For exam-
ple, the following query returns the set of distinct interval lengths for the intervals
in a track T:

SELECT DISTINCT chrend − chrstart + 1 AS len
FROM T;

Since interval lengths are commonly queried in analysis tasks, STQL also defines
a short-hand (“syntactic sugar”) for it, allowing the above query to be written in a
simpler form:

SELECT DISTINCT length(T) AS len
FROM T;

The FROM clause
The FROM clause contains a comma-separated list of signal tracks to query from.
Each listed track can be an existing signal track in the database, a nested query (de-
scribed below), or a track dynamically generated using one of the track operations
to be described in the section on advanced constructs.

In STQL, conceptually a Cartesian product of the listed tracks is performed in
a chromosome-by-chromosome manner, since intervals from different chromosomes
are seldom directly compared. For example, suppose we have the following two
tracks T1 and T2:
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T1 T2

chr chrstart chrend value chr chrstart chrend value
chr1 101 200 10 chr1 401 500 40
chr1 201 300 20 chr2 501 600 50
chr2 301 400 30 chr3 601 700 60

Suppose the following query is issued to identify all pairs of intervals on the same
chromosome from the two tracks:

SELECT T1.chr, T1.chrstart, T1.chrend, T1.value,
T2.chr AS chr2, T2.chrstart AS chrstart2,
T2.chrend AS chrend2, T2.value AS value2

FROM T1, T2;
The query results will be as follows:

chr chrstart chrend value chr2 chrstart2 chrend2 value2
chr1 101 200 10 chr1 401 500 40
chr1 201 300 20 chr1 401 500 40
chr2 301 400 30 chr2 501 600 50

The results do not involve any intervals from chromosome 3, because T1 does
not contain any interval on this chromosome. One could also use LEFT JOIN,
RIGHT JOIN and OUTER JOIN to include intervals on chromosomes that appear
only in the first, second or either of the two joining tracks. For example, suppose
RIGHT JOIN is used in the previous query:

SELECT T1.chr, T1.chrstart, T1.chrend, T1.value,
T2.chr AS chr2, T2.chrstart AS chrstart2,
T2.chrend AS chrend2, T2.value AS value2

FROM T1 RIGHT JOIN T2 ON T1.chr=T2.chr;
Then the query results will be as follows:

chr chrstart chrend value chr2 chrstart2 chrend2 value2
chr1 101 200 10 chr1 401 500 40
chr1 201 300 20 chr1 401 500 40
chr2 301 400 30 chr2 501 600 50
NULL NULL NULL NULL chr3 601 700 60

In our actual implementation, instead of performing the costly Cartesian product
followed by filtering the pairs that satisfy the conditions specified in the WHERE
clause, the intervals in each track are sorted and compared directly to produce the
list of pairs that satisfy the conditions.

As in SQL, if a signal track T appears in the FROM clause, writing T.chr means
the chromosome of an instance (i.e., an interval) on track T. To make the meaning
of the query clearer, one could give an alias to each track by appending the alias
after the track name in the FROM clause. For instance, the interval length example
given above can also be written as follows:

SELECT DISTINCT length(TInt) AS len
FROM T TInt;

By using the alias TInt, it is clear that the query returns the lengths of the
intervals in the signal track as its results. We recommend adding aliases in this way
since the resulting queries are easier to understand, but syntactically the aliases are
not mandatory.
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The WHERE clause
The WHERE clause contains a logical expression that specifies which intervals
should be kept in the results. The logical expression can be composed of primitive
expressions joined together by standard logical operators AND, OR and NOT. As
in SQL, each primitive expression can involve a mathematical equality or inequal-
ity (e.g., length(TInt) < 1000). In addition, since in many analysis tasks, different
genomic intervals are compared to determine the ones to be included in the final
results, a list of common relations are defined in STQL to express the positional
relationships among intervals. Table 1 lists the formal definitions of these inter-
val relations, and provides an example use of each relation. If additional relations
are needed in a certain task, they can be constructed in STQL queries using the
primitive constructs.

The input intervals of these relations can be intervals selected from a signal track
or constant intervals specified in the format “[<chr>, <chrstart>, <chrend>]” such
as “[chr1, 100, 200]”.

Among these interval relations, is upstream of and is downstream of have
the most complex definitions since they involve strand information. As in the usual
sense, one can define an interval I1 to be upstream/downstream of another interval
I2 only if the strand of I2 is known and the strand of I1 is either the same as I2 or
is not available.

Since it is common to analyze genomic distances, there is also a function dis-
tance() defined in STQL for computing the distance between two genomic intervals
in the WHERE clause:

distance(I1, I2) =


I2.chrstart − I1.chrend if I1 precedes I2
0 if I1 overlaps with I2
I1.chrstart − I2.chrend if I1 follows I2
NaN if I1.chr 6= I2.chr

One frequently used operation more difficult to define using the primitive con-
structs is finding out the interval(s) closest to a given interval. In STQL, the is
closest to each relation is defined for this purpose, as shown in the following
example:

SELECT *
FROM T1 TInt1, T2 TInt2
WHERE TInt1 is closest to each TInt2;

In this example, for each interval in T2, we find its closest interval among all
intervals in T1. The result can contain zero intervals (if no intervals in T1 are on
that chromosome), one interval, or more than one interval (if multiple intervals in
T1 are of exactly the same closest distance from it).

Other optional clauses
Similar to SQL, STQL provides a GROUP BY clause for grouping intervals and
performing aggregations (COUNT(), SUM(), AVG(), MIN() and MAX()) for
each group, and an ORDER BY clause for ordering the selected intervals. For ex-
ample, the following query counts the number of intervals with a value larger than
10 on each chromosome, with the resulting counts sorted in ascending order:
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SELECT TInt.chr, COUNT(*) AS intervalcount
FROM T TInt
WHERE TInt.value > 10
GROUP BY TInt.chr
ORDER BY intervalcount;

The basic constructs described above are sufficient for many simple analyses.
On the other hand, some analyses can be more easily performed with the help
of additional constructs. We next describe these advanced constructs defined in
STQL.

Advanced constructs in STQL

Creating a new track from an existing track
In an analysis pipeline, it is common for an intermediate step to create small in-
tervals that can overlap or be adjacent to each other. These small regions are sub-
sequently merged into longer regions in later steps. For example, suppose in an
analysis step individual transcriptional enhancers are identified, and in the next
step the overlapping or adjacent enhancers are to be merged to form potential su-
per enhancers [17]. This type of interval merging can be performed by using the
coalesce construct, which groups each set of transitively overlapping/adjacent in-
tervals into a single interval, where the starting and ending positions of this resulting
interval are respectively the smallest starting position and largest ending position
of this group of intervals. The coalesce operator can be used in the FROM clause
with the following syntax:

FROM coalesce T [with <vd> using <value-model>]
where T is the input track (the individual enhancers), and the optional “with <vd>

using <value-model>” part is for deriving the value of each resulting interval based
on the mathematical operation <vd> and value model <value-model>. STQL has
a highly flexible design for value derivation that distinguishes itself from other
existing languages, the details of which will be discussed shortly. The output of this
operation is a new track that contains the merged intervals. An illustration of the
coalesce operator is given in Figure 1. Complete query examples using coalesce
and other advanced constructs will be given later.

Another common operation for processing overlapping regions is to use their
boundary locations to define discrete intervals that can be adjacent to each other
(Figure 2). This is useful when the next analysis step requires all intervals to be
non-overlapping, for example when each genomic location should be classified as
either within an interval (such as a protein binding site) or not. In STQL, this type
of operations can be performed by using the discretize operator in the FROM
clause:

FROM discretize T [with <vd> using <value-model>]

Creating a new track from two existing tracks
The FROM and WHERE clauses together allow for some basic joins of multiple
signal tracks. To make more advanced types of track joins easy to perform, STQL
provides convenient constructs for them.

In the first type of advanced track joins, a track T2 defines the positional informa-
tion of the resulting intervals and another track T1 defines their values (Figure 3).
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This is most typically used when T2 corresponds to gene annotations, T1 is a signal
track of experimental values, and the goal is to compute an aggregated signal value
for each gene based on the experimental data. In STQL, this type of operations is
described as projecting T1 on T2 in the FROM clause:

FROM project T1 on T2 [with <vd> using <value-model>[,metadata]]

where the optional “metadata” part is for specifying whether non-default at-
tributes of the input intervals are to be inherited by the resulting intervals, which
will be explained later.

It is often useful to partition the whole genome into bins of a fixed size, and
compute an aggregated signal value for each bin. By choosing a suitable bin size,
the signals are smoothed locally and some downstream tasks can be carried out more
efficiently due to the reduced data resolution and easily computable bin locations.
This binning operation can be performed in STQL by projecting a signal track on
a bin track dynamically created using the generate bins with length construct
in the FROM clause:

FROM project T on generate bins with length <bin-size> [with <vd>

using <value-model>[,metadata]]

where <bin-size> is the size of each bin in base pairs. The output intervals are
adjacent bins of this size covering the whole genome.

Two different signal tracks are usually compared to find out genomic locations
covered by both tracks, one track but not the other, or either track. STQL sup-
ports these operations by the intersectjoin , exclusivejoin and UNION ALL
constructs.

intersectjoin considers every pair of overlapping intervals from the two input
tracks, and takes their intersection as a resulting interval (Figure 4). It can be used
in the FROM clause:

FROM T1 intersectjoin T2 [with <vd> using <value-model>[,metadata]]

exclusivejoin considers every interval from the first input track, and removes
all parts of it that overlap any intervals in the second input track (Figure 5):

FROM T1 exclusivejoin T2 [with <vd> using <value-model>[,metadata]]

Finally, UNION ALL forms a new track that keeps all intervals from the two
input tracks without removing duplicates. The tracks involved must have the same
schema. It can be used to join the resulting tracks of two queries. Since the result of
UNION ALL is also a signal track, it can be repeatedly applied to join the resulting
track with another signal track. For example, the following query takes the union
of three signal tracks to form a new track (where the alias NtInt stands for “new
track interval”):

SELECT *
FROM (

SELECT * FROM T1

UNION ALL
SELECT * FROM T2

UNION ALL
SELECT * FROM T3) NtInt;
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Value derivation and inheritance of metadata
All advanced constructs described above allow the derivation of values for the re-
sulting intervals. Having a flexible way to manipulate interval values is crucial to
many types of analysis. In STQL, two value models are used for interpreting and
deriving signal values. In the EACH MODEL, each genomic location within an
interval is considered to individually own the signal value of the interval. For exam-
ple, if signal values represent normalized read counts, an interval having a certain
value means that every genomic location in the interval is covered by that number
of reads on average. On the other hand, in the TOTAL MODEL, all genomic
locations within an interval is considered to collectively own the signal value of the
interval. For example, if the signal value indicates the total number of MBDCap-
seq [18] reads aligned to an interval, all genomic locations of the interval collectively
own the signal value. The following query projects these intervals onto 100bp bins,
and computes the raw signal of each bin based on the number of bases overlapping
with the bin as a fraction of the interval length:

SELECT *
FROM (project T on generate bins with length 100
with vd sum using TOTAL MODEL) NtInt
WHERE NtInt.value > 0;

For STQL operations that involve the creation of intervals described above, the
value of each resulting interval is determined by the specified value model and
mathematical operation. In general, the value of each resulting interval is derived
in three steps:

1 For each interval in the input tracks, the signal value at each of its genomic
locations is determined.

2 For each interval in the resulting track, the signal value at each of its genomic
locations is computed based on the values at the same location of the input
intervals computed in Step 1.

