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METHOD

OMSV enables accurate and comprehensive
identification of large structural variations from
nanochannel-based single-molecule optical maps
Le Li1*, Alden King-Yung Leung2*, Tsz-Piu Kwok1*, Yvonne Y.Y. Lai3, Iris K. Pang2, Grace Tin-Yun
Chung4, Angel C.Y. Mak3, Annie Poon3, Catherine Chu3, Menglu Li5, Jacob J.K. Wu5, Ernest T. Lam6,
Han Cao6, Chin Lin3, Justin Sibert7, Siu-Ming Yiu5, Ming Xiao7, Kwok-Wai Lo4, Pui-Yan Kwok3,8,
Ting-Fung Chan2,9,10,11† and Kevin Y. Yip1,9,10,11†

Abstract

We present a new method, OMSV, for accurately and comprehensively identifying structural variations (SVs)
from optical maps. OMSV detects both homozygous and heterozygous SVs, SVs of various types and sizes,
and SVs with or without creating/destroying restriction sites. We show that OMSV has high sensitivity and
specificity, with clear performance gains over the latest existing method. Applying OMSV to a human cell line,
we identified hundreds of SVs >2kbp, with 68% of them missed by sequencing-based callers. Independent
experimental validations confirmed the high accuracy of these SVs. The OMSV software is available at
http://yiplab.cse.cuhk.edu.hk/omsv/.

Keywords: optical mapping; nanochannel; single-molecule analysis; structural variation

Background
Structural variations (SVs), defined as genomic alter-
ations involving segments larger than 1kbp [1], are
prevalent in human genomes. They represent charac-
teristic differences among human populations [2], and
are associated with various diseases [3, 4].

Current sequencing technologies, including second-
generation and commercial third-generation sequenc-
ing platforms, produce sequencing reads from a hun-
dred to tens of thousands of base pairs only, mak-
ing it challenging to study long repetitive regions and
complex structural rearrangements. For instance, some
large insertions cannot be contained in a single read,
and their detection requires either sequence assem-
bly [5] or reference alignment [6, 7], with the help of
paired-end or mate-pair sequencing with large insert
sizes [8, 9]. In general, these methods are not ideal for
detecting large SVs accurately and comprehensively,
especially SVs that involve long DNA sequences not
present in the reference sequence [10, 11].

Optical mapping (OM) [12] is a promising alterna-
tive technology that provides structural information of
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individual long DNA molecules. In nanochannel-based
optical mapping [13, 14], DNA molecules are digested
by a nicking endonuclease to create single-strand nicks,
which are then repaired with fluorescent dye conju-
gated nucleotides. The resulting DNA molecules are
linearized in nanochannels and imaged using high-
resolution fluorescent microscopy (Additional file 1:
Figure S1). The final outputs are the optical maps,
which record restriction site label locations on each
DNA molecule. SVs can be identified by comparing
the observed label pattern with the expected pattern
based on the reference sequence (Figure 1a). For exam-
ple, two sites significantly farther apart on an optical
map than their corresponding locations on the refer-
ence could indicate an insertion.

Due to the much longer length of optical maps (up
to 1Mbp) compared to sequencing reads, OM has been
found very powerful in SV discovery [13, 15–18]. Cur-
rent high-throughput OM methods can produce opti-
cal maps for a hundred thousand molecules within a
few hours, at an average size of several hundred kbps
per molecule. These molecules can be full-length DNA
derived from species with a small genome, or fragments
of very long DNA molecules such as human chromo-
somes.
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Analyzing optical maps is non-trivial due to vari-
ous types of error present in the data [19, 20]. False
positives (false labels observed but not coming from
true restriction sites) can occur due to non-specific en-
zymatic cuts or DNA breakage. False negatives (true
restriction sites not observed on the optical maps) can
occur due to incomplete enzyme digestion. Sizing er-
rors (deviation between measured and actual distance
between two restriction sites on an optical map) can
occur due to DNA fragments that are over-stretched
or not completely linearized. Finally, labels of close
restriction sites may merge into a single label in the
observed data due to limitations in imaging resolution.
As a result of all these error types, specialized methods
have been proposed for various computational tasks re-
lated to the analysis of optical maps, including error
modeling [19, 21], molecule alignment [18, 20, 22–24],
de novo and reference-assisted assembly [20, 25, 26],
and detection of SVs [13, 17, 18, 27].

Existing methods for calling SVs from optical maps
have several major limitations (Additional file 1: Ta-
ble S1). First, most of them require a de novo as-
sembly of the optical maps or the construction of a
consensus map [13, 15, 18], making the accuracy of
SV calls dependent on the reliability of these difficult
procedures. Second, none of the current methods can
simultaneously 1) detect both homozygous and het-
erozygous SVs, 2) handle SVs of a wide range of sizes,
and 3) evaluate SV probabilities based on a formal er-
ror model and the optical maps that support/do not
support the SVs. Besides, almost none of the existing
methods have made their software publicly available,
which hampers the widespread use of optical mapping
in studying SVs.

Here we describe a comprehensive SV calling pipeline
and corresponding open-source software, OMSV (avail-
able at the supplementary Web site, http://yiplab.
cse.cuhk.edu.hk/omsv/, under the MIT license),
which overcomes these limitations. We demonstrate
the effectiveness of OMSV using both simulations and
optical maps produced from a family trio. In addition,
we show that when OMSV was applied to detect SVs
in a human cell line, many of our detected SVs were
missed by typical sequencing-based SV callers. Some
of our detected SVs were experimentally tested using
DNA isolated from the cell line, and most of them
were successfully validated. Finally, we describe how
OMSV can combine optical maps and sequencing data
to identify precise SV break points and uncover novel
sequences involved in the SVs.

Results
The OMSV pipeline
OMSV contains two main steps (Figure 1b, Methods).
In the first step, it aligns optical maps to the reference

map, which is deduced from the reference sequence and
the recognition motif of the nicking enzyme by in silico
digestion. Two different aligners are used, namely Re-
fAligner [24], which can efficiently align optical maps
highly similar to the reference, and OMBlast [22],
which can handle more complex genomic rearrange-
ments by split-aligning a single optical map to mul-
tiple regions on the reference. The alignment results
from the two aligners are integrated to form a sin-
gle set of consensus alignments. In the second step of
OMSV, these alignments are passed to three separate
SV calling modules for three corresponding types of
SVs, which are 1) SVs involving the creation or re-
moval of restriction sites, 2) SVs involving large dis-
tance changes between restriction sites, and 3) more
complex SVs such as inversions and translocations.
SVs identified from these modules are then integrated
and de-duplicated to form a final list of SVs.

In the SV calling modules, a formal error model is
used to compare the likelihoods of the reference geno-
type (i.e., no SVs), homozygous SVs, and heterozygous
SVs. An SV is called only if a set of stringent criteria
are satisfied (Figure 2, Methods).

Simulations confirm the effectiveness of OMSV
To test the effectiveness of OMSV, we generated sim-
ulated OM data from artificial haploid and diploid
human genomes, by introducing various types of ge-
netic variants to the reference genome hg38 followed
by simulation of noisy optical maps with all types of
error (Methods). We defined a default error setting,
and additional settings that covered a wide range of
false positive and false negative rates of nicking sites
and depths of coverage, leading to a total of 28 sets of
simulated OM data (Additional file 1: Tables S2,S3).
In the original paper that describes the nanochannel-
based optical mapping method [13], the false positive
and false negative rates were reported to be 21% and
4%, respectively. According to our experience, the cur-
rent systems have around 10% false negative labels and
1 false positive label per 100kbp. In the default error
setting, we set these parameters to slightly higher val-
ues to test OMSV’s ability to handle noisy data (Ad-
ditional file 1: Table S2).

Next, we applied OMSV to identify SVs from these
simulated OM data sets, and compared the results to
the actual lists of synthesized SVs in order to deter-
mine OMSV’s precision (fraction of called SVs that are
correct) and recall (fraction of simulated SVs correctly
called by OMSV).

Here we first focus on insertions and deletions (in-
dels) larger than 2kbp in the data sets with the de-
fault setting, since they constitute a large fraction of
our simulated SVs and these large SVs are difficult for
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short-read based methods to identify accurately. In the
case of the haploid genome, both the precision and
recall of OMSV were 98% for deletions and 95% for
insertions (Figures 3a,b), showing that it was highly
effective. In the case of the diploid genome, when the
goal was to identify SV locations only without con-
sidering correctness of zygosity, OMSV again achieved
high precision (99%) and recall (92%) for deletions,
and high precision (97%) and moderate recall (81%)
for insertions due to fewer optical maps supporting the
SVs in the heterozygous cases. When correct zygosity
was also required for an SV to be considered correctly
called, OMSV still achieved 90% precision and 81% re-
call on average. For the SVs correctly identified from
the two data sets, we further compared their estimated
sizes by OMSV with the actual sizes up to the closest
defining nicking sites, and found them to be very sim-
ilar in most cases (Figures 3c,d), with a median size
ratio of 1.0028 and 1.0029 for the haploid and diploid
data sets, respectively.

To benchmark the performance of OMSV, we com-
pared it with the latest version of the assembly-based
SV caller BioNano Solve, which is the only other
SV caller for nanochannel-based optical mapping with
publicly available software (the SV caller used in Cao
et al. [15] is a previous version of this software). We
found that the precision of the two methods was com-
parable, but OMSV had 10%-31% higher recall (Fig-
ures 3e,f). Moreover, since BioNano Solve required a
de novo assembly of the optical maps, its running time
was 16-21 times longer than OMSV (including the
alignment time).

To evaluate the robustness of OMSV, we performed
three additional sets of tests. First, using the diploid
data set with default settings, we checked the SVs with
various numbers of optical maps aligned to their loci
and having different likelihood ratios as computed by
OMSV. We found that OMSV’s precision remained
highly stable at different values of these variables (Ad-
ditional file 1: Figure S2), and the default parameter
values of OMSV (at least 10 aligned optical maps and a
null-to-alternative likelihood ratio of at most 10−6 for
an SV to be called) provided a good tradeoff between
precision and recall. Second, we compared the perfor-
mance of OMSV on data sets with different depths
of coverage. To separate the effects of alignment er-
rors and SV calling errors, we also considered an ide-
alized situation with no alignment errors (Methods).
The depth of coverage was found to have virtually no
effects on the precision of OMSV for the depth values
considered (Additional file 1: Figure S3a), but it cor-
related with the recall (Additional file 1: Figure S3b),
with almost no SVs being called when the coverage
went down to around 5x. Importantly, by comparing

our results with and without involving optical map
alignments, we found that the decreased recall at low
depth of coverage was largely due to alignment errors
as seen by the big drop of recall with the actual align-
ment as compared to the case with perfect alignment
at the same data coverage. Third, we altered the false
positive and false negative rates of the OM data, and
found that the performance of OMSV remained stable
for most settings until the error rates reached unre-
alistically large values not typically seen in real data
(Additional file 1: Figures S4,S5). Again, we found that
the performance drop at high false positive and false
negative rates correlated strongly with alignment er-
rors, and thus the performance of OMSV should be au-
tomatically improved with better alignment accuracy.
Overall, these three sets of tests show that OMSV is
generally robust against different data properties and
parameter settings.

We also compared different alignment strategies in-
volving alignments from only one of the two aligners,
their intersection, and their union. The results (Addi-
tional file 1: Figure S6) show that taking the union of
the two aligners had the best tradeoff between preci-
sion and recall, especially when the data set had a low
depth of coverage.

For complex SVs (Figures 3g,h), OMSV achieved 80-
85% precision but only 30-50% recall on the two de-
fault sets. Many of the missed SVs were found to be
intrinsically infeasible to call, including inversions that
contain no nicking sites or symmetric nicking site pat-
terns that would not change upon the inversions. After
filtering these cases, the recall rate of the resulting in-
trinsically feasible (IF) complex SVs was substantially
improved to 45-80%. BioNano Solve contained a func-
tion for calling complex SVs, but failed to detect any
of them from the simulated data.

Taken together, the simulation results show that
OMSV can identify large SVs accurately and compre-
hensively on data sets with properties typical in real
data.

In terms of running time of OMSV, the main bot-
tleneck was optical map alignments (Additional file 1:
Table S4). This limitation can be overcome by running
the aligners on multiple threads in parallel, leading to
an overall running time of OMSV of less than 5 hours
for each simulated human sample with a 100x genome
coverage.

OMSV identifies SVs concordantly from different
members of a family
We next tested OMSV on the optical maps produced
from a family trio in a former study [28] (Additional
file 1: Table S5). Genetic variants from this trio were
previously reported [29], but they are mostly small
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variants. OMSV called 1,054–1,126 large indels from
the three samples independently (Additional file 1: Ta-
ble S6, Additional file 2, Methods), with an average
size of 6.4kbp and a maximum of 89kbp. In addition,
there were 22 other loci with two indels called at the
same locus. OMSV also called 86–158 complex SVs
from the three individuals in this trio. Since the actual
SVs in these individuals were not known, we used four
different methods to estimate the accuracy of OMSV.

First, we hid the sex of the samples from OMSV, and
checked the number of SV calling errors related to the
sex chromosomes (Additional file 1: Table S6). When
pseudo-autosomal regions were excluded, in the female
samples NA12878 and NA12892, 59 and 55 SVs were
called on the X chromosome, respectively, whereas no
SVs were wrongly called on the Y chromosome. In
terms of zygosity, the male sample NA12891 had 18
indels wrongly called as heterozygous among the 53
indels called on the non-pseudo-autosomal regions of
the sex chromosomes. Based on these numbers, the es-
timated zygosity precision was (53-18)/53 = 66%.

Second, we compared the indels called from the three
individuals. Among the high-confidence calls (Meth-
ods), 99% were concordant with Mendelian inheritance
when zygosity of the SVs was ignored, and 86% were
concordant when zygosity was considered. We used the
precision and recall values from our simulations to es-
timate the expected Mendelian concordance to be 96%
when zygosity was ignored and 83% when zygosity was
considered (Methods), suggesting that the accuracy of
OMSV on the trio data was comparable to that on the
simulated data.

Third, we compared our SV calls with the manual
checking results from Mak et al. [28] based on nicking
site patterns of aligned molecules (Additional file 1:
Table S7). Among our SVs with manual checking re-
sults, in the three individuals 96-97% of them were con-
sidered correct by the manual checking results when
zygosity was ignored, which is similar to the preci-
sion values in the simulation study. When zygosity was
considered, 73-74% of our SVs were considered correct
by the manual checking results, which is lower than
that in the simulation. Together, these results suggest
that OMSV could identify SV locations accurately but
determining the correct zygosity of the SVs could be
more difficult with real data.

Finally, we compared our indel list from NA12878
with two lists of indels detected from this sample previ-
ously using sequencing-based methods [2, 30]. Focusing
on large (>2kbp) indels, the intersection of OMSV’s
list and either of these two sequencing-based lists (81
and 90 indels, respectively) was similar to the inter-
section of these two lists (84 indels) (Additional file 1:
Figure S7). Interestingly, 500 (96%) of the insertions

and 178 (38%) of the deletions called by OMSV were
unique among the three lists. Based on the above es-
timation of the accuracy of OMSV, a large fraction of
these novel indels are expected to be real. These ob-
servations suggest that OMSV is able to identify SVs
commonly called by other sequencing-based methods
as well as uncover novel ones missed by them.

We select two examples to illustrate the SVs identi-
fied by OMSV. In the first example on chromosome 6
(Figure 4a), the father (NA12891) has a heterozygous
insertion of around 14.6kbp, the mother (NA12892)
has a heterozygous insertion of around 22.7kbp, and
the daughter (NA12878) inherits both insertions from
the parents. This example demonstrates the abilities of
OMSV in identifying heterozygous SVs and loci with
two distinct alleles both different from the reference.
In the second example (Figure 4b), a large inversion
of around 123.3kbp was consistently found on chromo-
some X from all three individuals, with clear nicking
site patterns that support the inversion.

OMSV identifies many SVs missed by short-read based
SV callers
To further evaluate the ability of OMSV in detecting
novel SVs, we produced optical maps from the human
C666-1 cell line [31] (Additional file 1: Table S8). C666-
1 cells consistently harbor multiple Epstein-Barr virus
(EBV) episomes. As a first check of the data produced,
we aligned the optical maps to the EBV reference in
C666-1 [32], and found a large number of well-aligned
optical maps (Additional file 1: Figure S8). Compar-
ing the average depth of coverage of the optical maps
aligned to the human (72x) and EBV (847x) refer-
ences, we estimated an average of 24 copies of the EBV
genome per C666-1 cell, which is highly consistent with
a previous estimate based on sequencing data [33].

We then applied OMSV to identify SVs in the C666-1
cellular genome (Additional file 1: Table S9, Additional
file 3). In total 810 loci containing indels larger than
2kbp were called, with an average size of 6.6kbp and
a maximum of 106kbp. Among the large indels identi-
fied, 67% were insertions while 33% were deletions, and
69% were homozygous while 31% were heterozygous.
Since C666-1 was originally derived from a male sam-
ple, we checked the number of indels wrongly called as
heterozygous on the sex chromosomes (Additional file
1: Table S9), and found 6 such errors among the 21
(29%) SVs identified, which is close to the error rate
we obtained from NA12891 (34%). To investigate the
origin of our identified indels, we intersected them with
segmental duplications in the human genome [34, 35].
We found 143 of the C666-1 large indels overlapping
with segmental duplication regions, among which 78
involved segmental duplications that overlap exons of
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protein coding genes (Additional file 4). Therefore at
least 18% of the SVs found in C666-1 were likely due
to common segmental duplications, while others could
be more specific to C666-1.

In addition to indels, OMSV also identified 68 copy
number variations (CNVs), 28 medium-size inversions,
13 large inversions, and 6 translocations (2 intra-
chromosomal and 4 inter-chromosomal) (Additional
files 3,5). A translocation in C666-1 between intron
1 of UBR5 and intron 6 of ZNF423 was previously re-
ported, leading to a fusion transcript [36]. We were
able to confirm the existence of this translocation on
the list of complex SVs identified by OMSV (Figure 5).

Whole-genome sequencing data of C666-1 were pre-
viously produced at 75x coverage with 100bp paired-
end reads and an average insert size of 290bp [32]. We
used two sequencing-based SV callers, Manta [37] and
Pindel [38], to identify large (>2kbp) SVs from the
sequencing data. Among the 810 indels identified by
OMSV, 552 of them (68%) were missed by both short-
read based SV callers (Figure 6a). In particular, among
the 543 insertions, 459 of them (85%) were missed by
both. Even for the insertions detected by Manta or
Pindel, they could only provide the locations of the
break points but not the sizes of the insertions, which
are reported by OMSV.

On the other hand, there were also some large SVs
called by the short-read based methods but not by
OMSV. On the basis of the assumption that SVs
identified by at least two methods are more likely to
be real, we found that OMSV had the highest frac-
tion of deletions belonging to this category of high-
confidence SVs (174/267=0.65) as compared to Manta
(264/6534=0.04) and Pindel (215/742=0.29). Since
Pindel did not call any large insertions, we could not
perform this analysis on the insertions.

We further investigated the 111 non-redundant dele-
tions commonly called by Manta and Pindel but not by
OMSV. We found that 2 overlapped with N-gaps in the
reference genome or fragile sites and 34 were in regions
with low optical map coverage, both representing SVs
impossible to be detected by OMSV based on the data
produced. Another 18 cases were missed by OMSV due
to errors in the alignment of optical maps. There were
33 cases in which the alignments of optical maps were
good but did not support an SV, which could mean
either the optical maps supporting the SVs were not
aligned successfully, or the SVs identified by the short-
read based callers were false positives. Amount the re-
maining cases, 19 had low likelihood scores that could
not pass the OMSV parameter threshold we chose, and
5 were missed by OMSV with no obvious reasons. The
24 SVs in these last two categories are the ones that
might be detectable by improving the SV calling mod-
ules in OMSV.

Among the 115 complex SVs identified by OMSV,
Manta and Pindel together could only detect 1 large in-
version and 2 translocations. On the other hand, these
two short-read based methods only identified 8 inver-
sions in common, with none of the 116 translocations
detected by Manta also detected by Pindel.

To further check the accuracy of the SVs identified
by OMSV, we performed PCR validations. We focused
on insertions and complex SVs, which are the types
more difficult for short-read based callers to identify
accurately. Considering the maximum possible prod-
uct size of PCR, we selected 17 SVs for validation ex-
periments, including 7 homozygous insertions, 7 het-
erozygous insertions and 3 complex SVs (Additional
file 1: Tables S10-S12). For each one of them, we de-
signed primers based on its predicted break points on
the reference sequence, and compared the length of
the resulting PCR-amplified product with its expected
length with or without the SV (Additional file 1: Ta-
bles S10-S13, Methods).

For the homozygous insertions (Figure 6b), all 7
cases showed a single band much closer to the expected
size with the insertion than the expected size without
the insertion, although in one case (Io7) the band was
weak.

For the heterozygous insertions (Figure 6c), the two
bands having the expected product sizes with or with-
out the insertions were seen in 4 of the 7 cases (Ie2-
Ie4,Ie7), although the one corresponding to the inser-
tion allele was weaker in general, likely due to their
longer products. Additional bands were also observed
in several cases, suggesting that the insertions could be
due to tandem duplications and the additional bands
correspond to another copy number. For 2 of the cases
(Ie5,Ie6), a band was observed at the expected size
of the reference allele, while another relatively strong
band was observed with a size slightly different from
the expected size with the insertion, illustrating a lim-
itation of estimating SV sizes precisely from optical
maps. Finally, for 1 case (Ie1), only one band was ob-
served at the expected size of the reference allele, in-
dicating that it could be a false positive call.

For the complex SVs (Figure 6d), in all 3 cases PCR
products were seen with a size in agreement with the
estimated size of OMSV.

Altogether, among the 17 validated cases, 14 were
clearly validated, 2 had issues with the estimated SV
size, and 1 could not be validated.

Since optical maps only estimate SV break points
up to the closest nicking sites, we used the sequenc-
ing reads to determine the break points more precisely
and deduce the inserted sequences in insertions by lo-
cal sequence assembly (Additional file 1: Figure S9,
Methods). The inferred sequences for the seven PCR-
validated homozygous insertions and the precise SV
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break points are all supported by a large number of
aligned sequencing reads (Figure 6e, Additional file 1:
Figure S10).