3 For each interval in the resulting track, a final value is computed by aggre-
gating the values of its genomic locations computed in Step 2.

For Step 1, if the EACH MODEL is used, the value at each genomic location is
simply the value of the corresponding interval. On the other hand, if the TOTAL
MODEL is used, each genomic location is given an equal share of the value of the
interval.

Step 2 depends on the exact STQL operation being performed, the details of
which will be explained next.

Step 3 computes the average over all values of the genomic locations within the
resulting interval.

For example, suppose in Figure 4 every interval in the two input tracks has value 1,
and the two tracks are joined using the intersectjoin construct with the vd sum
operation, which adds up values from different intervals location by location in Step
2 of value derivation. If the EACH MODEL is used, the values of Ir1, Ir2, Ir3

and Ir4 will all be 2. This is because in Step 1, every genomic location of the input
intervals receives a value of 1; In step 2, every genomic location of the resulting
intervals is given a value of 1+1=2; In Step 3, since every location in each resulting
interval has the same value, taking the average will give the same value of 2.
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On the other hand, if the TOTAL MODEL is used, the values of the resulting
intervals will depend on the lengths of the intervals. For example, the value of
Ir1 will be I11.value/length(I11) + I21.value/length(I21), since the two fractional
values are respectively given to each genomic location of I11 and I21 in Step 1, and
Steps 2 and 3 are similar to the case for the EACH MODEL.

Table 2 shows the full list of mathematical operations in STQL and how the
value of each genomic location of the resulting interval is computed in Step 2.
The operations provided include 1) arithmetic operations (summation, averaging,
subtraction, multiplication and division), 2) maximum and minimum function, and
3) direct copying of values from the interval from input track 1 or track 2.

For intersectjoin , each resulting interval is formed by exactly two intervals
one from each input track, and thus all nine types of operation are well-defined. For
exclusivejoin , each resulting interval is formed by one interval from the first input
track and zero, one or more intervals from the second track. Only the unary operator
vd left is applicable. For coalesce and discretize , only one track is involved,
while for project on , all values come from track 1. For these three constructs,
each resulting interval can be formed by one, two or more than two input intervals.
Without a defined order of these intervals, the vd diff, vd quotient, vd left and
vd right operations cannot be defined and are thus not allowed.

If the value model and mathematical operation are not specified, the resulting
intervals will be given the value NULL.

Each interval may contain additional attributes that are called metadata, such as
the name of a gene and the confidence score of a signal peak. For some of the interval-
creating constructs, these metadata can be inherited from the input intervals to the
resulting intervals using “metadata”. For project on , the metadata are inherited
from the input intervals in the second track, the track that defines the positional
information of the resulting intervals. For intersectjoin and exclusivejoin , the
metadata are inherited from input intervals in the first track.

Using dynamically created tracks
In the FROM clause, in addition to using existing tracks in the database, one could
also create new tracks dynamically using either a nested query or one of the above
track operations. For example, the following query first takes the intersectjoin of
two tracks, and then selects out the resulting intervals with a value larger than 2:

SELECT *
FROM (T1 intersectjoin T2

with vd sum using EACH MODEL) NtInt
WHERE NtInt.value > 2

An alias is given to the intervals of the dynamically created track, which can then
be referred to in the SELECT and WHERE clauses.

Data definition and manipulation statements
STQL also contains statements for creating and deleting signal tracks, and loading
data into a signal track from a local file.

The CREATE TRACK statement is used to create a new track and add it to the
database. It has two different forms:
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CREATE TRACK <track-name> (<attribute-name1>

<data-type1> [,...]);

CREATE TRACK <track-name> AS <query>;
In the first form, a new empty track is created with the name specified at the

placeholder <track-name>. The list of attributes and their data types (string, int
or float) are then listed within the brackets. In the second form, an STQL query is
executed and the result is stored as a new track with the name specified at <track-
name>. If the query results do not form a valid signal track, i.e., it does not have all
the required attributes for a signal track, an error will be produced when a query
tries to use the query results as a track. This second form of CREATE TRACK
is particularly useful when multiple STQL statements are submitted in the same
block on the START Web site, where the intermediate results produced by a step
are stored in a temporary signal track using a CREATE TRACK statement, which
can then be accessed by the queries in the subsequent steps.

Conceptually tracks created by a CREATE TRACK statements persist in the
database, but the ones created through the START Web interface (described below)
are automatically removed after a certain amount of time to control the space used
by each user.

The DROP TRACK statement deletes a track in the database:
DROP TRACK <track-name>;

Execution of this statement requires the user to have the corresponding permis-
sion. There are other security measures in STQL that will be explained when we
describe START in detail. The DROP TRACK statement is commonly used to
remove intermediate tracks created by the CREATE TRACK statement that are
no longer needed.

STQL also allows loading data into a track by using the
LOAD DATA LOCAL INPATH INTO TRACK statement, for example after a
new track is created using the first form of the CREATE TRACK statement:

LOAD DATA LOCAL INPATH <file-path> [OVERWRITE]
INTO TRACK <track-name>;

where <file-path> is the path of the data file, <track-name> is the name of the
track into which the data are to be loaded, and the OVERWRITE option is for
specifying whether any existing data in the track are to be removed.

Selection and looping over signal tracks
A final feature of STQL, which is very useful when analyzing a large number of signal
tracks, is selecting tracks based on their attributes, and looping over the selected
tracks for repeating some operations. This feature is provided by the FOR TRACK
IN () statement with two forms:

FOR TRACK <track-variable> IN (category=<track-category>,
<track-selection-conditions>)

<STQL-query>

COMBINED WITH UNION ALL AS <output-track-name>;

FOR TRACK <track-variable> IN (category=<track-category>,
<track-selection-conditions>)
CREATE TRACK <output-track-name> AS <STQL-query>;
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In both forms, <track-variable> is a variable for the intervals of a selected track in
the STQL query, <track-category> is the category of signal tracks to be selected,
<track-selection-conditions> states extra conditions for track selection, <STQL-
query> is the query to be performed on each selected track, and <output-track-
name> is the name of the track to store the results.

Specifically, <track-selection-conditions> is a list of attribute names and values
delimited by “and”. For example, if one wants to select all ChIP-seq binding peaks
in the GM12878 cell line produced by the ENCODE Stanford/Yale/Davis/Harvard
(SYDH) sub-group, and stores the union of all these peaks into an output signal
track, the following statement can be used:

FOR TRACK TInt IN (category=‘SYDH TFBS‘,
cell=’GM12878’ and fname LIKE ’%Pk%’)
SELECT TInt.chr, TInt.chrstart, TInt.chrend
FROM TInt
COMBINED WITH UNION ALL AS AllPeaks;

In this statement, a track is selected if it belongs to the ENCODE SYDH tran-
scription factor binding sites (SYDH TFBS) category, contains data from GM12878
cells, and has “Pk” (peak) as part of its track name. The “LIKE” syntax of SQL for
string matching with wildcards can be used in specifying track selection conditions.
For each selected track, its intervals are represented by the variable TInt, and the
union of the intervals from these tracks are stored in the output track “AllPeaks”.

As shown in this example, the first form of the FOR TRACK IN () statement
combines the results from all the selected tracks by a UNION ALL operation. The
second form, on the other hand, allows the query result from each selected track to
be stored in a separate output track (with track name <output-track-name> con-
catenated with the name of the selected track), which can then be post-processed by
using other STQL queries. Currently STQL does not support nested FOR TRACK
IN () statements.

To demonstrate the use of STQL, in the Supplementary Materials we provide 14
sample queries, including both simple and complex ones.

Signal Track Analytical Research Tool (START)

We developed a system called Signal Track Analytical Research Tool (START) for
running STQL queries on multiple machines in parallel. START involves a front-
end Web-based user interface and a backend execution system (Figure 6). The
purpose of the Web-based user interface is to provide a simple way for users to
test out STQL. We have pre-loaded around 10,000 signal tracks from ENCODE,
Roadmap Epigenomics, FANTOM5 [9] and other sources into our database for users
to integrate these data into their analyses. In additional to the standard file formats
supported by START, we also imported some commonly used data in other formats
(such as gene annotation in .gtf format) using our custom scripts.

We encourage users who want to use STQL to analyze large amounts of private
data to install START locally on their own machines. We provide an installation
package at https://github.com/stql/start/wiki/Install-START-in-your-own-cluster.
START can be run on either a single machine or a cluster of machines. All source
code of START can be found at https://github.com/stql/start, distributed
under Apache License v2.0.
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Front-end: Web-based user interface
START provides a Web-based user interface at http://yiplab.cse.cuhk.edu.hk/
start/ (Figure 7). It provides a main input box for entering STQL queries. Multiple
queries can be entered at the same time, in which case each query should store its
results in a temporary track, and the results of the last query will be returned by
the system as the final results.

Four features are provided to help users construct their queries. First, a user can
use his/her previous queries or queries shared by other users as template to perform
new analyses by changing only the parts that differ. Second, signal tracks stored in
the backend database are listed in categories. A user can select signal tracks using
the built-in searching function based on text matches in all track attributes. The
names and data types of the attributes of the intervals in a signal track can be
shown by clicking the “track schema” link. Third, in the main input box, STQL
keywords are highlighted in different colors to help users spot syntax errors. Fi-
nally, an extensive help system is provided on the START Web site with detailed
documentations and example queries.

A user can use all the functions described above and submit STQL queries with
or without logging in. Users logged in (after a free registration) can additionally
store their own executed queries, data files, and query results on START. Each user
is given a different database name such that files of different users are completely
separated. Data files can be uploaded in a number of standard file formats (.bed,
.bedGraph and .wig), and multiple files can be uploaded at the same time in a zip
package. All the supported formats have the chr, chrstart and chrend attributes
defined. The value attribute is defined in .bedGraph and .wig, while for the .bed
format it is left as NULL. The schema of the uploaded data is automatically gen-
erated based on this mapping. A user can also share or unshare queries with other
users. START ensures that only queries explicitly shared by the owner can be seen
by other users, and data files uploaded by a user cannot be accessed by other users.