Discussion
Currently, it is difficult to detect large or complex
SVs from sequencing alone, and even harder to esti-
mate SV sizes, due to short read length and limited
insert size between read pairs. In particular, large in-
sertions are especially difficult to be detected by short-
read based SV calling methods since alignment of sup-
porting reads that contain contents not in the ref-
erence is difficult, and read coverage is only locally
dropped around the insertion site. Having repeat el-
ements around the SV break points could also make
SV detection from short sequencing reads difficult. In
contrast, using nanochannel-based optical maps, whole
SVs are easily contained in a single optical map, mak-
ing SV detection highly feasible and accurate. Here we
demonstrated that OMSV is a powerful tool for identi-
fying large SVs from kilobases to more than a hundred
kilobases. In fact, as long as an optical map can be cor-
rectly aligned to the reference by having sufficient nick-
ing sites in the flanking non-SV portions, the larger an
SV is, the easier for it to be detected by OMSV, since
the corresponding distance change between the defin-
ing nicking sites is less likely due to scaling and mea-
surement errors alone. This property makes OMSV
an ideal complement to sequencing-based SV callers,
which are generally more accurate in detecting smaller
SVs.

For complex regions and very large SVs, OMSV de-
tects them by employing a two-round alignment strat-
egy that allows split-alignment of an optical map to
multiple locations on the genome. Split-alignments of
optical maps could come with a cost of extra align-
ment time. One way to tackle this problem is to first
quickly align optical maps that can be aligned to single
genomic loci using a standard aligner, and then apply
the split-alignment strategy only to the remaining un-
aligned optical maps.

Since the SV calling modules only require a list of op-
tical map alignments as input, the alignment methods
used in the OMSV pipeline can be flexibly changed to
other choices. Besides, if a high-quality de novo assem-
bly of the optical maps is available, the optical maps
can also be first aligned to the assembly, and their
alignment to the reference can then be inferred from
the further aligning the assembly to the reference. For
optical maps that deviate significantly from the refer-
ence map, this two-step alignment strategy could be
more accurate than directly aligning optical maps to
the reference.

With each optical map coming from one DNA
molecule, OMSV can potentially be extended to study

haplotypes, cell type composition in a sample and cell-
to-cell variability. These analyses would require highly
accurate alignments of individual labels of the optical
maps. Probing the nicking sites of a second enzyme
using an additional color channel may further improve
alignment accuracy necessary for these analyses. With
such improved accuracy, we also hope to extend OMSV
to call the zygosity of complex SVs.

Conclusions
In this paper, we described the OMSV pipeline for
identifying SVs from nanochannel-based optical maps.
The accuracy of OMSV has been confirmed by both
simulations and optical maps from a family trio.
OMSV outperformed the only publicly available tool
for SV detection from OM data in three aspects,
namely 1) OMSV identified many more SVs at a pre-
cision level similar to this method, 2) OMSV identified
many of the complex SVs but this method missed all
of them, and 3) OMSV ran much faster by not requir-
ing a time-consuming de novo assembly of the optical
maps.

We also used OMSV to identify SVs from the C666-1
cell line, and found 68% of them missed by sequencing-
based SV callers, including 85% of the insertions. Some
of these SVs were experimentally validated indepen-
dently.

We provide OMSV as open-source software, which
can be used routinely in genome projects to accurately
and comprehensively identify large SVs that will likely
have important implications for understanding genetic
diversity and disease susceptibility.

Methods
A complete error model for optical maps
We modeled the generation of optical maps from a
DNA sequence as a random process with various types
of error, which combines some ideas previously pro-
posed [19, 21] and several new components based on
properties observed in real human optical maps [28].

In our model, the starting locations of n DNA frag-
ment molecules are first uniformly and independently
sampled from the DNA sequence. Each of these start-
ing locations is used to produce a molecule with length
l0+lv, where l0 is a constant minimum molecule length,
and lv is a random variable that follows a Poisson dis-
tribution with mean µl. In real experiments, l0 is a
threshold chosen such that molecules shorter than it
are excluded from the analyses.

The restriction sites on each molecule can be identi-
fied by matching its sequence against the recognition
motif of the nicking enzyme selected. In our model,
each restriction site has a false negative rate of f− for
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not having a corresponding observable label in the op-
tical map due to incomplete enzymatic digestion or a
measurement error.

False positive labels not originated from actual re-
striction sites but caused by artifacts such as non-
specific enzymatic cuts are then introduced. For every
two adjacent restriction sites, the number of false pos-
itive labels is randomly sampled from a Poisson distri-
bution with mean df+, where d is the distance between
the two sites and f+ is the false positive rate. If the re-
sulting number of false positive labels is non-zero, the
occurrence locations of these false positives are uni-
formly and independently sampled from the locations
between the two sites.

After these steps, each random molecule is repre-
sented by a list of distances between adjacent ob-
served labels (including both true positives and false
positives). For the convenience of discussion, we also
assume the beginning and end of each molecule are
marked by two artificial labels, the locations of which
in actual optical maps can be determined by the span
of the stained DNA backbone. Each molecule then un-
dergoes a random stretch / compression to model siz-
ing errors in the experiments, by multiplying the dis-
tance between every two observed labels by a factor α,
where α is sampled from a Cauchy distribution with
the values of the location and scale parameters set to
oα and sα, respectively. We chose the Cauchy distri-
bution since it had a good fit with the real data we
produced (Additional file 1: Figure S11).

To model the finite resolution of optical measure-
ments, for any two adjacent labels on a stretched /
compressed molecule at a distance of d bp from each
other, they are merged into one single label that oc-
curs at the mid-point of them with a probability of
1 − 1

1+exp

»
−0.01(d−d 1

2
)

– , where d 1
2

is a reference dis-

tance at which the chance for two labels to be merged
is 1/2.

Finally, measurement errors are modeled by moving
each label by an offset that follows a uniform distribu-
tion defined on [−e, e] for a given parameter e.

SV calling modules
Based on the above generative model, we developed
two statistical modules for identifying SVs from op-
tical maps. The first module looks for individual ex-
tra or missing sites on the molecules as compared to
the reference sequence. Some small SVs with only a
mild change of the distance between restriction sites
are better detected by this method. The second mod-
ule compares the distance between two restriction sites
on the molecules with that on the reference genome,
which can detect larger SVs not necessarily involving
extra/missing restriction sites.

Both modules require an alignment of the optical
maps to a reference map obtained from the in silico
digestion of the reference sequence, where the adja-
cent labels are also merged by the way described in
the above section. Based on the alignments, OMSV
extracts three types of information as inputs to the
two SV calling modules, namely 1) the expected loca-
tions of restriction sites on the reference sequence, 2)
the distance (in bp) between every two adjacent ob-
served labels on each molecule, and 3) an alignment
of the labels on the molecules to the restriction sites
on the reference. Every label can be aligned to zero or
one restriction site on the reference, and each restric-
tion site on the reference can be aligned to zero or one
label on each molecule.

The third module uses some additional alignment
and coverage information to identify complex SVs.

Module for identifying SVs involving extra or missing
restriction sites
To identify missing restriction sites on the molecules,
we adopted a method originally developed for refining
optical map assemblies [20], and extended it to detect
both homozygous and heterozygous genetic variants.

Suppose there are M molecules aligned to a re-
gion that covers a restriction site on the reference se-
quence, among which m supports the existence of the
restriction site (Figure 2a). Each of the m support-
ing molecules either actually contains the site or has a
false positive label. Each of the M−m non-supporting
molecules either actually does not contain the site or
has a false negative. We consider three hypotheses
for the observed data, namely 1) the null hypothesis
H

(miss)
0 that the restriction site actually exists on the

subject DNA sequence in homozygous form (and thus
there are no false positives), 2) the first alternative hy-
pothesis H

(miss)
hom that the site is missing on the subject

sequence in homozygous form (and thus there are no
false negatives), and 3) the second alternative hypoth-
esis that the site is missing on the subject sequence in
heterozygous form.

Under the null hypothesis H
(miss)
0 , the probability of

observing m or fewer supporting molecules is

Pr(x ≤ m|H(miss)
0 ) =

m∑
x=0

(
M

x

)
(1− fn)xfnM−x,

where fn is the false negative rate to be estimated from
the observed data. Similarly, depending on whether
H

(miss)
0 , H

(miss)
hom or H

(miss)
het is true, the data likelihood

is respectively

L
H

(miss)
0

=
(

M

m

)
(1− fn)mfnM−m,
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L
H

(miss)
hom

=
(

M

m

)
fpm(1− fp)M−m

, and

L
H

(miss)
het

=
∑M

k=0

{(
M
k

)
( 1
2 )M ∑min(k,m)

l=max(0,m−M+k)

[(
k
l

)
(1− fn)lfnk−l

(
M−k
m−l

)
fpm−l(1− fp)M−k−m+l

]}
,

where fp is the false positive rate to be estimated from
the observed data, k is, in the heterozygous case, the
unknown number of molecules coming from the chro-
mosome with the restriction site, and l is the number
of molecules among the k on which the restriction site
is observed. In the model, we assume there is an equal
probability for a molecule to come from either chro-
mosome.

Based on these definitions, if both the p-value
Pr(x ≤ m|H(miss)

0 ) and the likelihood ratio
L

H
(miss)
0

/ max(L
H

(miss)
hom

, L
H

(miss)
het

) are smaller than cor-
responding thresholds for a site, it is considered a ho-
mozygous missing site if L

H
(miss)
hom

≥ L
H

(miss)
het

and a
heterozygous missing site if L

H
(miss)
hom

< L
H

(miss)
het

.
A similar procedure is used for calling homozygous

and heterozygous extra restriction sites. Suppose there
are M molecules aligned to a region on the reference
sequence, among which m supports the existence of a
restriction site in the region that does not exist ac-
cording to the reference sequence. Under the null hy-
pothesis H

(extra)
0 that the site is absent in homozygous

form, the probability of observing m or more support-
ing molecules is

Pr(x ≥ m|H(extra)
0 ) =

M∑
x=m

(
M

x

)
fpx(1− fp)M−x

.

Similarly, depending on whether the site is absent
in homozygous form (null hypothesis H

(extra)
0 ), exists

in homozygous form (alternative hypothesis H
(extra)
hom ),

or exists in heterozygous form (alternative hypothesis
H

(extra)
het ), the data likelihood is respectively defined as

L
H

(extra)
0

= L
H

(miss)
hom

,

L
H

(extra)
hom

= L
H

(miss)
0

, and

L
H

(extra)
het

= L
H

(miss)
het

.

Based on these definitions, if both the p-value
Pr(x ≥ m|H(extra)

0 ) and the likelihood ratio
L

H
(extra)
0

/ max(L
H

(extra)
hom

, L
H

(extra)
het

) are smaller than
corresponding thresholds for a site, it is considered
a homozygous extra site if L

H
(extra)
hom

≥ L
H

(extra)
het

and a
heterozygous extra site if L

H
(extra)
hom

< L
H

(extra)
het

.

In practice, we also define a minimum number of sup-
porting molecules Mmin. For any site with less than
Mmin molecules covering the locus (no matter sup-
porting the presence of the restriction site or not), we
did not call genetic variants from it since the result
would not be reliable.

Module for identifying SVs involving large size
changes
Large SVs are usually associated with a deviation
of the distance between two restriction sites on the
reference sequence (Figure 2b, d0) and that on the
molecules (d1), which may or may not involve ex-
tra/missing restriction sites on the molecules. To sys-
tematically identify these cases, we first check the dis-
tances between every two adjacent restriction sites on
the reference sequence and compare them with the cor-
responding label distances on the aligned molecules
(which would cover the first two cases of Figure 2b).
We then check the distances between every two adja-
cent labels on the aligned molecules that have not been
checked, and compare them with the distance between
the aligned restriction sites on the reference (which
would cover the third case). Each of these checks is
performed by the following statistical method.

Suppose there are two (not necessarily adjacent) re-
striction sites on the reference sequence with a dis-
tance d0, and there are M aligned molecules covering
the region. Suppose the distances of the correspond-
ing aligned labels on the molecules are d1, d2, . . . , dM ,
where d1 ≤ d2 ≤ · · · ≤ dM . Our method computes
the ratios ri = di

d0
for each of the M molecules. It

then compares the following hypotheses according to
the error model we defined:
1 Null hypothesis H0, that there are no insertions

or deletions between the two sites
2 Hhom, that there is a homozygous indel between

the two sites
3 H

(ins)
het , that there is a heterozygous insertion be-

tween the two sites
4 H

(del)
het , that there is a heterozygous deletion be-

tween the two sites
5 Htri, that the locus is triallelic, i.e., there are two

different insertions, two different deletions, or one
insertion and one deletion between the two sites,
where each chromosome bears one of the two vari-
ant alleles

Under the null hypothesis H0, the likelihood of ob-
serving the distance ratios r1, r2, . . . , rM is

LH0 =
M∏
i=1

Cauchy(ri, r0, γ),

where Cauchy(ri, r0, γ) = γ
π[(ri−r0)2+γ2] is the proba-

bility density function of the Cauchy distribution with
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position parameter r0 and scale parameter γ. In SV
detection, using the Cauchy distribution to model the
distance ratios has an advantage that it is not heav-
ily affected by extreme outliers caused by alignment
errors.

Under the alternative hypothesis Hhom, the distance
ratios r1, r2, . . . , rM are sampled from a Cauchy distri-
bution with a different value for the location parame-
ter but the same value γ for the scale parameter. The
likelihood of observing the distance ratios is therefore

LHhom
=

M∏
i=1

Cauchy(ri, r
′

0, γ),

where r
′

0 is the location parameter of the distribution
of distance ratios for this indel event. Finding the max-
imum likelihood estimate of r

′

0 would require the use of
numerical methods to solve a high-degree polynomial.
Instead, we used the sample median of the M ri’s as
an imperfect estimate [39].

Under the alternative hypothesis H
(ins)
het , some of

the distance ratios are sampled from the null distri-
bution and the others are sampled from an alterna-
tive Cauchy distribution with a larger value r

′

0 for the
location parameter but the same value for the scale
parameter. The likelihood of the distance ratios is
L

H
(ins)
het

= 1
2M

∑
S⊂{1,2,...,M}

[∏
j /∈S Cauchy(rj , r0, γ)

∏
i∈S Cauchy(ri, r

′

0, γ)
]
,

where S represents the set of molecules from the
chromosome with the insertion, assuming an equal
probability for each molecule to come from either
chromosome. Practically, this likelihood is difficult
to compute due to the exponential number of terms
in the summation. We made an assumption that
the two distributions are sufficiently separated, with
|r′

0 − r0| � γ. Based on this assumption, we con-
sider only the summation terms of which S takes
the form {rM−k+1, rM−k+2, . . . , rM}, which involves
only the k largest distance ratios. We then try
all possible values of k such that at least kmin

molecules come from each chromosome (Figure 2c).
As a result, the likelihood formula is simplified as
L

H
(ins)
het

= 1
2M

∑M−kmin

k=kmin

[∏M−k
i=1 Cauchy(ri, r0, γ)

∏M
j=M−k+1 Cauchy(rj , µ̃M−k+1..M , γ)

]
,

where µ̃M−k+1..M is the sample median of rM−k+1,
rM−k+2, . . . , rM .

Similarly, for heterozygous deletions, a simplified
likelihood formula is defined as
L

H
(del)
het

= 1
2M

∑M−kmin

k=kmin

[∏k
i=1 Cauchy(ri, µ̃1..k, γ)

∏M
j=k+1 Cauchy(rj , r0, γ)

]
,

where µ̃1..k, the sample median of r1, r2, . . . , rk, is ex-
pected to be smaller than r0 in this case (and a het-
erozygous deletion would not be called if this expecta-
tion is not satisfied).

For the triallelic cases, the simplified likelihood for-
mula is defined as

LHtri
= 1

2M

∑M−kmin

k=kmin

[∏k
i=1 Cauchy(ri, µ̃1..k, γ)

∏M
j=k+1 Cauchy(rj , µ̃k+1..M , γ)

]
,

where µ̃1..k is the median of r1, r2, . . . , rk and µ̃k+1..M

is the median of rk+1, rk+2, . . . , rM .
Finally, our method compares the likelihood values.

If the likelihood ratio LH0

max


LHhom

,L
H

(ins)
het

,L
H

(del)
het

,LHtri

ff
is smaller than a threshold, an SV is called according to
the following rules: If max

{
LHhom

, L
H

(ins)
het

, L
H

(del)
het

, LHtri

}
is equal to
• LHhom

: If r
′

0 > r0, a homozygous insertion is
called; Otherwise, a homozygous deletion is called.

• L
H

(ins)
het

: A heterozygous insertion is called.
• L

H
(del)
het

: A heterozygous deletion is called.
• LHtri

: An SV of the “multiple” type is called. If
µ̃1..k and µ̃k+1..M are both smaller than r0, two
different deletions are called; If both are larger
than r0, two different insertions are called; Oth-
erwise, an insertion and a deletion are called.

Practically, if the distance change is too small, either
absolutely or relative to the distance on the reference,
the SV calls are less reliable. We therefore keep only
SVs with a distance change larger than a threshold δ,
where the distance on the molecules is defined as the
median distance of the set of molecules that lead to a
term with the largest value in the likelihood calcula-
tion.

Module for identifying complex SVs
We also developed a module for identifying three types
of complex SVs, namely inversions, translocations and
CNVs.

Using split-alignment to identify large inversions
and translocations: The split-alignment capability of
OMBlast [22] allows different parts of a single opti-
cal map to be separately aligned to different loca-
tions of the same chromosome (Figure 2d). The de-
fault setting of OMBlast limits the maximum distance
between these different locations to reduce false align-
ment rate, and thus it permits direct calling of only
intra-chromosomal translocations involving close loci.
To detect other intra-chromosomal translocations and
inter-chromosomal translocations, we used a 2-round
alignment strategy (Figure 2e), in which the first round
performed standard alignments of optical maps, with
some optical maps only partially aligned. For these op-
tical maps, the unaligned regions were then indepen-
dently aligned again in the second round, thus allowing
the detection of all types of translocations. In addition,
by allowing different portions of the same optical map
to be aligned in different orientations, large inversions
can also be detected. To reduce false positives, only
translocations and large inversions supported by two
or more optical maps are considered.
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Using reverse-palindromic CIGAR strings to identify
medium-sized inversions: Inversions with size between
2kbp and 100kbp can be contained in a single opti-
cal map, and are detected by locating a region in an
optical map alignment with 1) a reverse-palindromic
CIGAR (Compact Idiosyncratic Gapped Alignment
Report) string; and 2) matching distances between ad-
jacent restriction sites on the reference and those be-
tween adjacent labels on the reversed optical map (Fig-
ure 2f). In a CIGAR string, a matched, missing and
extra label is denoted as ‘M’, ‘D’ and ‘I’, respectively.
The reverse-complement of a CIGAR string is the re-
verse of it with ‘I’s and ‘D’s interchanged. For example,
the reverse-complement of MDDI is DIIM. A CIGAR
string is reverse-palindromic if it is the same as its
reverse-complement, such as DIDIDI. Two distances
d1 and d′1 are considered matched if d1×(1−et)−em ≤
d′1 ≤ d1 × (1 + et) + em, where et and em are the
maximum scaling and measurement errors (set to 0.1
and 500bp), respectively. To control the quality, we
called an inversion only if it had at least 10 support-
ing molecules and at least 4 nicking sites within the
inverted region.

Using depth of coverage to identify CNVs: We mod-
ified an event-wise significance testing method [40] to
identify large CNVs. The original method uses a slid-
ing window (with 100bp) to scan the reference and
look for windows with a depth of coverage significantly
different from other windows, based on the distribu-
tion of depths of windows with similar GC contents.
Neighboring windows are then grouped into blocks to
identify the span of the CNVs, with a method for cor-
recting for multiple hypothesis testing. To adopt this
method for OM data, first the window size was en-
larged to 2d1/2 to accommodate for the lower resolu-
tion of OM data, where d1/2 is the imaging resolution.
Then to determine the statistical significance of each
window, instead of grouping windows by GC content,
we grouped them by nicking site counts. The depths
(number of aligned optical maps) of all windows within
a group were fit to a Gaussian distribution, and a win-
dow was considered a CNV candidate if it received a
Z-test p-value <0.05. The same procedure for deter-
mining CNV spans in the original method was then
applied.

The overall OMSV pipeline
The overall OMSV pipeline is illustrated in Figure 1b.
In the alignment pipeline, we used default parameter
values of RefAligner and OMBlast for all the simulated
and real data except C666-1, in which case we used Re-
fAligner parameter values for complex genomes (avail-
able on our supplementary Web site) suggested by Bio-
Nano technical team. The reference map was deduced

from the human reference hg38 in all cases. RefAligner
and OMBlast alignments were integrated based on the
following rules:
1 If the two methods align an optical map to ge-

nomic regions within half the length of the optical
map from each other, they are considered to agree
on the alignment, and the alignment of RefAligner
is taken.

2 If only one of the two methods can align an optical
map, the alignment is taken directly.

3 If both methods cannot align an optical map, or
both of them can align but their alignments do
not agree with each other, the optical map is left
unaligned.

We call this the “union” strategy in Additional file 1:
Figure S6. We also considered an “intersection” strat-
egy, which only involved the alignments satisfying the
first rule above.

The resulting integrated list of alignments is sent to
the three modules for SV identification. The results
from the three modules are then integrated to form a
final list of SVs.

The parameter values of OMSV used in our experi-
ments are listed in Additional file 1: Table S14.

Filtering of SVs detected from real data

We considered only optical map alignments with a
confidence score of 9 or more. For the indels iden-
tified from the family trio and the C666-1 cell line,
we filtered those that overlapped N-gaps, fragile sites
or pseudo-autosomal regions on the reference genome.
These “mask” regions are listed in Additional files 6–
8. We applied the same filtering to the NA12878 SV
lists obtained from sequencing-based methods. For the
complex SVs, we filtered the ones located within the
pseudo-autosomal regions or overlapped with the re-
gions with ultra-high density of nicking sites, defined
as regions spanning 200kbp or more with at least 333
nicking sites per 1Mbp. This density threshold was
chosen because it corresponds to having an average
distance between adjacent nicking sites of 3kbp, which
makes it hard to detect complex SVs accurately.