A user submits a query by entering a name of the query and pressing the “Submit”
button. A checker module at the backend is then invoked immediately. If any syntax
error or permission problem is detected, the query is rejected and an error message
is returned to the user without executing the query. Otherwise, a query job will be
created at the backend and the actual processing of it will be carried out when the
execution system becomes available.

When a query has been executed, the user can preview the first few rows of the
results on START, or download all the results in a file. Users are not required to
wait for a query to complete by keeping the browser open, because when a user
returns to the START Web site, he/she can find all executed queries from the menu
and the result files can be downloaded from the corresponding page linked from the
list of executed queries for recently executed queries.

Back-end: Parallel-execution system
In the back-end of START, STQL queries are translated into optimized executable
programs that are run on a cluster of machines in parallel. The parallelization is
powered by the Hadoop [19] distributed data storage and MapReduce framework for
big data processing. Intervals on each chromosome are mapped to the same comput-
ing node. The translation of STQL into executable programs is assisted by Hive [20],
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a warehousing infrastructure built on top of MapReduce. It provides an SQL-like
query language called HiveQL, and it translates HiveQL queries into Hadoop pro-
grams. We used Hive to execute parts of STQL queries that can be directly trans-
lated into HiveQL queries, and handled some signal track-specific constructs ( is
closest to each , intersectjoin , exclusivejoin , project on , coalesce and
discretize ) by our own programs. An advantage of Hive is that it can work on
raw data files directly, without requiring a long processing time of converting the
raw data files into a particular format before the corresponding tracks can be used
in the queries. This feature makes it very efficient for users to use their own signal
tracks in the queries.

More details are given in the Methods section.

Comparison with other approaches

To evaluate the simplicity of STQL and the correctness and efficiency of START
in executing STQL queries, we compared STQL with three other approaches in
performing the same analysis tasks.

First, we used the Web-based user interface to submit the 14 example STQL
queries to START, and downloaded the resulting output files. For each query, we
measured the time required, from submitting the query to getting the final result
file. We also used bedtools [5], Galaxy [6] and custom Python scripts to perform the
same tasks. We then checked if the output files produced by the different approaches
were the same, and compared the time required.

The source code of these three implementations is available at https://github.
com/stql/start/wiki/Website-User-Manual#source-code-for-other-tools.
For some queries, we were unable to find a trivial way to perform exactly the same
operations using one or more of these approaches. We note that this does not mean
it is impossible to carry out the corresponding analyses using these approaches, but
the solutions could be non-trivial. On the other hand, it was fairly easy to write
STQL queries to perform the tasks, and the STQL queries involved fewer tokens
than both the bedtools and Python scripts for all the 14 tasks (Table 3).

Based on the execution results, START was able to produce identical output files
as those produced by the Python scripts for all 14 queries. In some cases, bedtools
and Galaxy produced results different from STQL. For example, for SQ5, bedtools
could produce the same intervals as STQL but could not derive the required values.
In general, STQL was found to be very expressive, and its value derivation capability
was particularly flexible.

Table 4 shows the execution time of the different approaches. For START, we
used a Hadoop cluster to execute the queries. The cluster contained 22 machines,
each with an Intel Core i7-3770 CPU at 3.40GHz, 16GB main memory, and disks
with I/O speed of 133.75 MB/s. For bedtools and python scripts, we used a single
machine to execute the queries, with an Intel Core i7-3770 CPU at 3.40GHz, 16GB
main memory, and disks with I/O speed of 156 MB/s. For Galaxy, we used its online
version (https://usegalaxy.org/). Since the hardware used for each approach was
different, it is not meaningful to use the measured time to argue which approach
is more efficient. Instead, the main purpose of this time comparison is threefold.
First, it shows that for some of the tasks that STQL could easily handle, we could
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not find a way to perform the same tasks using bedtools or Galaxy (marked as
N/A in Table 4), suggesting that it is more difficult or even impossible to perform
these tasks using these tools. Second, in general, START could finish each task
within reasonable time even without using algorithms and data structures specially
designed for each task as we did with the Python scripts. Third, when the data files
were large, the implicit parallel execution of START made it easy to speed up the
analysis, without requiring the user to write anything about parallelization in the
STQL queries. For example, in SQ1 and SQ2, the data files involved were larger
than 1GB, and START was able to finish the task faster than the other approaches
due to its parallel computations.

We have also compared STQL with SQL, and found that some operations are
much more difficult to perform using SQL than STQL. The details are provided in
the Supplementary Materials.

Case study

To test if STQL is easy to learn and to use, we asked one of us (KH-OY), who
was trained as a biologist and had received minimal formal training in computer
programming (including SQL), to analyze some sequencing data using two differ-
ent approaches. The data involved were DNA methylation data we produced by
MBDCap-seq [18] on 60 pairs of human hepatocellular carcinoma (HCC) tumor
and matched non-tumor tissues. The goal was to compute DNA methylation levels
at gene promoters, and identify promoters with significant differential methylation
between the tumor and non-tumor groups.

The first analysis approach was to implement the analysis pipeline by writing
custom Perl scripts. The second approach was to write STQL queries and submit
them through the START Web interface, to perform exactly the same analysis.

Specifically, for each protein-coding gene in Gencode [21] v19, the promoter region
was defined as the +/-500bp around the transcription start site. The average methy-
lation signal at each promoter was computed separately for the tumor and non-
tumor samples. Finally, the full list of genes and their promoter differential methy-
lation fold change values were reported. The Perl scripts and the STQL queries
written, as well as the resulting output files, are all available at https://github.
com/stql/start/raw/master/for-download/STQL HCC Diff Methyl files.zip.

The STQL queries are found to be simpler than the Perl scripts. For instance, the
Perl scripts involve 253 lines of code in total, while the STQL queries involve only
55 lines.

The two approaches led to identical results. Among the top five most hyper-
methylated promoters, FGF19 is related to HCC tumor promotion [22], FGF4 is
related to HCC drug response [23], and HLX is involved in normal liver develop-
ment [24]. Although the other two genes have yet to link with HCC, their roles
in cancer development have been reported. MYEOV deregulation contributes to
malignant transformation of different cell types [25], while LRR1 is involved in cell
growth control [26]. These results suggest that it is indeed fairly easy for some-
one without very strong computer science background to learn and use STQL to
produce biologically meaningful results.
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Discussion
The main purpose of START is to demonstrate the use of STQL. If it is to be used
for routine large-scale data analysis, the signal tracks stored in its database should
be frequently updated. To achieve that, we are exploring the possibility to hook up
START with major genome databases for automatic data updates, or to setup a
local copy of START at these sites.

Currently START supports only signal tracks based on the hg19 human reference
genome. Conceptually, STQL can also support other versions of the human refer-
ence genome, as well as other species. They will be supported in future versions of
START.

In the current implementation of the track operators, parallelization is achieved
by sending all intervals on one chromosome to one computing node, which is not
very efficient due to the very different sizes of the human chromosomes. We are
developing new algorithms to provide sub-chromosome level parallelization [27].

There are other emerging distributed computing frameworks. For instance,
Spark [28] is a successor of Hadoop that keeps data files in memory such that a
user issuing multiple queries on the same data files could enjoy significant speed
up. We will explore the possibility of using Spark as the underlying framework to
further improve the efficiency of START.

Since in most applications joining of different tracks does not involve pairing
of intervals from different chromosomes, by default STQL only considers pairing
of intervals from the same chromosome to avoid the unnecessary computational
overhead. If it is necessary to pair intervals from different chromosomes, one way
is to save chromosome names in a new attribute and replace the chr attribute by a
common fake chromosome name before the join operation. After the join, the actual
chromosome names can be copied back. We will consider adding an operation that
allows across-chromosome comparisons if many applications find it useful.

Implementation
Back-end system of START

The architecture of START is shown in Figure 6. The Web-based front-end has
been described in the main text. Here we provide some high-level descriptions of
the interface between the front-end and the back-end, and the back-end system.

Interface between front-end and back-end: Metastore
In order for the front-end user interface to obtain information about the stored
signal tracks in the database, it has to obtain the information from the back-end.
The metastore provides such information and acts as an interface between the front-
end and back-end systems. The metastore records three main types of information,
namely 1) the schema of each signal track, i.e., the exact names and data types of
the attributes of the intervals in each signal track, 2) the physical locations of the
corresponding data files in the backend system, which is stored in a Hadoop file
system (HDFS), and 3) the organization of the signal tracks into categories, and
the attributes of the signal tracks in each category. When any of these three types
of information is updated at the back-end, the Web-based user interface always
displays the most updated information by retrieving it from the metastore in real
time.
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Back-end: Translation
At the back-end, we use Hadoop [19] for distributed data storage, which includes a
MapReduce framework for big data processing. High-level STQL queries are trans-
lated into executable programs (MapReduce jobs) that can be executed by Hadoop.
This translation is facilitated by Hive [20], a warehousing infrastructure built on
top of MapReduce. It provides an SQL-like query language called HiveQL, and it
translates HiveQL queries into Hadoop programs. We extended HiveQL to include
syntactic constructs specific to STQL. An advantage of Hive is that it can work on
raw data files directly, without requiring a long processing time of converting the
raw data files into a particular format before the corresponding tracks can be used
in the queries. This feature makes it very efficient for users to use their own signal
tracks in the queries.

To execute an STQL query, the first step is to translate it to a sequence of op-
erations. It involves four sub-steps, namely 1) parsing the STQL statement and
producing an abstract syntax tree (AST), 2) traversing the AST to create a query
block (QB) and record necessary parsing information in the QB, 3) interacting with
the metastore to retrieve metadata of the involved signal tracks, and 4) generating
a query plan in the form of a directed acyclic graph (DAG) of logical operations
based on the QB.

Back-end: Execution
The DAG of logical operations are then converted into executable jobs in Hadoop.
Figure 8 shows a simple example illustrating the typical steps in such a MapReduce
job. In the Map phase, the TableScan operator fetches one interval from a signal
track at a time, and forwards all attributes of the interval to the Filter operator.
Upon receiving an interval, the Filter operator judges whether the interval satisfies
the predicate in the WHERE clause. If the predicate holds true for the interval, the
Filter operator forwards the interval to the Select Operator. The Select operator
selects the attributes of the interval necessary for the calculations. It then forwards
the results to the ReduceSink operator, which creates a key-value pair for the in-
terval it receives. This finishes the Map phase. Based on the keys, the intervals are
sent to different machine nodes for further processing.

In the Reduce phase, the Intersectjoin operator maintains buffers for caching
the intervals it receives. When all intervals have been received, it proceeds with
the actual computations. Whenever a resulting interval is produced, it forwards
the interval to the Select operator, which supplies all attributes that need to be
returned in the final outputs.

Back-end: Optimization
Together, the compiler and executor described above are sufficient for turning STQL
statements into executable programs. However, the straight-forward way of trans-
lating the queries into executable programs could make the programs inefficient.
The goal of the optimizer is to find ways to perform the queries more efficiently.