Generation of simulated data

We generated simulated data with either only ho-
mozygous variants or both homozygous and heterozy-
gous variants. Two steps were involved in both cases,
namely a first step for generating genomic sequences
with genetic variations introduced to the human refer-
ence genome, and a second step for simulating optical
maps based on the resulting genomic sequences using
the error model described above.
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Simulated data with only homozygous variants
For the data set with homozygous variants only, we
first downloaded the human reference sequence hg38
from the UCSC Genome Browser [41]. We then gener-
ated mutations (single nucleotide variants, small and
large indels, and complex SVs) on it using pIRS (pro-
file based Illumina pair-end Reads Simulator) [42].
This software was originally developed for generating
short sequencing reads. We took its intermediate file
containing the mutated sequence without generating
the short reads. In the second step, we used the mu-
tated sequence as input to generate simulated optical
maps based on our generative model. The parameter
values used in the two steps are shown in Additional
file 1: Table S15 and Additional file 1: Table S16, re-
spectively. The parameter values for the first step were
determined based on corresponding estimates from hu-
man genomes reported in previous studies [43–45]. The
parameter values for the second step were estimated
from our actual optical maps by aligning all molecules
to the reference sequence using RefAligner, and esti-
mating the parameter values by likelihood maximiza-
tion. All these parameter values were not made known
to our SV detection methods.

Simulated data with both homozygous and
heterozygous variants
For the data set with both homozygous and het-
erozygous variants, we generated a diploid genome as
follows. It was initialized by our generated haploid
genome and the reference genome as the two hap-
lotypes. Then for each variant on the first haploid
genome, it received a probability of phom to be copied
to the second haploid genome, resulting in a homozy-
gous variant. For the remaining variants, which would
remain heterozygous, each of them received a proba-
bility of phet of moving from the first haploid genome
to the second. We used phom = 0.5 and phet = 0.5 in
our simulations based on a previous study [46]. As a
result of this procedure, the total number of SV loci
in this diploid genome was the same as that in the
haploid genome.

We then considered the two haploid genomes to-
gether as a diploid genome, and used the correspond-
ing DNA sequences as the templates to produce OM
data using our generative model. The parameter val-
ues used in the two steps of simulation are again shown
in Additional file 1: Table S15 and Additional file 1:
Table S16, and 26 additional data sets were generated
by changing the false positive rate, false negative rate
and depth of coverage, as shown in Additional file 1:
Table S2.

Evaluation metrics of SV calling on simulated data
For the simulated data, we used the known locations of
the generated SVs to compute the precision (fraction of
identified SVs that are real) and recall (fraction of real
SVs that are identified) rates of an SV calling method.
An SV call was considered correct if it overlapped the
location of a generated SV of the same type.

Comparison with BioNano Solve
We compared OMSV with the SV caller included
in BioNano Solve v3.0 (downloaded from https://
bionanogenomics.com/support/software-downloads/),
which was the only SV caller for nanochannel-based
optical maps with publicly available software. The ex-
act command-line arguments used can be found on the
supplementary Web site.

Evaluating the performance of OMSV in the ideal
situation with no alignment errors
To estimate the performance of OMSV in the ideal
situation with no alignment errors, instead of supply-
ing optical map alignments as inputs to OMSV, we
provided observed-to-reference distance ratios between
neighboring nicking sites directly. For each locus, the
number of distance ratios was drawn from a Gaussian
distribution estimated based on the depth of cover-
age of the data set. The values of these distance ratios
were produced by adding scaling errors to the actual
distance ratio of the corresponding allele based on the
sizing error parameter of the default simulated data
set. The ratio of loci with and without SVs also fol-
lowed the ratio in the default data set.

Evaluation metrics of alignment pipeline on simulated
data
We also defined metrics for evaluating the performance
of our alignment pipeline. First, an optical map was
considered correctly aligned if it was aligned to the
correct haplotype of the simulated genome with the
aligned location overlapping the actual location from
which the optical map was generated. Alignment preci-
sion was then defined as the fraction of aligned optical
maps that were correctly aligned, and recall was de-
fined as the fraction of generated optical maps that
were correctly aligned.

Integrating and de-duplicating indels from the trio
In the comparisons with manual checking results and
the SVs reported in the two previous studies [2, 30], we
first integrated the indels from the three individuals.
For indels that overlapped, we de-duplicated them by
merging them into a larger indel that spanned over all
these original indels. For each resulting indel, we con-
sidered it contained by an individual if the individual
originally had an indel that overlapped it.
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Definition of Mendelian concordance
For the family trio, a locus was defined as concordant
with Mendelian inheritance if the daughter’s genotype
could be produced by the genotypes of the father and
the mother. When zygosity was not considered, an SV
identified from an individual could mean that the in-
dividual had the SV in homozygous or heterozygous
form. As a result, a Mendelian error was reported only
when the daughter had an SV at a locus of a type
that both parents did not have. When zygosity was
considered, a Mendelian error was reported when the
two alleles of the daughter could not respectively come
from the two parents. For this part of analysis, we con-
sidered only loci at which each of the individuals either
had an SV confidently called, or it was highly unlikely
that an SV could be called. The former was defined
as SVs with at least 10 supporting optical maps and
a likelihood ratio of at most 10−6 for each other hy-
pothesis. The latter was defined as cases in which an
SV could not be called even at the loose thresholds of
4 supporting optical maps and a likelihood ratio of 1.

Computation of expected Mendelian concordance
In order to check whether the observed Mendelian con-
cordance values of the SVs identified from the trio were
consistent with the precision and recall estimates of
our simulation, we computed the expected Mendelian
concordance values as follows. First, we estimated the
probabilities P (G2|G1) where G1 and G2 are respec-
tively the actual genotype and the genotype called by
OMSV, each with possible alleles A (the reference al-
lele) and a (the alternative allele). The probabilities
P (aa|aa), P (Aa|aa), P (AA|aa), P (aa|Aa), P (Aa|Aa)
and P (AA|Aa) were all estimated based on the frac-
tion of homozygous and heterozygous variants gener-
ated in our simulated data that were called by OMSV
to have the corresponding genotypes. For the re-
maining three conditional probabilities, P (Aa|AA) =
P (AA|Aa)P (Aa)/P (AA) ≈ P (AA|Aa)P (Aa), where
P (AA|Aa) was again estimated from our simulation
result, and P (Aa) was estimated as half the prior SV
probability of the human genome, 8 × 10−3/2 (based
on the median total SV size of 20Mbp per individ-
ual reported in Sudmant et al. [2]), assuming equal
probability for homozygous and heterozygous SVs.
P (aa|AA) was estimated in exactly the same way. Fi-
nally, P (AA|AA) = 1− P (Aa|AA)− P (aa|AA).

With all these 9 probabilities computed, we charted
the probability for each combination of actual and
called genotypes of the trio. Specifically, the father,
mother and daughter genotypes were denoted as
a triple. For example, (AA, aa,Aa) represents the
situation that the father has the reference geno-
type, the mother has an SV in homozygous form

and the daughter has the SV in heterozygous form.
The probability for an actual genotype combina-
tion C1 to be called as a genotype combination
C2 was calculated as the product of the three cor-
responding conditional probabilities, assuming SV
calling errors of the three individuals are indepen-
dent. For example, P ((AA,AA, aa)|(AA, aa,Aa)) =
P (AA|AA)P (AA|aa)P (aa|Aa).

When zygosity was considered, the actual geno-
type combination must come from the set of 15
combinations concordant with Mendelian inheritance,
O = {(AA,AA, AA), (AA,Aa,AA), (AA,Aa,Aa),
(AA, aa,Aa), (Aa,AA,AA), (Aa,AA,Aa), (Aa,Aa,AA),
(Aa,Aa,Aa), (Aa,Aa, aa), (Aa, aa, Aa), (Aa, aa, aa),
(aa, AA,Aa), (aa, Aa, Aa), (aa, Aa, aa), (aa, aa, aa)}.
The overall expected Mendelian concordance rate was
then calculated as

∑
C1∈O

[
P (C1)

∑
C2∈O P (C2|C1)

]
.

We estimated the prior probabilities P (C1) by the
number of times such genotype combination was called
by OMSV in the trio data.

When zygosity was ignored, the expected Mendelian
concordance rate was calculated as
1−

∑
C1∈S P (C1) [P (AA,AA, Aa|C1) + P (AA,AA, aa|C1)].

Comparing with sequencing-based results for NA12878
SVs
We lifted over the SV lists of NA12878 from Parikh
et al. [30] and Sudmant et al. [2] from hg19 to hg38.
We then filtered both these lists and our list of SVs
by removing SVs with a size smaller than 2,000bp or
overlapping the mask regions. The remaining SVs on
the three lists were then compared.

Production of optical maps from C666-1
High-molecular-weight DNA extraction
The C666-1 cell line was washed with PBS and spun
down to pellet. 106 cell/mL were obtained upon resus-
pension in PBS, and embedded in 1.5% low-melting
agarose plugs in 0.5x TBE (CHEF Genomic DNA
Plug Kit, Bio-Rad). Subsequent handling of the DNA
followed BioNano Genomics recommended protocols:
the agarose plugs were incubated with proteinase K
with Lysis Buffer at 50◦C overnight. The plugs were
washed by Wash Buffer to stabilize DNA in plugs, and
the quality was assessed using pulsed-field gel elec-
trophoresis. A plug was then washed with TE buffer
and melted in 70◦C. After being solubilized with 0.4
U of GELase (Epicentre), the purified DNA was sub-
jected to 2.5hr of drop-dialysis and was shredded by 9
strokes of gentle pipetting. The viscous DNA was al-
lowed to equilibrate overnight at room temperature to
increase homogeneity. It was then quantified using a
Qubit Broad Range dsDNA Assay Kit (Life Technolo-
gies).
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DNA labeling
The DNA was labeled using the IrysPrep Reagent Kit
(BioNano Genomics). Specifically, 300 ng of purified
genomic DNA was nicked with 0.3U of nicking endonu-
clease Nt.BspQI (New England BioLabs) at 37◦ for 2
hr in buffers BNG3. The nicked DNA was labeled with
a fluorescent-dUTP nucleotide analog using Taq poly-
merase (NEB) for 1 hr at 72◦. After labeling, the nicks
were ligated with Taq ligase (NEB) in the presence of
dNTPs. The backbone of fluorescently labeled DNA
was counterstained with YOYO-1 (BioNano Genomics
IrysPrep Reagent Kit).

Data collection and assembly
The DNA was loaded onto the BioNano Genomics
IrysChip and linearized and visualized by the Irys sys-
tem. The DNA backbone length and locations of fluo-
rescent labels along each molecule were detected using
the Irys software. Single-molecule maps were assem-
bled de novo into genome maps using the IrysSolve
software tools developed at BioNano Genomics [15].

Comparing C666-1 indels with human segmental
duplications
We downloaded segmental duplication regions in the
human reference genome hg38 from the UCSC Genome
Browser, and annotated them with gene information
for those overlapping gene exons. We then compared
the C666-1 indels identified by OMSV with these seg-
mental duplication regions to look for overlaps.

Identifying SVs from C666-1 using short reads
We used the default settings of Manta and Pindel to
identify SVs from the sequencing data of C666-1. We
considered only large (>2kbp) SVs supported by at
least 20 reads/read pairs.

Selection of C666-1 SVs for experimental validations
We selected SVs identified by OMSV from C666-1 cells
for experimental validations based on the following two
criteria, namely 1) We only selected insertions and
complex SVs, since these SVs are particularly diffi-
cult to identify and their sizes difficult to determine
from sequencing reads alone, and 2) We selected SVs
with primers that could be designed from non-repeat
regions and which would lead to amplicons analyzable
by PCR. The selected SVs and the primers designed
are listed in Additional file 1: Tables S10-S13.