The optimizer makes use of several key ideas. First, it removes interval attributes
that are not needed as early as possible, to reduce the amount of data transfer
between computing nodes. Second, when a join is performed between two tracks,
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instead of producing the Cartesian product, the optimizer tries to use more efficient
algorithms to reduce both the computation and the amount of intermediate results.
For example, by pre-sorting both signal tracks involved, sometimes it is possible to
perform a single linear scan of the resulting sorted tracks to produce the join result.
Finally, if the generate bins with length construct is used, instead of creating
the actual bins, the optimizer computes the overlapping bins of each interval, so
that projection can be done efficiently without considering the bins that do not
overlap any intervals.

STQL grammar rules

In the Results section we have explained the syntax of STQL using high-level terms
and examples. Here we present the complete set of grammar rules that define STQL.

STQL STATEMENT := DDL | DML | QUERY
DDL := CREATE TRACK | CTAS | DROP TRACK
CREATE TRACK := create track TRACKALIAS LBracket SCHEMA RBracket
CTAS := create track TRACKALIAS as REG QUERY
SCHEMA := ATTRNAME DATA TYPE (, ATTRNAME DATA TYPE)*
DROP TRACK := drop track TRACKALIAS
DML := LOAD DATA
LOAD DATA := load data local inpath Filepath (overwrite)? into track TRACK-

ALIAS
DATA TYPE := string | int | float
QUERY := REG QUERY | FOR LOOP
REG QUERY := SELECT STAT FROM STAT (WHERE STAT)? (GROUPBY STAT)?

(ORDERBY STAT)?
FOR LOOP := for track TRACK VAR in LBracket TrackProperty RBracket (

REG QUERY combined with UNION as TRACKALIAS | CTAS)
TRACK VAR := Identifier
FROM STAT := from FROM SOURCE
FROM SOURCE := MULTIPLETRACK
TRACK := RAW TRACK | TRANSFORM RES | OVERLAPJOIN RES | SUB-

QUERY | UNION RES
MULTIPLETRACK := TRACK (, TRACK)*
UNION RES := LBracket TRACK UNION TRACK (UNION TRACK)* RBracket

TRACKALIAS
UNION := union all
RAW TRACK := (CATEGORY.)?TRACKNAME ((as)? TRACKALIAS)?
CATEGORY := Identifier
TRACKALIAS := Identifier
TRANSFORM RES := TRANSFORM OP | LBracket TRANSFORM OP RBracket

TRACKALIAS
TRANSFORM OP := TRANSFORM (with VALUE DER)?
TRANSFROM := COALESCE TRACK | DISCRETIZE TRACK
COALESCE := coalesce
DISCRETIZE := discretize



Zhu et al. Page 19 of S17

OVERLAPJOIN RES := OVERLAPJOIN OP | LBracket OVERLAPJOIN OP
RBracket TRACKALIAS

OVERLAPJOIN OP := OVERLAPJOIN (with (VALUE DER METADATA |
VALUE DER | META DATA))?

OVERLAPJOIN := INTERSECTJOIN | EXCLUSIVEJOIN | PROJECT
INTERSECTJOIN := TRACK intersectjoin TRACK
EXCLUSIVEJOIN := TRACK exclusivejoin TRACK
PROJECT := project TRACK on (TRACK | CREATE BINS)
CREATE BINS := generate bins with length Integer
VALUE DER METADATA := VALUE DER, META DATA | META DATA,

VALUE DER
VALUE DER := VD TYPE using VALUE MODEL
VD TYPE := vd sum | vd diff | vd product | vd quotient | vd avg | vd max |

vd min | vd left | vd right
META DATA := metadata
VALUE MODEL := VM TYPE model
VM TYPE := each | all
SELECT STAT := select ((distinct)? FIELD (, FIELD)* | SELALLEXP)
SELEXP := FIELD (as ATTRNAME)?
SELALLEXP := *
FIELD := ARITH FUNC | AGG
ARITH FUNC := (MUL DIV | Number) ((+ | −) (MUL DIV | Number))?
MUL DIV := (ELEM | Number) ((* | /) (ELEM | Number))?
ELEM := INTERVAL ATTR | LBracket ARITH FUNC RBracket
INTERVAL ATTR := ATTRNAME | TRACKNAME.ATTRNAME
TRACKNAME := Identifier | TRACKALIAS
ATTRNAME := chr | chrstart | chrend | value | Identifier
AGG := AGG FUNC LBracket INTERVAL ATTR RBracket | COUNT ALL
AGG FUNC := count | max | min | avg | sum
COUNT ALL := count LBracket SELALLEXP RBracket
WHERE STAT := where (OR PREDICATE | CLOSEST PREDICATE)
OR PREDICATE := AND PREDICATE (or AND PREDICATE)?
AND PREDICATE := NOT PREDICATE (and NOT PREDICATE)?
NOT PREDICATE := PREDICATE | not (PREDICATE | LBracket OR PREDICATE

RBracket)
PREDICATE := NUMERIC COMP | LOCATION COMP | PATTERN MATCHING
NUMERIC COMP := (INTERVAL ATTR | INTERVAL LENGTH | INTER-

VAL DIS | Number) COMP OP (INTERVAL ATTR | INTERVAL LENGTH | IN-
TERVAL DIS | Number)

INTERVAL LENGTH := length LBracket (TRACKNAME | CONS INTERVAL)
RBracket

INTERVAL DIS := distance LBracket (TRACKNAME | CONS INTERVAL) ,
(TRACKNAME | CONS INTERVAL) RBracket

COMP OP := < | = | ! = | > | <= | >=
LOCATION COMP := (TRACKNAME | CONS INTERVAL) LOC COMP OP

(TRACKNAME | CONS INTERVAL)
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LOC COMP OP := overlaps with | precedes | follows | coincides with | is prefix
of | is suffix of | is adjacent to | is within | contains | is upstream of | is downstream
of

CONS INTERVAL := LeftSquareBracket CHR, CHRSTART, CHREND (,
STRAND)? RightSquareBracket

CHR := Identifier

CHRSTART := Integer

CHREND := Integer

STRAND := + | −
PATTERN MATCHING := INTERVAL ATTR (not)? like RegularExpression

CLOSEST PREDICATE := TRACKNAME is closest to each TRACKNAME

GROUPBY STAT := group by INTERVAL ATTR (, INTERVAL ATTR)*

ORDERBY STAT := order by INTERVAL ATTR (, INTERVAL ATTR)*

SUBQUERY := LBracket QUERY RBracket TRACKALIAS

Conclusions

In this paper, we have described the Signal Track Query Language (STQL), an
SQL-like declarative language that allows users to perform a variety of analysis by
specifying only the analysis goals rather than all the computational details. We have
demonstrated some typical use of STQL through 14 example queries, which cover
both simple and composite analysis tasks. We have used these example queries to
show that STQL usually provides a simpler solution than several other popular
analysis approaches.

To make it easy to write and execute STQL queries, we have developed the Signal
Track Analytical Research Tool (START). The Web-based user interface of START
allows simple integrated analysis of private and commonly-used public signal tracks.
It also provides the management of stored data and queries. The back-end system
of START automatically translates STQL queries into executable programs that
are run in parallel on multiple machines, without requiring the analysts to diverge
their attention to finding a suitable parallelization strategy.

Together, STQL and START provide a simple and generic way for analyzing a
large number of genomic signal tracks.

Availability and Requirements

Project name: Signal Track Analytical Research Tool

Project home page: https://github.com/stql/start

Operating system: Linux (Ubuntu recommended)

Programming language: Java

Other requirements: JDK 6 or higher, Hadoop installation

License: Apache License v2.0

Any restrictions to use by non-academics: license needed
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List of abbreviations
AST Abstract syntax tree
ChIP-seq chromatin immunoprecipitation followed by high-throughput se-

quencing
DAG Directed acyclic graph
ENCODE Encyclopedia of DNA Elements
eRNA Enhancer RNA
HDFS Hadoop File System
HOT High Occupancy of Trancription-related factors
FANTOM5 Functional Annotation of The Mammalian Genome Phase 5
HCC Hepatocellular carcinoma
QB Query block
RNA-seq RNA (cDNA) sequencing
START Signal Track Analytical Research Tool
SQL Structured Query Language
STQL Signal Track Query Language
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Figure 1 An example that illustrates the coalesce operator. I1..I7 are intervals in the input track
that are allowed to overlap with or be adjacent to each other, while Ir1..Ir3 are the
non-overlapping, non-adjacent intervals in the resulting track after the coalesce operation. Ir1 is
formed by merging I1, I2, I3 and I4, which occupy a contiguous block of genomic locations. Ir2 is
formed by I5 alone, which does not overlap with or is adjacent to any other input intervals. Ir3 is
formed by merging I6 and I7.
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Figure 2 An example that illustrates the discretize operator. I1..I7 are intervals in the input track
that are allowed to overlap with each other, while Ir1..Ir9 are non-overlapping intervals in the
resulting track after the discretization operation. Each resulting interval is defined by the
boundary positions of some input intervals. For example, Ir1’s starting position is the same as I1’s
starting position, and its ending position is equal to I2’s starting position minus one. It should be
noted that the output intervals Ir8 and Ir9 are adjacent to each other since they were produced
from input intervals that were also adjacent (I5 and I6/I7).
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Figure 3 An example that illustrates the project on operator. I11..I14 are intervals in input track
1, I21..I23 are intervals in input track 2, while Ir1..Ir3 are intervals in the resulting track after the
projection. The locations of the intervals in the resulting track are directly from the intervals in
input track 2. The value of Ir1 is determined by the values of I11 and I12 since they are the ones
that overlap with I21. The exact way of computing the value depends on the mathematical
operator and the value model (which we use vd(v1, v2) here to mean the computation based on
the values from intervals I11 and I12). Similarly, the value of Ir2 is determined by the values of I12,
I13 and I14 since they are the intervals that overlap with I22. Since I23 does not overlap with any
intervals in track 1, it does not receive any value from track 1 but is instead given the default
value of 0.

Track 1

Track 2

I21

I11 I12

I13

I14

I22 I23

Resulting Track

Ir1 Ir2

Ir3

Ir4

Track1 intersectjoin Track2

Track 1

Track 2

I21

I11 I12

I13

I14

I22

I23

Resulting Track

Ir1 Ir2 Ir3 Ir4

Track1 exclusivejoin Track2

Figure 4 An example that illustrates the intersectjoin operator. I11..I14 are intervals in input
track 1, I21..I23 are intervals in input track 2, while Ir1..Ir4 are intervals in the resulting track after
the intersect-join. I11 and I21 each produces only one resulting interval (Ir1 and Ir2 respectively)
because they only overlap with I21. I13 produces two resulting intervals (Ir3 and Ir4) because it
overlaps with both I21 and I22. I14 does not produce any resulting interval because it does not
overlap with any intervals in track 2.
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Figure 5 An example that illustrates the exclusivejoin operator. I11..I14 are intervals in input
track 1, I21..I23 are intervals in input track 2, while Ir1..Ir4 are intervals in the resulting track after
the exclusive-join. The whole interval of I11 remains to become Ir1 in the resulting track, because
it does not overlap with any interval in track 2. In contrast, the whole interval of I12 is not
included in the resulting track, because it is completely covered by I21 and I22. For I13, the part of
it not covered by I22 becomes interval Ir2 in the resulting track. Finally, I14 is being cut by I23 into
two intervals Ir3 and Ir4 in the resulting track.
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Figure 6 The overall architecture of START. The Web-based user interface helps users select
signal tracks, construct STQL queries, submit queries, and retrieve execution results. It also
provides various additional functionality, such as user management, storage for queries, data files
and result files, and sharing of queries with other users. The metastore provides information about
the stored signal tracks in the backend database. When a query is sent to the backend system, it
is handled by a driver that consists of three main components. First, a compiler checks for
potential syntactic and permission errors, and produces a parse tree of the query if no errors are
found. Second, an optimizer analyzes the parse tree and determines an execution plan optimized
for efficiency. Third, an executor calls the underlying system to execute the query. The underlying
system is based on the Hadoop framework, which distributes the data files needed and performs
the actual computations on multiple machines in parallel. When a job is finished, the results are
stored and the user is notified to preview or download them using the user inferface.

A 

C 

B 

D E 

Figure 7 The user interface of START. (A) The main text box for entering STQL queries. (B) A
list of signal track categories of the tracks stored in the backend database. (C) The list of signal
tracks in the selected category. (D) Menu items related to user accounts. (E) Menu items for
managing and sharing stored queries and files.
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Figure 8 A typical MapReduce job created by the executor from an STQL query.
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Relation Definition Example use
I1 coincides with I2 I1.chr = I2.chr and

I1.chrstart = I2.chrstart and
I1.chrend = I2.chrend

From the tracks of two replicated experi-
ments where each interval stores the av-
erage signal of a genomic bin, find out
the bins with values in both experiments

I1 overlaps with I2 I1.chr = I2.chr and
I1.chrstart ≤ I2.chrend and
I1.chrend ≥ I2.chrstart

From a track of intervals that represent
a type of signal, find out those that over-
lap the promoters defined as intervals in
another track

I1 contains I2 I1.chr = I2.chr and
I1.chrstart ≤ I2.chrstart and
I1.chrend ≥ I2.chrend

From a track of intervals that represent
transcription factor binding sites, find out
those that contain single nucleotide vari-
ants defined as intervals in another track

I1 is within I2 I1.chr = I2.chr and
I1.chrstart ≥ I2.chrstart and
I1.chrend ≤ I2.chrend

From a track of intervals that represent
genes, find out those that are contained
by haplotype blocks defined as intervals
in another track

I1 is adjacent to I2 I1.chr = I2.chr and
(I1.chrend + 1 = I2.chrstart or
I1.chrstart − 1 = I2.chrend)

From a track of intervals that represent
different sequence elements, find out the
flanking exons of an intron

I1 is prefix of I2 I1.chr = I2.chr and
I1.chrstart = I2.chrstart and
I1.chrend ≤ I2.chrend

From a track of intervals that represent
genes and their sub-elements, find out the
first exon of each gene on the positive
strand

I1 is suffix of I2 I1.chr = I2.chr and
I1.chrstart ≥ I2.chrstart and
I1.chrend = I2.chrend

From a track of intervals that represent
genes and their sub-elements, find out the
first exon of each gene on the negative
strand

I1 precedes I2 I1.chr = I2.chr and
I1.chrend < I2.chrstart

Ordering any type of intervals on the
same chromosome

I1 follows I2 I1.chr = I2.chr and
I1.chrstart > I2.chrend

Ordering any type of intervals on the
same chromosome

I1 is upstream of I2 I1.chr = I2.chr and
((I2.strand = ‘+’ and I1.strand =
‘+’ and I1 precedes I2) or
(I2.strand = ‘+’ and I1.strand = ‘.’
and I1 precedes I2) or
(I2.strand = ‘−’ and I1.strand = ‘−’
and I1 follows I2) or
(I2.strand = ‘−’ and I1.strand = ‘.’
and I1 follows I2))

From a track of intervals that represent
transcripts, define their promoter regions

I1 is downstream of I2 I1.chr = I2.chr and
((I2.strand = ‘+’ and I1.strand =
‘+’ and I1 follows I2) or
(I2.strand = ‘+’ and I1.strand = ‘.’
and I1 follows I2) or
(I2.strand = ‘−’ and I1.strand = ‘−’
and I1 precedes I2) or
(I2.strand = ‘−’ and I1.strand = ‘.’
and I1 precedes I2))

From a track of intervals that represent
sequence motifs, find out their down-
stream sequence elements defined as in-
tervals in another track

Table 1 Relations defined in STQL for comparing different intervals.

Tables
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STQL operation coalesce , discretize or project on intersectjoin exclusivejoin
Values involved v1...vn v1, v2 v1

vd sum
Pn

i=1 vi v1 + v2 N/A

vd avg
Pn

i=1 vi

n
(v1 + v2)/2 N/A

vd diff N/A v1 − v2 N/A
vd product

Qn
i=1 vi v1 × v2 N/A

vd quotient N/A v1 ÷ v2 N/A
vd max maxn

i=1 vi max(v1, v2) N/A
vd min minn

i=1 vi min(v1, v2) N/A
vd left N/A v1 v1

vd right N/A v2 N/A
Table 2 The full list of mathematical operations defined for STQL operations that create intervals.
Starting from the third row, the first column shows the names of these mathematical operations that
can be used in the <vd> placeholders in statements involving coalesce , discretize , project on ,
intersectjoin and exclusivejoin . These mathematical operations are used in Step 2 of value
derivation. The second row defines the values involved in the operations. In the case of intersectjoin
, exactly two values are involved, namely v1 from the first track and v2 from the second track. In the
case of exclusivejoin , exactly one value is involved, namely v1 from the first track. In the case of
coalesce , discretize and project on , all values come from the same track and there can be one or
more values involved. N/A indicates mathematical operators that cannot be used with the STQL
operations.

Query START Bedtools Python
SQ1 21 63 158
SQ2 30 71 220
SQ3 6 26 202
SQ4 34 61 336
SQ5 23 28 162
SQ6 12 24 146
SQ7 13 25 117
SQ8 14 25 91
CQ1 38 N/A 288
CQ2 53 N/A 460
CQ3 102 N/A 471
CQ4 105 164 500
CQ5 266 N/A 462
CQ6 50 83 202

Table 3 Number of tokens involved in the code of the different approaches on the 14 example
queries. N/A indicates cases in which we were unable to find a trivial way to perform the analysis
using the approach.

Query Number of Number of Number of START Bedtools Python Galaxy
input tracks input intervals output intervals

SQ1 1 57,059,743 23,857,046 207 407 1171 N/A
SQ2 2 11,517,945 33,312 50 135 184 N/A
SQ3 2 51,417 14,026 39 0.04 0.3 23
SQ4 2 11,517,945 1,054,854 47 21 42 408
SQ5 1 8,898,501 450,380 52 7 125 270
SQ6 2 18,839 5,702 46 0.04 21 N/A
SQ7 1 2,619,444 36,366 31 6 5 44
SQ8 1 2,619,444 1 33 2 3 30
CQ1 52 1,514,863 2,590,502 86 N/A 36 N/A
CQ2 3 2,938,174 29,225 300 N/A 7 N/A
CQ3 53 4,134,307 76,041 1340 N/A 84 N/A
CQ4 100 32,297,907 68,031 1680 262 420 N/A
CQ5 5 257,369,824 264 360 N/A 5289 N/A
CQ6 2 65,412,859 4,006,220 119 207 483 N/A
Table 4 Execution time of the different approaches on the 14 sample queries in seconds. N/A
indicates cases in which we were unable to find a trivial way to perform the analysis using the
approach.
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Supplementary Materials
Sample queries

To illustrate the use of STQL in performing practical analyses, here we describe
a number of complete sample queries, including both simple ones involving single
statements and composite ones involving multiple statements. Each of these queries
can be tested by pasting the whole statement(s) into the query box on the main
page of START and submitting the query from there.

Simple queries
SQ1 Analysis task: To compute the average H3K4me1 signal at each 100bp bin

across the whole genome, for identifying potential transcriptional enhancers.
Query template:

SELECT *
FROM (project T on generate bins with length 100
with vd sum using EACH MODEL) NtInt
WHERE NtInt.value > 0;

Example of real data:
• T: ‘wgEncodeBroadHistone‘.

‘wgEncodeBroadHistoneGm12878H3k04me1StdSigV2.bigWig‘ (An EN-
CODE ChIP-seq data file of H3K4me1 signals in the GM12878 cell line
produced by the Broad Institute)

Explanations: This is a simple demonstration of the second form of the
project on statement. In the bigWig file we use, the intervals are all non-
overlapping. In this case, using vd sum, vd avg, vd product, vd max and
vd min would all give the same results.

SQ2 Analysis task: To compute the expression level of each gene, defined as the
average RNA (cDNA) sequencing (RNA-seq) signals covering the genomic
locations of the gene.
Query template:

SELECT *
FROM (project T1 on (

SELECT DISTINCT chr, chrstart, chrend
FROM T2

WHERE feature = ’gene’) NtInt1
with vd avg using EACH MODEL) NtInt2

WHERE NtInt2.value > 0;
Example of real data:

• T1: ‘wgEncodeCshlLongRnaSeq‘.
‘wgEncodeCshlLongRnaSeqGm12878CellTotalPlusRawSigRep1.bigWig‘
(An ENCODE RNA-seq data file of total long RNA in the GM12878 cell
line produced by the Cold Spring Harbor Laboratory)

• T2: ‘wgEncodeGencode‘.‘gencode.v19.annotation.gtf‘ (Gencode [21] ver-
sion 19 annotation file)

Explanations: In this query, a nested query is first used to select the sequence
elements in the gene annotation file that correspond to genes. “feature” is a
non-default attribute defined for the gene annotation track. A projection is
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then performed to compute the average RNA-seq signal of each gene, and the
genes with non-zero expression are returned.

SQ3 Analysis task: To find the genomic regions covered by signal peaks of both
H3K4me1 and H3K27ac, which are potential active enhancers in a particular
context (the HCT116 human cell line in this case).
Query template:

SELECT *
FROM T1 intersectjoin T2;

Example of real data:
• T1: ‘wgEncodeSydhHistone‘.