Integrating sequencing reads to infer precise break
points and inserted sequences
For each homozygous insertion identified by OMSV
from C666-1 that occurs within the region [o1, o2] of
the human reference genome sequence hg38 with an

estimated size of s, we performed the following steps
(Additional file 1: Figure S9, Additional file 1: Ta-
ble S10):
1 Construct a tentative C666-1 sequence by replac-

ing the region [o1, o2] by x copies of N (i.e., un-
known) nucleotides, where x = o2 − o1 + s for an
insertion and x = o2 − o1 − s for a deletion.

2 Use GapCloser [47] to infer the actual sequence of
this N region based on local assembly of sequenc-
ing reads and the flanking sequences, which may
or may not resolve all the Ns.

3 Align sequencing reads to the region [o1, o2] of
the reference sequence using BWA [48], visualiz-
ing only read pairs with both sides aligned using
IGV [49].

4 Align sequencing reads to the inferred C666-1 se-
quence using BWA, visualizing only read pairs
with both sides aligned.

5 Use the alignment results to evaluate confidence
of the SV, the break points and the inserted se-
quences in the case of insertions.

List of abbreviations
bp - base pair

CNV - copy number variation
EBV - Epstein-Barr Virus
IF - intrinsically feasible
Indel - insertion and deletion
kbp - kilo base pair
mbp - mega base pair
OM - optical mapping
PCR - polymerase chain reaction
SV - structural variation
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Figure 1 Underlying concepts of OMSV. (a) Different types of genetic variations and their idealized appearance patterns on optical
maps. Real OM data contain various types of errors that make these patterns less apparent. Inversions are shown as an example type
of complex SVs, while OMSV can also detect translocations and copy number variations. (b) The overall OMSV pipeline for
identifying SVs from optical maps. Optical maps from a study sample are aligned to the reference map using two different aligners.
Their results are integrated to form a single list of consensus alignments, which are then passed to three SV calling modules to
identify different types of SVs.
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Figure 2 Illustration of methods used by OMSV for identifying SVs from optical maps. (a) The three hypotheses compared in the
procedure for detecting missing restriction sites. (b) Comparing the distance between two restriction sites on the reference and the
corresponding observed labels on the optical maps, for detecting large SVs. (c) Simplification of the likelihood function for the
heterozygous insertion hypothesis. In the full likelihood function, each optical map could come from the chromosome with the
reference allele (ref) or the insertion allele (ins), and all combinations are considered. In the simplified likelihood function, only the k
optical maps with the largest distance between the two nicking site labels are considered to have the insertion, and all values of k are
considered. In this illustration, the minimum number of optical maps supporting each allele, kmin, is set to 0. (d) SVs that require
partial alignments to identify. (e) Translocations and large inversions can be identified by 2-round split alignments. (f) Medium-size
inversions are identified by looking for regions with a reverse palindromic CIGAR string (DIDIDI in this example) with matched
segment sizes when reversed (d1 with d′1 and d2 with d′2 in this example).
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Figure 3 Results based on the default simulated data sets. Precision (a) and recall (b) of OMSV. Ratio of SV sizes determined by
OMSV to their actual sizes, for the haploid (c) and diploid (d) data sets. Precision (e) and recall (f) of OMSV as compared to
BioNano Solve. Results in Panels (a) to (f) are all based on insertions and deletions larger than 2kbp. Precision (g) and recall (h) of
OMSV in calling complex SVs from the simulated data, including the whole set (“All”) and only the intrinsically feasible (“IF”) ones.
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Figure 4 Examples of SVs identified from the trio. (a) An insertion identified on chromosome 6, visualized by OMView [50] using
the anchor view with the nicking site immediately before the insertion served as the anchor. The red horizontal bars show the
reference, with the nicking sites marked in black vertical lines. Each yellow horizontal bar represents an optical map, with the two
aligned nicking site labels defining the SVs in blue, other aligned labels in pink, and unaligned labels in black. For each individual,
optical maps are arranged into different sections based on the allele that they support. The father has a heterozygous insertion of
around 14.6kbp (“Insertion Type I”). The mother has a heterozygous insertion of around 22.7kbp (“Insertion Type II”). The
daughter inherited both insertions from her parents. (b) An inversion identified on chromosome X, visualized using the alignment
view of OMView. For each individual, the top horizontal bar shows the reference and the bottom horizontal bar shows a
representative optical map. Black solid and dashed lines linking the reference and the optical map respectively represent aligned
nicking sites and nicking sites that should probably be aligned but missed by the alignment pipeline.
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Figure 5 The previously reported UBR5-ZNF423 translocation in C666-1 re-identified by OMSV, visualized using the alignment view
of OMView. For each of the two gene loci, the top horizontal bar shows the reference and the bottom horizontal bar shows a
representative optical map. Black solid and dashed lines linking the reference and the optical map respectively represent aligned
nicking sites and nicking sites that should probably be aligned but missed by the alignment pipeline. The vertical red dashed lines
show the break points previously reported [36].
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Figure 6 SVs identified by OMSV from C666-1. (a) Overlap between the large (>2kbp) indels identified by OMSV and the two
short-read based callers, Manta and Pindel. In the common regions, the number of a certain color indicates the number of SVs called
by the respective method that overlap SVs called by the other method(s). (b-d) PCR results of the selected homozygous insertions
(b), heterozygous insertions (c) and complex SVs (d). In the heterozygous insertions, Ie2 was tested separately from the other 6
cases due to the large expected product size of its insertion allele. For the inversion case C3, p1 and p2 correspond to the two primer
pairs. (e) Alignment of sequencing reads to the inferred C666-1 sequences of SV Io2 and SV Io3. The L and R boxes mark the
primer locations. Definitions of o1, o′2, b′1, b′2, g′1 and g′2 are given in Additional file 1: Figure S9. Sequencing read alignments are
visualized by IGV.
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Additional Files

Additional file 1 – Supplementary tables and figures

Containing Supplementary Tables S1–S16 and Supplementary Figures

S1–S11

Additional file 2 — SV lists from the CEU trio

This file provides the SVs identified by OMSV from the CEU trio. The first

three sheets list the indels identified from NA12878, NA12891 and

NA12892, respectively. The fourth sheet lists the union of these three lists.

The fifth sheet lists all the sites with multiple indels called at the same site

(two insertions, two deletions, or one insertion and one deletion). The sixth

sheet lists the high-confidence indels and non-indels for evaluating

Mendelian concordance. The last sheet lists the complex SVs.

Additional file 3 — SV list from the C666-1 cell line

This file provides the SVs identified by OMSV from the C666-1 cell line.

The first sheet lists the indels identified. The second sheet lists all the sites

with multiple indels called at the same site (two insertions, two deletions,

or one insertion and one deletion). The third sheet lists the complex SVs.

Additional file 4 — Overlapping of C666-1 indels with segmental

duplications

This file provides the overlap of C666-1 indels identified by OMSV with

human segmental duplications. The first three columns show the genomic

location of the SVs. The fourth column shows the SV type. The fifth and

sixth columns show the overlapping segmental duplications (if any) and the

genes of which the exons overlap the segmental duplications (if any).

Additional file 5 — Case studies of complex SVs of C666-1

This file provides visualizations of selected cases of complex SVs identified

by OMSV from C666-1.

Additional file 6 — Fragile sites in the in silico map based on hg38

This file provides the locations of fragile sites in the human reference

genome hg38.

Additional file 7 — Gaps in hg38

This file provides the locations of unspecified nucleotides (’N’s) in the

human reference genome hg38.

Additional file 8 — Pseudo-autosomal regions in hg38

This file provides the locations of pseudo-autosomal regions in the human

reference genome hg38.
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Supplementary tables

Publication SV types supported Zygosity call? Assembly-based? Software availability
Teague et al. (2010) [18] Indels No Yes Not publicly available
Ray et al. (2013) [17] Indels No Yes Not publicly available
Cao et al. (2014) [15] Indels/inversions No Yes Predecessor of BioNano Solve
Gupta et al. (2015) [51] Indels No Yes Not publicly available
Mak et al. (2016) [28] Indels/inversions No Yes, also a module based on

alignment
Predecessors of BioNano Solve and OMSV

Table S1 Existing SV calling methods based on optical mapping.

Genome Optical maps Genome FP FN Avg. optical Avg. nicking Density of nicking Optical maps Alignment
generated coverage map length (bp) sites per map sites (per Mbp) aligned rate

Haploid 1,500,000 100 1.2E-5 1.2E-1 200,780 22.9 114.0 1,203,728 80.2%
Diploid 1,500,000 100 1.2E-5 1.2E-1 200,814 22.9 114.0 1,214,539 81.0%
Diploid 300,000 20 1.2E-5 1.2E-1 200,622 22.9 114.1 243,006 81.0%
Diploid 500,000 33 1.2E-5 1.2E-1 200,576 22.9 114.1 404,805 81.0%
Diploid 700,000 47 1.2E-5 1.2E-1 200,681 22.9 114.1 566,912 81.0%
Diploid 900,000 60 1.2E-5 1.2E-1 200,679 22.9 114.1 728,672 81.0%
Diploid 1,100,000 73 1.2E-5 1.2E-1 200,771 22.9 114.0 890,816 81.0%
Diploid 1,300,000 87 1.2E-5 1.2E-1 200,796 22.9 114.0 1,052,735 81.0%
Diploid 1,700,000 113 1.2E-5 1.2E-1 200,820 22.9 114.0 1,376,494 81.0%
Diploid 1,900,000 127 1.2E-5 1.2E-1 200,793 22.9 114.0 1,538,631 81.0%
Diploid 2,100,000 140 1.2E-5 1.2E-1 200,812 22.9 114.0 1,700,717 81.0%
Diploid 2,300,000 153 1.2E-5 1.2E-1 200,820 22.9 114.0 1,862,534 81.0%
Diploid 2,500,000 167 1.2E-5 1.2E-1 200,786 22.9 114.0 2,024,415 81.0%
Diploid 1,500,000 100 0 1.2E-1 200,713 20.9 104.1 1,282,369 85.5%
Diploid 1,500,000 100 1.2E-8 1.2E-1 200,791 20.9 104.1 1,282,268 85.5%
Diploid 1,500,000 100 1.2E-7 1.2E-1 200,806 20.9 104.1 1,281,988 85.5%
Diploid 1,500,000 100 1.2E-6 1.2E-1 200,785 21.1 105.1 1,276,595 85.1%
Diploid 1,500,000 100 3.0E-5 1.2E-1 200,772 25.9 129.0 1,096,354 73.1%
Diploid 1,500,000 100 6.0E-5 1.2E-1 200,801 30.7 152.9 1,018,500 67.9%
Diploid 1,500,000 100 9.0E-5 1.2E-1 200,834 35.3 175.8 1,303,880 86.9%
Diploid 1,500,000 100 1.2E-4 1.2E-1 200,816 39.6 197.2 1,366,980 91.1%
Diploid 1,500,000 100 1.2E-5 0 200,538 25.3 126.2 1,309,947 87.3%
Diploid 1,500,000 100 1.2E-5 1.2E-4 200,525 25.3 126.2 1,310,001 87.3%
Diploid 1,500,000 100 1.2E-5 1.2E-3 200,564 25.3 126.2 1,309,055 87.3%
Diploid 1,500,000 100 1.2E-5 1.2E-2 200,564 25.1 125.1 1,303,178 86.9%
Diploid 1,500,000 100 1.2E-5 2.4E-1 201,321 20.5 101.8 1,037,081 69.1%
Diploid 1,500,000 100 1.2E-5 3.6E-1 202,626 18.0 88.8 768,478 51.2%
Diploid 1,500,000 100 1.2E-5 4.8E-1 205,510 15.7 76.4 444,795 29.7%

Table S2 Statistics of the simulated optical maps. FP and FN refer to the rates for a fake nicking site to be observed and a real nicking
site to be unobserved, respectively. The first two rows show the statistics of the haploid and diploid data sets based on the default
setting, and the other rows show the settings with different genome coverage, FP and FN values.