‘wgEncodeSydhHistoneHct116H3k04me1UcdPk.narrowPeak‘ (An EN-
CODE ChIP-seq data file of H3K4me1 signal peaks in the HCT116
cell line produced by the Stanford/Yale/Davis/Harvard sub-group)

• T2: ‘wgEncodeSydhHistone‘.
‘wgEncodeSydhHistoneHct116H3k27acUcdPk.narrowPeak‘ (An ENCODE
ChIP-seq data file of H3K27ac signal peaks in the HCT116 cell line pro-
duced by the Stanford/Yale/Davis/Harvard sub-group)

Explanations: This query demonstrates the use of the intersectjoin con-
struct in finding common regions in different signal tracks.

SQ4 Analysis task: To identify expressed regions outside annotated level-1 (exper-
imentally validated) and level-2 (manually curated) Gencode protein-coding
genes, some of which could be non-coding RNAs.
Query template:
SELECT *
FROM T1 exclusivejoin (

SELECT chr, chrstart, chrend
FROM T2

WHERE feature = ’gene’ AND
attributes LIKE ’%gene type “protein coding”%’
AND
(attributes LIKE ’%level 1%’ OR
attributes LIKE ’%level 2%’)

) NtInt;
Example of real data:

• T1: ‘wgEncodeCshlLongRnaSeq‘.
‘wgEncodeCshlLongRnaSeqGm12878CellTotalPlusRawSigRep1.bigWig‘
(An ENCODE RNA-seq data file of total long RNA in the GM12878 cell
line produced by the Cold Spring Harbor Laboratory)

• T2: ‘wgEncodeGencode‘.‘gencode.v19.annotation.gtf‘ (Gencode version
19 annotation file)

Explanations: This query demonstrates the use of the exclusivejoin con-
struct in excluding regions. A nested query is used to select out only level-1
and level-2 protein coding genes from an annotation file, based on the non-
default attribute “attributes” defined for the gene annotation track. These
regions are then excluded from the expressed regions with RNA-seq signals.
One could also easily modify the query to exclude also small flanking regions
from each gene, by selecting for example “T2.chrstart-1000” and “T2.chrend
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+1000” in the nested query, or by considering only regions with RNA-seq
signals higher than a certain threshold as expressed, by pre-filtering T1 using
the WHERE clause.

SQ5 Analysis task: To identify contiguous genomic regions with significant expres-
sion, which could correspond to transcribed exons.
Query template:

SELECT *
FROM coalesce (

SELECT chr, chrstart, chrend, value
FROM T
WHERE value > 2) NtInt
with vd avg using EACH MODEL;

Example of real data:
• T: ‘wgEncodeCshlLongRnaSeq‘.

‘wgEncodeCshlLongRnaSeqGm12878CellTotalPlusRawSigRep1.bigWig‘
(An ENCODE RNA-seq data file of total long RNA in the GM12878 cell
line produced by the Cold Spring Harbor Laboratory)

Explanations: This query demonstrates the use of the coalesce construct
in joining overlapping and adjacent regions. A nested query is used to select
genomic locations with an expression level larger than 2 (say in RPKM or
other units). These regions are then joined together into larger contiguous
regions by using coalesce .

SQ6 Analysis task: To identify regions bound by a transcription factor that overlap
binding sites of another factor, which could indicate co-binding events and
provide information for finding functionally related factors.
Query template:

SELECT *
FROM T1 TInt1, T2 TInt2
WHERE TInt1 overlaps with TInt2;

Example of real data:
• T1: ‘wgEncodeSydhTfbs‘.

‘wgEncodeSydhTfbsHelas3CfosStdPk.narrowPeak‘ (An ENCODE ChIP-
seq data file of Cfos binding signal peaks in the HeLa-S3 cell line pro-
duced by the Stanford/Yale/Davis/Harvard sub-group)

• T2: ‘wgEncodeSydhTfbs‘.
‘wgEncodeSydhTfbsHelas3CjunStdPk.narrowPeak‘ (An ENCODE ChIP-
seq data file of Cjun binding signal peaks in the HeLa-S3 cell line pro-
duced by the Stanford/Yale/Davis/Harvard sub-group)

Explanations: This query demonstrates the use of the overlaps with relation
in the WHERE clause. The query returns Cfos binding peaks that overlap
Cjun binding peaks. These two factors are both members of the AP-1 complex
and are expected to have overlapping binding peaks. This query is different
from taking an intersectjoin between the two tracks (which is another
possible way to study co-binding events), because intersectjoin only returns
the overlapping parts of the intervals but not whole Cfos binding peaks.

SQ7 Analysis task: To identify all annotated genes longer than a given length.
Query template:
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SELECT *
FROM T TInt
WHERE feature = ’gene’ AND length(TInt) > 1000;

Example of real data:
• T: ‘wgEncodeGencode‘.‘gencode.v19.annotation.gtf‘ (Gencode version

19 annotation file)
Explanations: This query demonstrates the use of the length() function in
the WHERE clause in filtering intervals. By changing the conditions in the
WHERE clause, this query could also be used for identifying other types of
sequence element.

SQ8 Analysis task: To count the number of annotated non-protein-coding genes,
which is relatively more variable than the number of protein-coding genes
among different annotation sets and different versions of the same annotation
set.
Query template:

SELECT COUNT(*)
FROM T
WHERE feature = ’gene’ AND

attributes NOT LIKE ’%gene type “protein coding”%’;
Example of real data:

• T: ‘wgEncodeGencode‘.‘gencode.v19.annotation.gtf‘ (Gencode version
19 annotation file)

Explanations: This query demonstrates the use of the COUNT() function
in the SELECT clause in computing an aggregated value of the resulting
intervals. The selection condition in the WHERE clause also demonstrates
how the NOT LIKE construct can be used to filter out protein coding genes
from the results.

Composite queries
CQ1 Analysis task: To count the number of transcription factors with a binding

peak overlapping each genomic location. Neighboring locations with the same
count are grouped into one single interval in the results. This query can be
used as one step in identifying regions with high occupancy of transcription-
related factors (HOT) [11].
Query template:

FOR TRACK T IN (category=<track-category>, <track-selection-conditions>)
SELECT chr, chrstart, chrend, value
FROM T
COMBINED WITH UNION ALL AS Step1Results;

SELECT *
FROM discretize Step1Results with vd sum using EACH MODEL;
Example of real data:

• <track-category>: ‘SYDH TFBS‘ (ENCODE transcription factor bind-
ing signals from ChIP-seq experiments produced by the Stanford/ Yale/
Davis/ Harvard sub-group)
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• <track-selection-conditions>: cell=’GM12878’ and fname LIKE ’%Pk%’
(considering only peak files from the cell line GM12878)

Explanations: The first sub-query demonstrates the use of the FOR TRACK
IN () construct in selecting all files corresponding to transcription factor bind-
ing peaks in a particular cell line. The union of all these peaks is stored in a
temporary track called Step1Results. Each of these peaks has a value of 1. In
the second sub-query, the discretize operation is used to cut the overlapping
peaks into non-overlapping regions. The number of different transcription fac-
tors with a binding peak overlapping each resulting region is counted by using
the vd sum operation with the EACH MODEL of interval values. The final
results are stored in a signal track called Step2Results using the second form
of CREATE TRACK.

CQ2 Analysis task: To identify regions that 1) have active transcription factor
binding, 2) are not within pre-defined promoter-proximal regulatory modules
and 3) are at least 10kb away from high-confidence annotated genes. These
regions are potentially gene-distal regulatory regions.
Query template:

CREATE TRACK Step1Results AS
SELECT NtIntA.chr, NtIntA.chrstart, NtIntA.chrend
FROM (T1 exclusivejoin T2) NtIntA;

CREATE TRACK Step2Results AS
SELECT NtIntB.chr, NtIntB.chrstart, NtIntB.chrend
FROM Step1Results NtIntB, T3 TInt3
WHERE TInt3.feature = ’gene’ AND

(TInt3.attributes LIKE ’%level 1%’ OR
TInt3.attributes LIKE ’%level 2%’) AND
distance(NtIntB, TInt3) < 10000;

SELECT *
FROM Step1Results exclusivejoin Step2Results;

Example of real data:
• T1: ‘HumanMetaTracks‘.‘BAR Gm12878 merged.bed‘ (Regions with ac-

tive transcription factor binding in GM12878 as defined in Yip et al.
(2012) [11])

• T2: ‘HumanMetaTracks‘.‘PRM Gm12878 merged.bed‘ (Promoter-proximal
regulatory regions in GM12878 as defined in Yip et al. (2012) [11])

• T3: ‘wgEncodeGencode‘.‘gencode.v19.annotation.gtf‘ (Gencode version
19 annotation file)

Explanations: The first sub-query uses exclusivejoin to select regions
with active transcription factor binding but are not within the pre-defined
promoter-proximal regulatory regions. The second sub-query takes these re-
gions and identifies those that are within 10,000bp from any level-1 or level-2
annotated genes in Gencode. The third sub-query removes the gene-proximal
regions obtained in sub-query 2 from the regions obtained in sub-query 1 to
get the final results. We designed three sub-queries for this task, rather than
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one single complex query (which is possible), to keep each sub-query short
and easily understandable.

CQ3 Analysis task: To identify transcription factor binding regions, in the form of
100bp bins, that are at least 10kb from any high-confidence annotated genes.
This is another way to identify potential gene-distal regulatory regions when
the binding-active regions and the promoter-proximal regulatory modules are
not pre-defined and it is desirable to give 100bp bins as outputs for further
analyses.
Query template:

FOR TRACK T IN (category=<track-category>, <track-selection-conditions>)
SELECT chr, chrstart, chrend, value
FROM T
COMBINED WITH UNION ALL AS Step1Results;

CREATE TRACK Step2Results AS
SELECT NtIntA.chr, NtIntA.chrstart, NtIntA.chrend
FROM (project Step1Results on

generate bins with length 100
with vd sum using EACH MODEL) NtIntA
WHERE NtIntA.value > 0;

CREATE TRACK Step3Results AS
SELECT NtIntB.chr, NtIntB.chrstart, NtIntB.chrend
FROM T1 TInt1, Step2Results NtIntB
WHERE TInt1.feature = ’gene’ AND

(TInt1.attributes LIKE ’%level 1%’ OR
TInt1.attributes LIKE ’%level 2%’) AND
distance(NtIntB, TInt1) < 10000;

SELECT *
FROM coalesce (

SELECT NtIntC.chr, NtIntC.chrstart, NtIntC.chrend
FROM (Step2Results exclusivejoin Step3Results) NtIntC
) NtIntD;

Example of real data:
• <track-category>: ‘SYDH TFBS‘ (ENCODE transcription factor bind-

ing signals from ChIP-seq experiments produced by the Stanford/ Yale/
Davis/ Harvard sub-group)

• <track-selection-condition>: cell=’GM12878’ and fname LIKE ’%Pk%’
(considering only peak files from the cell line GM12878)

• T1: ‘wgEncodeGencode‘.‘gencode.v19.annotation.gtf‘ (Gencode version
19 annotation file)

Explanations: The first sub-query stores all transcription factor binding peaks
in a temporary track. The second sub-query maps these regions to 100bp bins,
and counts the number of transcription factors with a peak overlapping each



Zhu et al. Page S7 of S17

bin. By using the “.value > 0” condition, only bins with at least one binding
transcription factor are kept. The third sub-query identifies the bins that are
close to level-1 or level-2 Gencode genes. Finally, the fourth sub-query uses
exclusivejoin to find bins far away from these genes, and join those that are
adjacent into larger regions.