Genome Homozygous Homozygous Heterozygous Heterozygous Complex Total
Genome insertions deletions insertions deletions
Haploid 936 911 0 0 983 2830
Diploid 485 467 451 444 983 2830

Table S3 Statistics of SVs in the simulated data sets. All 27 diploid data sets listed in Table S2 were generated based on the same
diploid genome with the SV profile shown here. The number of complex SVs generated is larger than that of a typical human sample, to
test OMSV’s ability to identify complex SVs.

Step Time needed (hours)
Haploid genome Diploid genome

OMBlast alignment (using 1 thread) 225 225
OMBlast alignment (using 64 threads) 3.47 3.52
RefAligner alignment (using 1 thread) 49 50
RefAligner alignment (using 64 threads) 0.77 0.79
SV calling (using 1 thread) 1.24 1.24
Total (using 1 thread) 226 226
Total (using 64 threads) 4.71 4.76

Table S4 Running time of OMSV on simulated data with 100x coverage of the human genome. The total amount of time is defined as
the maximum time for the two alignment methods plus the time for SV calling.



Li et al. Page S2 of S14

Samples Optical maps Avg. optical Avg. nicking Density of nicking Optical maps Alignment
generated map length (bp) sites per map sites (per Mbp) aligned rate

NA12878 1,540,247 207,926 22.5 108.2 1,264,390 82.1%
NA12891 1,481,578 214,366 24.4 113.8 1,205,487 81.4%
NA12892 2,065,938 184,264 19.8 107.5 1,641,813 79.5%

Table S5 Statistics of the optical maps produced from the family trio.

Sample SV type On autosomes On sex chromosomes* X error Y error
NA12878 (daughter) Insertion 538 27 N/A 0

Deletion 523 25 N/A 0
Multiple 8 1 N/A 0
CNV 29 1 N/A 0
Medium Inversion 30 0 N/A 0
Large Inversion 22 5 N/A 0
Intra-chromosomal 1 0 N/A 0
Translocation
Inter-chromosomal 1 0 N/A 0
Translocation
Total 1,152 59 N/A 0

NA12891 (father) Insertion 573 31 7 2
Deletion 500 22 8 1
Multiple 7 0 N/A N/A
CNV 22 6 N/A N/A
Medium Inversion 27 1 N/A N/A
Large Inversion 25 4 N/A N/A
Intra-chromosomal 0 0 N/A N/A
Translocation
Inter-chromosomal 1 0 N/A N/A
Translocation
Total 1,155 64 15 3

NA12892 (mother) Insertion 536 20 N/A 0
Deletion 477 21 N/A 0
Multiple 6 0 N/A N/A
CNV 45 3 N/A N/A
Medium Inversion 21 0 N/A N/A
Large Inversion 31 6 N/A N/A
Intra-chromosomal 2 0 N/A N/A
Translocation
Inter-chromosomal 45 5 N/A N/A
Translocation
Total 1,163 55 N/A 3

Table S6 Statistics of SVs called from the optical maps produced from each member of the trio. The “Multiple” SV type corresponds
to a locus with multiple indels called at the same site (two insertions, two deletions, or one insertion and one deletion). These cases are
not included in the counts of the “Insertion” and “Deletion” cases. X error includes SVs called in the non-pseudo-autosomal regions of
the X chromosome as heterozygous from a male sample. Y error includes SVs called in the non-pseudo-autosomal regions of the Y
chromosome either from a female sample or in heterozygous form from a male sample. Since OMSV does not determine the zygosity of
complex SVs, they were not included in the calculation of X and Y errors that involved zygosity. An inter-chromosomal translocation is
counted as appearing on a sex chromosome if either of the two chromosomes involved is a sex chromosome. *Pseudo-autosomal regions
are excluded.

Sample Total number Intersection with Validated by manual checking Validation rate
of SVs with manual Ignoring Considering Ignoring Considering
called checking list zygosity zygosity zygosity zygosity

NA12878 991 726 705 527 0.97 0.73
NA12891 1007 696 669 516 0.96 0.74
NA12892 926 642 615 471 0.96 0.73

Table S7 Accuracy of the SVs called by OMSV based on the manual checking results in Mak et al. The SVs from the three individuals
were integrated and de-duplicated, and then the SVs contained in each individual were extracted from the resulting list, before
comparing with the manual checking results.

Optical maps Avg. optical Avg. nicking Density of nicking Optical maps Alignment
generated map length (bp) sites per map sites (per Mbp) aligned rate
1,644,102 244,075 22.8 93.4 1,129,075 68.7%

Table S8 Statistics of the optical maps produced from the C666-1 cell line.
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Sample SV type On autosomes On sex chromosomes* X error Y error
C666-1 (male) Insertion 527 16 6 0

Deletion 262 5 0 0
Multiple 3 0 N/A N/A
CNV 66 2 N/A N/A
Medium inversion 24 4 N/A N/A
Large inversion 10 3 N/A N/A
Intra-chromosomal 2 0 N/A N/A
translocation
Inter-chromosomal 4 0 N/A N/A
translocation
Total 898 30 6 0

Table S9 Statistics of SVs called from the C666-1 cell line optical maps. The “Multiple” SV type corresponds to a locus with multiple
indels called at the same site (two insertions, two deletions, or one insertion and one deletion). These cases are not included in the
counts of the “Insertion” and “Deletion” cases. X error and Y error respectively includes SVs called in the non-pseudo-autosomal regions
of the X and Y chromosome as heterozygous. Since OMSV does not determine the zygosity of complex SVs, they were not included in
the calculation of X and Y errors. An inter-chromosomal translocation is counted as appearing on a sex chromosome if either of the two
chromosomes involved is a sex chromosome. *Pseudo-autosomal regions are excluded.

SV ID Io1 Io2 Io3 Io4 Io5 Io6 Io7

Chr 1 3 8 12 14 15 16
o1 10,969,439 154,172,724 21,505,975 40,144,059 104,496,071 74,214,211 86,985,730
o2 10,971,543 154,184,477 21,525,476 40,149,705 104,499,324 74,220,313 86,988,880
s 2,501 3,273 2,050 2,405 7,222 2,217 2,012

Primer location
Left primer 10,969,341- 154,179,761- 21,516,348- 40,145,694- 104,498,683- 74,215,116- 86,986,707-

10,969,363 154,179,783 21,516,372 40,145,715 104,498,705 74,215,138 86,986,727
Right primer 10,971,633- 154,181,240- 21,517,547- 40,146,848- 104,499,061- 74,218,504- 86,987,474-

10,971,656 154,181,263 21,517,570 40,146,870 104,499,084 74,218,526 86,987,496
Predicted PCR product size

With SV 4,817 4,776 3,273 3,562 7,624 5,628 2,780
Without SV 2,316 1,503 1,223 1,157 402 3,411 768
Detected by sequencing-based SV caller?

Manta Yes Yes Yes No No Yes No
Pindel No No No No No No No

b1 10,971,095- 154,180,619- 21,516,373- 40,145,895- 104,498,838- 74,216,616- 86,986,874-
b2 10,971,077 154,180,621 21,517,291 40,146,766 104,498,911 74,216,611 86,986,968

Table S10 List of homozygous insertions identified by OMSV from C666-1 that underwent experimental validations. Definitions of o1,
o2, s, b1 and b2 are given in Figure S9. PCR product sizes were predicted by considering both primer locations and insertion size s
determined by OMSV.

SV ID Ie1 Ie2 Ie3 Ie4 Ie5 Ie6 Ie7

Chr 2 4 5 5 20 1 4
o1 22,961,852 37,948,238 9,967,483 137,676,345 61,555,087 223,473,487 96,500,882
o2 22,969,321 37,960,828 9,972,346 137,689,062 61,561,856 223,487,948 96,507,004
s 6,190 4,085 3,496 4,904 5,069 2,428 3,620

Primer location
Left primer 22,961,879- 37,949,749- 9,970,229- 137,678,394- 61,560,697- 223,474,377- 96,501,977-

22,961,901 37,949,772 9,970,251 137,678,415 61,560,717 223,474,399 96,502,001
Right primer 22,963,770- 37,955,267- 9,971,538- 137,679,399- 61,561,964- 223,479,822- 96,502,754-

22,963,792 37,955,289 9,971,560 137,679,421 61,561,985 223,479,844 96,502,777
Predicted PCR product size

With SV 8,104 9,626 4,828 7,232* 6,358 7,896 4,421
Without SV 1,914 5,541 1,332 1,028 1,289 5,468 801
Detected by sequencing-based SV caller?

Manta No Yes (het.) Yes (het.) Yes (het.) No No Yes (het.)
Pindel No No No No No No No

b1 22,962,381- 37,950,488- 9,971,225- 137,682,429- 61,559,538- Unable to infer Unable to infer
b2 22,962,381 37,950,488 9,971,225 137,682,429 61,559,499 Unable to infer Unable to infer

Table S11 List of heterozygous insertions identified by OMSV from C666-1 that underwent experimental validations. Definitions of o1,
o2, s, b1 and b2 are given in Figure S9. PCR product sizes were predicted by considering both primer locations and insertion size s
determined by OMSV. In the Manta predictions, het. denotes that the SV was predicted to be heterozygous. *The predicted PCR
product size of Ie4 is not equal to the summation of the size without SV and s, because GapCloser’s result reveals an extra deletion of
around 1,300bp between o1 and o2 but outside the designed primer pair. As a result, the expected PCR product size without the SV is
not affected (since the deletion is outside the primer pair) and is equal to the span of the genomic region covered by the two primers,
but the estimated insertion size s should be increased by 1,300bp since it was originally inferred by OMSV without knowing that the two
defining nicking sites were actually 1,300bp closer to each other in C666-1 as compared to the reference genome.
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SV ID C1 C2 C3

Type Inter-trans. Intra-trans. Inversion
Chr 1st 5 8 X

o1 77,697,732 22,574,642 149,634,449
Translocated left of o1 left of o1

segment 1st
Chr 2nd 8 8 X

o2 27,323,114 30,293,029 149,727,161
Translocated left of o2 right of o2

segment 2nd
Primer location
Primer pair 1

Left primer chr5:77,933,545- 22,570,830- 149,652,660-
chr5:77,933,567 22,570,852 149,652,682

Right primer chr8:27,559,009- 30,262,222- 149,748,923-
chr8:27,559,031 30,262,244 149,748,945

Primer pair 2 (for inversions)
Left primer 149,654,409-

149,654,431
Right primer 149,750,609-

149,750,631
Predicted PCR product size
Primer pair 1

With SV 800-1,700 400-1,300 1,500-2,800
Without SV No product No product No product

Primer pair 2 (for inversions)
With SV 1,500-2,800

Without SV No product
Detected by sequencing-based SV caller?

Manta Yes Yes (Del.) No
Pindel No No No

b11 chr5:77,934,208- 22,571,087- 149,653,932-
b12 chr5:77,934,308 22,571,287 149,654,132
b21 chr8:27,559,341- 30,261,884- 149,748,939-
b22 chr8:27,559,441 30,261,984 149,749,439

Table S12 List of complex SVs identified by OMSV from C666-1 that underwent experimental validations. Inter-trans. and Intra-trans.
refer to inter-chromosomal translocation and intra-chromosomal translocation, respectively. Chr 1st and Chr 2nd are the chromosomes
of the first and second break points, which are different for inter-chromosomal translocations. Definitions of o1 and o2 and locations of
the break points estimated by OMSV. [b11, b12] and [b21, b22] are the approximate break point locations estimated by sequencing reads.
PCR product sizes were predicted by considering both the distance between the defining nicking sites and the locations of the designed
primers. In the Manta predictions, del. denotes that the SV was predicted to be a deletion.
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SV ID Primer Primer sequence
Io1 Left GACATCCAATGCTTTCCTACTCC

Right TCAAGTCAGGAAGGAAAGAGACAC
Io2 Left TGGATGTTGGTTACTGGGAATGG

Right CCAGATAAGTGGCAGCGAAGTATG
Io3 Left CAGGCAGTTCTGGATGCATTGTCAC

Right GTGACTTGCCTGATCAACAGAATG
Io4 Left CAAGGTGAAACCCCGTCTCTAC

Right GTTGTCCTCTTGTTTGAACCTGC
Io5 Left AAAAGGGATTCTCACACTCTCGG

Right AGATCAGTATTCAGGCTCAGTGTG
Io6 Left TAGCCAGTCTGCAGGATGAGTAG

Right CATCATGCTGCCCGTCATTCTTG
Io7 Left GTAAGTGTGCTATTGGCTGTG

Right GGACTGGTTAAATGGTGATTAGG
Ie1 Left TTACCTGAGACACATAGACTGGG

Right TGGTAGCCAGACACTGTAATAGG
Ie2 Left ATGTAGCAACTATTCAACTCTGCC

Right GGGAATCTCTCATTAAGTCTGCG
Ie3 Left AACAGCCCAAACAACTCTATAGG

Right TAGCAGTGTTGTGAGATACCAGC
Ie4 Left GGCCATCATCCTGCTATTAGAG

Right CAGAGATGTTGGTGCTGGTTTGC
Ie5 Left TTAGCTTCCAGGAACGTGAGC

Right GAAGGTCCCTCTCTCTCTCTGG
Ie6 Left AGAGGGAAAGAAGGAAGGGAAGC

Right TGTTAAAGCTGGAGGGAAGTAGG
Ie7 Left CACTCTCTTCAATAAATAGTGCTGG

Right AGTCCAGAGCACTAGATAAGAATG
C1 Left CCAAATTCATGGGGAGGGAACAC

Right CTGAGTGGAACCTGTCAATGCTG
C2 Left GAATGAGACAGCCCAGATAAGGC

Right CTACCTTCAGCATCAGATCCAGG
C3 (pair 1) Left CTTGCTATCCTCTGACCCCTGAG

Right GTAACATAAGGCAGGAGATATGG
C3 (pair 2) Left CCTACGATCACTGGCCAGCATAC

Right GGTTGACAGCATGGGCAGAAACG
Table S13 Primer sequences used in the PCR validation experiments of the insertions identified by OMSV from C666-1.

Module Parameter Estimation method/default value
Site False positive rate (f p) 1E-5, estimated by RefAligner
Site False negative rate (f n) 0.125, estimated by RefAligner
Site P-value threshold 1E-9
Site, Size Likelihood ratio threshold 1E-6
Site, Size Minimum covering optical maps (Mmin) 15 for Site, 10 for Size
Size Minimum optical maps from each chromosome in het-

erozygous calls (kmin)
max(5, 0.4M), where M is the number of covering op-
tical maps

Size Global distance ratio location parameter (r0) 1.0096, by MLE estimate of Matlab fminsearch function
Size Global distance ratio scale parameter (γ) 0.0291, by MLE estimate of Matlab fminsearch function
Size Minimum distance change (δ) max(2000, 0.05d0), where d0 is the distance on the ref-

erence
Table S14 Parameter values used in the SV detection modules of OMSV. Abbreviations of SV types: “Site” – extra/missing sites;
“Size” – SVs with large size changes; “Complex” – complex SVs.

SNP Indel Insertion/Deletion/Inversion
(The 1000 Genomes Project Consortium, 2010) (Lu et al., 2012) (Pang et al., 2010)

Rate 1E-3 1E-4 1E-6
Number generated 2, 910, 896 298, 715 2, 942
Size range (bp) 1 2− 70 5, 000− 100, 000

Table S15 Parameter values used in simulating a haploid genome (i.e., step 1 of simulation). The cited publications are the references
for the chosen values.
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Parameter Symbol Value used Rationale
Number of optical maps n 1,500,000 To get 100x coverage
Minimum DNA fragment size l0 100,000 Typical experimental protocol
Average DNA fragment extra size µl 100,000 Typical size in real data
Restriction enzyme Nt.BspQI Reasonable restriction site density
False negative rate f− 0.12 RefAligner’s estimate from real data
False positive rate f+ 1.2E-5 RefAligner’s estimate from real data
Position parameter of sizing error oα 1.00 Maximum likelihood estimate from real data
Scale parameter of sizing error sα 0.02 Maximum likelihood estimate from real data
Imaging resolution d 1

2
700 Observation from real data

Measurement error e 50 Pixel resolution of optical map images
Table S16 Parameter values used in generating simulated optical mapping data from a haploid genome (i.e., step 2 of simulation).
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Supplementary figures

TAGCGAAGAGCCGAACGCTCTTCACCTC 

ATCGCTTCTCGGCTTGCGAGAAGTGGAG 

Nt.BspQI nicking site (a) 

(b) 

TAGCGAAGAGCCGAACGCTCTTCACCTC 

ATCGCTTCTCGGCTTGCGAGAAGTGGAG 

TAGCGAAGAGCCGAACGCTCTTCACCTC 

ATCGCTTCTCGGCTTGCGAGAAGTGGAG 

(c) 

Pillars Nanochannels 
(d) 

(e) 

(f) 
# BNX File Version: 1.2 
# Label Channels: 1 
... 
0 8 159545.1 ... 
1 15416.3 20446.2 ... 
QX11 39.3287 6.2613 ... 
QX12 ... 

Fluorescent dye 
conjugated nucleotides 

Backbone staining 

Figure S1 The nanochannel-based single-molecule optical mapping method. (a) DNA molecules are recognized by a nicking enzyme
(Nt.BspQI as example here) at the restriction sites (underlined) and nicks are introduced on a single strand (red triangles). (b) The
nicks are repaired, with fluorescent dye conjugated nucleotides (green) replacing nearby thymines. (c) The DNA backbone is
fluorescently stained (blue). (d) The DNA molecules are loaded onto flow cells, uncoiled in the gradient pillars, and finally linearized
in nanochannels, at which they are imaged by high-resolution fluorescent microscopy. (e) The resulting images show the DNA
molecules and the labels at the nicking sites. (f) The final output is a file that contains information about the experiment and the
molecules, including the locations of the labels on each molecule and quality scores.
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Figure S2 Precision of OMSV and the fraction of SVs covered (a) for various numbers of molecules aligned to the SV regions and
(b) with different values of the likelihood ratio threshold of OMSV, based on the diploid data set with default setting.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 20 40 60 80 100 120 140 160

P
re

c
is

io
n

Coverage

Real (NoZyg)

Real (Zyg)

Ideal (NoZyg)

Ideal (Zyg)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 20 40 60 80 100 120 140 160

R
e

c
a

ll

Coverage

Real (NoZyg)

Real (Zyg)

Ideal (NoZyg)

Ideal (Zyg)

(a) (b) 

Figure S3 Precision (a) and recall (b) of OMSV with (“Real”) or without (“Ideal”) actual alignments, based on diploid data sets
with various depths of coverage.
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Figure S4 Precision (a) and recall (b) of OMSV and its alignment pipeline, based on diploid data sets with various false positive
rates of nicking sites. The Alignment series shows the precision/recall of optical map alignments, which is observed to correlate with
SV calling precision/recall.



Li et al. Page S9 of S14

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

c
is

io
n

False negative rate

Ignoring SV zygosity

Considering SV zygosity

Alignment

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e

c
a

ll

False negative rate

Ignoring SV zygosity

Considering SV zygosity

Alignment

(a) (b) 

Figure S5 Precision (a) and recall (b) of OMSV and its alignment pipeline, based on diploid data sets with various false negative
rates of nicking sites.
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Figure S6 Performance of OMSV with optical map alignments provided by either a single aligner, the intersection of both aligners,
or the union of them.
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Figure S7 Comparison of indels detected by OMSV from NA12878 with two published lists obtained by sequencing-based methods.
The SVs from the three individuals of the trio were integrated and de-duplicated, and then the ones contained in NA12878 were
extracted from the resulting list. In each region, the numbers of deletions and insertions are shown as del/ins, where the numbers of
indels identified by OMSV are in red while the numbers of indels reported in the previous studies are in black. Since an indel on one
list could overlap multiple indels on another list, the red and black numbers in the same region are not necessarily the same. Loci
with both an insertion and a deletion identified were not included in this comparison since the two published lists did not contain
such cases.
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C666-1 reference 
EBV optical map (in 
silico digestion) 

Optical maps aligned 
to the C666-1 EBV 
reference 

Figure S8 Optical maps produced from C666-1 aligned to the EBV reference. In the reference (top red horizontal bar), the vertical
black lines mark the locations of the expected nicking site locations based on the EBV genome sequence in C666-1. In the optical
map section (bottom), each horizontal line corresponds to one optical map aligned to the EBV genome, where the aligned parts
without nicking site signals are marked in yellow, the aligned nicking sites are marked in pink, extra/missing nicking sites detected
are marked in black, and unaligned parts are marked in green. The unaligned parts at the two ends are due to the circular nature of
episomal EBV genome in C666-1.
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Figure S9 Procedure for combining optical maps and sequencing reads to identify precise SV break points for insertions (a) and
deletions (b), and determine the inserted sequences in the case of insertions. o1 and o2 represent the rough SV break points on the
reference identified by OMSV from optical maps. b1 and b2 are the corresponding more precise break points after incorporating
sequencing reads, which theoretically should be equal to each other for insertions, but practically there could be a small distance
between them due to imperfect resolution of the break points. o′2, b′1 and b′2 mark the corresponding locations of o2, b1 and b2 on
the C666-1 sequence after introducing the SV. There may or may not be an unresolved gap (between g′1 and g′2), depending on
whether the whole sequence from o1 to o′2 can be resolved by the local sequence assembly.
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Figure S10 Alignment of sequencing reads to the inferred C666-1 sequences of SVs Io1,Io4-Io7. The L and R boxes mark the primer
locations. Definitions of o1, o′2, b′1, b′2, g′1 and g′2 are given in Figure S9. Sequencing read alignments are visualized by IGV. Some
high-coverage regions with mismatches in the read alignments are repeat elements.



Li et al. Page S14 of S14

(a) 

(b) 

Figure S11 Ratio of the distance between two nicking site labels on an optical map and the corresponding aligned nicking sites on
the reference. (a) The distribution of distance ratios observed in the trio OM data. (b) The Cauchy distribution with the position
and scale parameters estimated from the trio OM data.