CQ4 Analysis task: To identify genomic regions, in the form of 2000bp bins, that
overlap the binding peaks of at least 2 transcription factors. The average
H3K27ac signal at each of the identified regions is then computed. Thresh-
olding the resulting signals gives a list of regions with exceptionally strong
H3K27ac signals, which could be potential super enhancers.
Query template:

FOR TRACK T IN (category=<track-category>, <track-selection-conditions>)
SELECT NtIntA.chr, NtIntA.chrstart, NtIntA.chrend, NtIntA.value
FROM (project T on

generate bins with length 2000
with vd sum using EACH MODEL) NtIntA
WHERE NtIntA.value > 0
COMBINED WITH UNION ALL AS Step1Results;

CREATE TRACK Step2Results AS
SELECT chr, chrstart, chrend, COUNT(*) AS value
FROM Step1Results
GROUP BY chr, chrstart, chrend;

CREATE TRACK Step3Results AS
SELECT chr, chrstart, chrend
FROM Step2Results
WHERE value > 2;

CREATE TRACK Step4Results AS
SELECT NtIntB.chr, NtIntB.chrstart, NtIntB.chrend, NtIntB.value
FROM (project T on Step3Results
with vd sum using EACH MODEL) NtIntB;

SELECT *
FROM Step4Results
WHERE value > 3;
Example of real data:

• <track-category>: ‘SYDH TFBS‘ (ENCODE transcription factor bind-
ing signals from ChIP-seq experiments produced by the Stanford /Yale
/Davis /Harvard sub-group)

• <track-selection-conditions>: cell=’K562’ and fname LIKE ’%Pk%’
(considering only peak files from the cell line K562)

• T: ‘wgEncodeBroadHistone‘.
‘wgEncodeBroadHistoneK562H3k27acStdSig.bigWig‘ (An ENCODE ChIP-
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seq data file of H3K27ac signals in the K562 cell line produced by the
Broad Institute)

Explanations: In the first sub-query, all peak files of transcription factor bind-
ing from a particular cell line are selected. Each of them is projected onto
2000bp bins, so that a bin has value 1 if it overlaps with a binding peak,
or value 0 if it does not. Only bins that overlap with at least one binding
peak are kept. In the second sub-query, the number of transcription factors
with a binding peak overlapping a bin is counted by using the COUNT()
function and the GROUP BY clause. In the third sub-query, only bins that
overlap with at least the binding peaks of a certain number of (e.g., 2) differ-
ent transcription factors are kept. In the fourth sub-query, H3K27ac signals
are mapped onto these remaining bins. Finally, in the fifth sub-query, only
bins with an H3K27ac level larger than a threshold (e.g., 3) are kept in the
output. Again, it is possible to write the STQL statements in a more compact
form, but separating them into sub-queries makes each one easy to write and
to understand.

CQ5 Analysis task: To identify genes with significant differential binding signals
at their promoters in two different contexts. In each context, the binding
signals are computed by subtracting the ChIP-seq signals by the corresponding
background signals obtained from a control experiment.
Query template:
CREATE TRACK Step1Results AS
SELECT chr, chrstart, chrend, strand
FROM T1

WHERE feature = ’gene’ AND
attributes LIKE ’%gene type “protein coding”%’;

CREATE TRACK Step2Results AS
SELECT DISTINCT NtIntA.chr, NtIntA.chrstart, NtIntA.chrend
FROM (SELECT chr, chrstart-1500 AS chrstart,

chrstart +500 AS chrend
FROM Step1Results
WHERE strand = ’+’
UNION ALL
SELECT chr, chrend-500 AS chrstart,

chrend +1500 AS chrend
FROM Step1Results
WHERE strand = ’-’) NtIntA;

CREATE TRACK Step3Results AS
SELECT NtIntB.chr, NtIntB.chrstart, NtIntB.chrend,

NtIntB.value - NtIntC.value as value
FROM (project T2 on Step2Results
with vd sum using EACH MODEL) NtIntB,

(project T3 on Step2Results
with vd sum using EACH MODEL) NtIntC
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WHERE NtIntB coincides with NtIntC;

CREATE TRACK Step4Results AS
SELECT NtIntD.chr, NtIntD.chrstart, NtIntD.chrend,

NtIntD.value - NtIntE.value as value
FROM (project T4 on Step2Results
with vd sum using EACH MODEL) NtIntD,

(project T5 on Step2Results
with vd sum using EACH MODEL) NtIntE
WHERE NtIntD coincides with NtIntE;

CREATE TRACK Step5Results AS
SELECT NtIntF.chr, NtIntF.chrstart, NtIntF.chrend,

NtIntF.value/ NtIntG.value as value
FROM Step3Results NtIntF,

(SELECT chr, chrstart, chrend, value
FROM Step4Results
WHERE value != 0) NtIntG

WHERE NtIntF coincides with NtIntG;

CREATE TRACK Step6Results AS
SELECT chr, chrstart, chrend
FROM Step5Results
WHERE value > 2;

SELECT *
FROM (SELECT NtIntH.chr, NtIntH.chrstart, NtIntH.chrend,

NtIntH.strand
FROM Step1Results NtIntH,

(SELECT chr, chrstart +1500 AS chrstart,
chrstart +1500 AS chrend

FROM Step6Results) NtIntI
WHERE NtIntH.strand = ’+’ AND

NtIntI is prefix of NtIntH
UNION ALL
(SELECT NtIntJ.chr, NtIntJ.chrstart, NtIntJ.chrend,

NtIntJ.strand
FROM Step1Results NtIntJ,

(SELECT chr, chrend-1500 AS chrstart,
chrend-1500 AS chrend
FROM Step6Results) NtIntK

WHERE NtIntJ.strand = ’-’ AND
NtIntK is suffix of NtIntJ) NtIntL;

Example of real data:
• T1: ‘wgEncodeGencode‘.‘gencode.v19.annotation.gtf‘ (Gencode version

19 annotation file)
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• T2: ‘wgEncodeSydhTfbs‘.
‘wgEncodeSydhTfbsGm12878JundIggrabSig.bigWig‘ (An ENCODE ChIP-
seq data file of Cjun binding signals in the GM12878 cell line produced
by the Stanford/Yale/Davis/Harvard sub-group)

• T3: ‘wgEncodeSydhTfbs‘.
‘wgEncodeSydhTfbsGm12878InputStdSig.bigWig‘ (An ENCODE con-
trol experiment file using input DNA in the GM12878 cell line produced
by the Stanford/Yale/Davis/Harvard sub-group)

• T4: ‘wgEncodeSydhTfbs‘.
‘wgEncodeSydhTfbsK562JundIggrabSig.bigWig‘ (An ENCODE ChIP-
seq data file of Cjun binding signals in the K562 cell line produced by
the Stanford/Yale/Davis/Harvard sub-group)

• T5: ‘wgEncodeSydhTfbs‘.
‘wgEncodeSydhTfbsK562InputStdSig.bigWig‘ (An ENCODE control ex-
periment file using input DNA in the K562 cell line produced by the
Stanford/Yale/Davis/Harvard sub-group)

Explanations: The first sub-query identifies all protein-coding genes. The sec-
ond sub-query defines the promoter of each gene as the region from 1500bp
upstream of the transcription start site to 500bp downstream of it. The two
strands need to be handled in different ways. The third and fourth sub-queries
compute the background-subtracted binding signals of a transcription factor
at the promoters in two different cell lines. The fifth sub-query computes the
fold change of the binding signal, given that the signal is non-zero in the sec-
ond cell line. The sixth sub-query selects the promoters with at least a 2-fold
higher binding signal in the first cell line as compared to the second one. Fi-
nally, the seventh sub-query gets back the information of the genes of these
promoters.
Since the results of the first two sub-queries are frequently used, they can be
pre-constructed for reuse by various queries, which would simplify the whole
analysis procedure. START allows users to store their custom tracks, which
will be explained in the next section.

CQ6 Analysis task: To identify genomic regions with bi-directional transcription
at their flanking regions (Figure S1), which could be potential enhancers pro-
ducing enhancer RNAs (eRNAs) [? ? ].
Query template:

CREATE TRACK Step1Results AS
SELECT chr, chrstart - 200 AS chrstart, chrend - 200 AS chrend
FROM T1

WHERE value > 2;

CREATE TRACK Step2Results AS
SELECT chr, chrstart + 200 AS chrstart, chrend + 200 AS chrend
FROM T2

WHERE value > 2;

SELECT *
FROM Step1Results intersectjoin Step2Results;
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Figure S1 Illustration of the regions to be identified in this query. RNA-seq signals on the two
strands are shown in the two tracks. In the middle we show three genomic regions in the form of
vertical bars. The first and second regions do not satisfy the query requirements since they miss
significant RNA-seq signals on either side, while the third region satisfies them by having
significant signals on both sides. This query identifies all regions that satisfy the requirements in
the whole genome.

Example of real data:
• T1: ‘wgEncodeCshlLongRnaSeq‘.

‘wgEncodeCshlLongRnaSeqK562CellPapPlusRawSigRep1.bigWig‘ (An
ENCODE RNA-seq data file of total long RNA of the positive strand in
the K562 cell line produced by the Cold Spring Harbor Laboratory)

• T2: ‘wgEncodeCshlLongRnaSeq‘.
‘wgEncodeCshlLongRnaSeqK562CellPapMinusRawSigRep1.bigWig‘ (An
ENCODE RNA-seq data file of total long RNA of the negative strand
in the K562 cell line produced by the Cold Spring Harbor Laboratory)

Explanations: In the first sub-query, genomic regions on the positive strand
with an expression level higher than a given value (e.g., 2) are selected. The re-
gions are shifted 200bp to the left, which will make the last step easy. Likewise,
the second sub-query identifies regions on the negative strand with significant
expression, and the regions are shifted to the right by 200bp. Finally, in the
third sub-query, the results from the first two sub-queries are intersected.
For each region in the final signal track, every constituent genomic position
has significant expression level 200bp downstream on the positive strand and
200bp upstream on the negative strand, which forms a bi-directional pattern
indicative of eRNA [? ].
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Comparisons between STQL and SQL

Since STQL has an SQL-like syntax and a data model that is essentially a relation,

one may wonder whether STQL queries can be easily expressed in SQL. In this

section, we use four examples to show that some operations are much more difficult

to perform using SQL than STQL.

Ex.1 The first example involves the is closest to each construct. In STQL, it is

easy to find out the interval(s) in track T2 closest to each interval in track T1

using the following query:

SELECT T1.chr, T1.chrstart AS start1, T1.chrend AS end1, T2.chrstart AS start2, T2.chrend AS end2
FROM T1 TInt1, T2 TInt2
WHERE TInt1 is closest to each TInt2;
To perform the same operation in SQL, three steps are needed, namely 1)

computing the distance of all interval pairs from the two tracks, 2) finding the

minimum distance for each interval in T1, and 3) retrieving the corresponding

pairs with these minimum distances:
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WITH
/* 1. Calculate the distance between all pairs of intervals from T1 and T2 */
T1sDistance AS (
SELECT T1.chr, T1.chrstart AS start1, T1.chrend AS end1, T2.chrstart AS start2, T2.chrend AS end2,

CASE /* Different cases for calculating distance between two intervals */
WHEN T1.chrstart <= T2.chrend AND T1.chrend >= T2.chrstart

THEN 0
WHEN T1.chrend < T2.chrstart

THEN T2.chrstart - T1.chrend
WHEN T1.chrstart > T2.chrend

THEN T1.chrstart - T2.chrend
END AS distance

FROM T1, T2

WHERE T1.chr = T2.chr
),

/* 2. Calculate the minimum interval distance of each interval in T1 */
T1sMinDistance AS (

SELECT chr, start1, end1, min(distance) AS minDistance
FROM T1sDistance
GROUP BY chr, start1, end1

)

/* 3. Find out the closest pairs based on the minimum distances */
SELECT *
FROM T1sDistance a

LEFT JOIN T1sMinDistance b
ON a.chr = b.chr
AND a.start1 = b.start1
AND a.end1 = b.end1

WHERE distance = minDistance

Ex.2 The second example involves the coalesce construct. Sample query SQ5

demonstrates how all the genomic positions with certain level of transcription

signals are merged into disjoint regions using coalesce . Since each interval

needs to be combined with an indefinite number of other intervals to form an

output region, the operation cannot be performed using standard SQL. We

wrote the following SQL query involving recursion to handle this task:
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WITH RECURSIVE /* Recursively coalesce the intervals */
CoalesceGroup AS (
SELECT chr, chrstart, chrend
FROM T
WHERE T.value > 2
UNION
SELECT a.chr, a.chrstart, T.chrend
FROM CoalesceGroup AS a
/* Join overlapping intervals */
JOIN c on a.chr = c.chr

AND a.chrstart <= c.chrend + 1 AND a.chrend >= c.chrstart - 1
WHERE c.value > 2
),
CoalesceGroup2 AS (
SELECT *, row number() OVER (PARTITION BY chr, chrend ORDER BY chrstart) AS rn
FROM CoalesceGroup
)

/* Compute the values of the output intervals */
SELECT a.chr, a.chrstart, a.chrend, AVG(c.value) as value
FROM (

SELECT chr, chrstart, MAX(chrend) AS chrend
FROM CoalesceGroup2
WHERE rn = 1
GROUP BY chr, chrstart) a
LEFT JOIN c ON a.chrstart <= c.chrend AND a.chrend >= c.chrstart

WHERE c.value > 2
GROUP BY a.chr, a.chrstart, a.chrend

Ex.3 The third example involves the discretize construct. STQL can be used to

discretize the intervals in a track into non-overlapping intervals:
SELECT *
FROM discretize T with vd sum using EACH MODEL

The same operation can be performed by the following SQL query:
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/* Determine the non-overlapping intervals */
WITH allPos AS (
SELECT row number() OVER (PARTITION BY chr ORDER BY pos) AS rn, chr, pos
FROM ((

SELECT chr, d.chrstart AS pos FROM d GROUP BY chr, pos
UNION
SELECT chr, d.chrend+1 AS pos FROM d
WHERE d.chrend != (SELECT MAX(d.chrend) FROM d) GROUP BY chr, pos

)
UNION ALL
(

SELECT chr, d.chrstart-1 AS pos FROM d
WHERE d.chrstart != (SELECT MIN(d.chrstart) FROM d) GROUP BY chr, pos
UNION
SELECT chr, d.chrend AS pos FROM d GROUP BY chr, pos

)) tmpUnion
),

grouping AS (
SELECT a.chr, a.pos AS chrstart, b.pos AS chrend
FROM allPos a LEFT JOIN allPos b ON a.rn+1 = b.rn AND a.chr = b.chr
WHERE a.rn % 2 = 1)

/* Compute the values of the output intervals */
SELECT a.chr, a.chrstart, a.chrend, SUM(d.value) AS value
FROM grouping a JOIN d ON a.chr = d.chr AND a.chrstart <= d.chrend AND a.chrend >= d.chrstart
GROUP BY a.chr, a.chrstart, a.chrend

Ex.4 The last example invovles the project on generate bins with length

constructs. Sample query SQ1 demonstrates how the average signal within

each 100bp genomic bin can be easily computed using these constructs. To

perform the same operation in SQL, it has to first define a new table consisting

of the bin definitions, and then compute the average signal value in each bin:
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/* 1. Create the bin definitions using the GENERATE SERIES function in PostgreSQL */
WITH
Bin AS (
SELECT’chr1’ AS chr, c.b+1 AS chrstart, c.b+100 AS chrend FROM GENERATE SERIES(0, 249250621, 100) c(b)
UNION ALL
SELECT’chr2’ AS chr, c.b+1 AS chrstart, c.b+100 AS chrend FROM GENERATE SERIES(0, 243199373, 100) c(b)
UNION ALL
SELECT’chr3’ AS chr, c.b+1 AS chrstart, c.b + 100 AS chrend FROM GENERATE SERIES(0, 198022430, 100) c(b)
UNION ALL
SELECT’chr4’ AS chr, c.b+1 AS chrstart, c.b + 100 AS chrend FROM GENERATE SERIES(0, 191154276, 100) c(b)
UNION ALL
SELECT’chr5’ AS chr, c.b+1 AS chrstart, c.b + 100 AS chrend FROM GENERATE SERIES(0, 180915260, 100) c(b)
UNION ALL
SELECT’chr6’ AS chr, c.b+1 AS chrstart, c.b + 100 AS chrend FROM GENERATE SERIES(0, 171115067, 100) c(b)
UNION ALL
SELECT’chr7’ AS chr, c.b+1 AS chrstart, c.b + 100 AS chrend FROM GENERATE SERIES(0, 159138663, 100) c(b)
UNION ALL
SELECT’chr8’ AS chr, c.b+1 AS chrstart, c.b + 100 AS chrend FROM GENERATE SERIES(0, 146364022, 100) c(b)
UNION ALL
SELECT’chr9’ AS chr, c.b+1 AS chrstart, c.b + 100 AS chrend FROM GENERATE SERIES(0, 141213431, 100) c(b)
UNION ALL
SELECT’chr10’ AS chr, c.b+1 AS chrstart, c.b + 100 AS chrend FROM GENERATE SERIES(0, 135534747, 100) c(b)
UNION ALL
SELECT’chr11’ AS chr, c.b+1 AS chrstart, c.b + 100 AS chrend FROM GENERATE SERIES(0, 135006516, 100) c(b)
UNION ALL
SELECT’chr12’ AS chr, c.b+1 AS chrstart, c.b + 100 AS chrend FROM GENERATE SERIES(0, 133851895, 100) c(b)
UNION ALL
SELECT’chr13’ AS chr, c.b+1 AS chrstart, c.b + 100 AS chrend FROM GENERATE SERIES(0, 115169878, 100) c(b)
UNION ALL
SELECT’chr14’ AS chr, c.b+1 AS chrstart, c.b + 100 AS chrend FROM GENERATE SERIES(0, 107349540, 100) c(b)
UNION ALL
SELECT’chr15’ AS chr, c.b+1 AS chrstart, c.b + 100 AS chrend FROM GENERATE SERIES(0, 102531392, 100) c(b)
UNION ALL
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SELECT’chr16’ AS chr, c.b+1 AS chrstart, c.b + 100 AS chrend FROM GENERATE SERIES(0, 90354753, 100) c(b)
UNION ALL
SELECT’chr17’ AS chr, c.b+1 AS chrstart, c.b + 100 AS chrend FROM GENERATE SERIES(0, 81195210, 100) c(b)
UNION ALL
SELECT’chr18’ AS chr, c.b+1 AS chrstart, c.b + 100 AS chrend FROM GENERATE SERIES(0, 78077248, 100) c(b)
UNION ALL
SELECT’chr19’ AS chr, c.b+1 AS chrstart, c.b + 100 AS chrend FROM GENERATE SERIES(0, 59128983, 100) c(b)
UNION ALL
SELECT’chr20’ AS chr, c.b+1 AS chrstart, c.b + 100 AS chrend FROM GENERATE SERIES(0, 63025520, 100) c(b)
UNION ALL
SELECT’chr21’ AS chr, c.b+1 AS chrstart, c.b + 100 AS chrend FROM GENERATE SERIES(0, 48129895, 100) c(b)
UNION ALL
SELECT’chr22’ AS chr, c.b+1 AS chrstart, c.b + 100 AS chrend FROM GENERATE SERIES(0, 51304566, 100) c(b)
UNION ALL
SELECT’chrX’ AS chr, c.b+1 AS chrstart, c.b + 100 AS chrend FROM GENERATE SERIES(0, 155270560, 100) c(b)
UNION ALL
SELECT’chrY’ AS chr, c.b+1 AS chrstart, c.b + 100 AS chrend FROM GENERATE SERIES(0, 59373566, 100) c(b)
)

/* 2. Compute average signal value of each bin */
SELECT *
FROM (

SELECT Bin.chr, Bin.chrstart, Bin.chrend,
SUM(CASE /* Different cases based on the intersection between an interval an a bin */
WHEN Bin.chrstart > T.chrstart AND Bin.chrend > T.chrend

THEN T.chrend - Bin.chrstart + 1
WHEN Bin.chrstart <= T.chrstart AND Bin.chrend > T.chrend

THEN T.chrend - T.chrstart + 1
WHEN Bin.chrstart > T.chrstart AND Bin.chrend <= T.chrend

THEN Bin.chrend - Bin.chrstart + 1
WHEN Bin.chrstart <= T.chrstart AND Bin.chrend <= T.chrend

THEN Bin.chrend - T.chrstart + 1
END * T.value)/(Bin.chrend - Bin.chrstart + 1) AS value

FROM Bin LEFT JOIN T on /* Join all overlapping intervals and bins */
(Bin.chrstart <= T.chrend and Bin.chrend >= T.chrstart AND Bin.chr = T.chr)

GROUP BY Bin.chr, Bin.chrstart, Bin.chrend ) AS Ntint
WHERE Ntint.value > 0


