
Codes, Boolean functions, and Expanders Lecture 9
Tokyo Institute of Technology 5 December 2013

Recall this version of the PCP theorem from last lecture.

Theorem 1. There exists an alphabet Σ and a constant ε > 0 for which the following task is NP-
hard: Given a satisfiable 2CSP instance over Σ, find an assignment that satisfies a 1 − ε fraction
of constraints.

In a general 2CSP instance, a variable may be present in an arbitrary number of constraints. What
if we restrict our attention to instances where every variable appears in at most d constraints,
where d is small compared to the number of variables? When d = 1, every variable appears in one
constraint and finding a satisfying assignment is easy. When d = 2, the task is a bit harder but still
solvable in time linear in n. On the other hand, when d is as large as the number of constraints
the problem becomes NP-hard. This suggests that the problem may become gradually harder as d
gets larger.

It turns out that this intuition is incorrect:

Theorem 2. There exists an alphabet Σ and constants d and ε such that given a satisfiable 2CSP
instance over Σ where every variable appears in at most d constraints, it is NP-hard to satisfy a
1− ε fraction of the constraints.

We prove this statement by reduction from Theorem 1. Let Φ be the 2CSP instance in question.
We want to construct a new instance Φ′ which is as hard as Φ, but every variable appears in at
most d constraints. Some of the variables in Φ may appear in more constraints. If variable xi
appears in ni different constraints it is natural to replace it with ni new variables x′i1, . . . , x

′
ini

and
impose some additional constraints that force all of x′i1, . . . , x

′
ini

to take the same value.

The first thing we may try is to add the constraints x′i1 = x′i2, x
′
i2 = x′i3, . . . , x

′
i(ni−1) = x′ini

to Φ′.

Then if Φ has a satisfying assignment, the assignment obtained by setting x′i1 = · · · = x′ini
= xi will

be satisfying for Φ′. Suppose that we could then find an assignment x′ that satisfies a 1−ε′ fraction
of its constraints of Φ′. Can we use x′ to obtain an assignment that satisfies most constraints in Φ?

It is not hard to see that if ε′ = 0, the assignment xi = x′i1 = · · · = x′ini
is satisfying for Φ. However,

even if one of the equality constraints is violated, the values of x′ij could split into two equally sized
sets. Then it is not clear which value to assign to xi and it is possible to come up with examples
where no matter which value we assign, a large fraction of the constraints of Φ will be violated.

So we need to make the equality constraints more robust: If there is no clear majority among the
values x′i1, . . . , x

′
ini

, then not one but many of the equality constraints should be violated. One way
to do so is to impose the equality constraint x′ij = x′ij′ for every pair j < j′; but then we have done
nothing about reducing the number of constraints a variable appears in.

In general the equality constraints we are looking for can be described by an undirected graph G on
the vertices {1, . . . , t}. An assignment to x′i1, . . . , x

′
ini

can be viewed as a partition of the vertices
into sets Aσ = {j : x′ij = σ}, where σ ranges over Σ. On the one hand, we want the degree of this
graph to be constant. On the other hand, we want that a partition {Aσ} splits many of the edges
of G, unless one of the sets Aσ contains most of the vertices.
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Both of these properties are achieved by expander graphs. To understand expander graphs and their
properties we first need to take a detour into random walks, adjacency matrices, and eigenvalues.

In what follows we will assume the graph G is undirected, connected, and d-regular.

1 Adjacency matrix and eigenvalues

Suppose a particle sits at a vertex s of some graph G. At every step, s moves to a random one of
its neighbors. How long will it take s to reach a vertex in G that looks random and independent
of s?

To answer this question, it will be helpful to represent the random walk by a sequence of probability
distributions p0,p1, . . . on the vertices of G, with the following interpretation: At each step t, pt(u)
is the probability of the particle ending up at vertex u after t steps of the walk. Initially, we have
p0 assign probability 1 to vertex s, and probability 0 to all the other vertices. The distribution
pt+1 can be calculated from pt via the formula

pt+1(u) =
∑

v:(v, u) is an edge

1

d
· pt(v). (1)

We are now interested in the following question: When t gets large, how close does the distribution
pt get to the uniform distribution u on the set of vertices? To answer this question, we need some
way of measuring how “close” two distributions are. In our setting the most convenient measure is
the `2 norm. The `2 norm of a vector v is the quantity

‖v‖ =
(∑

i

v2
i

)1/2

and the `2 distance between two vectors v and v′ is the `2 norm of v − v′. We will think of
probability distributions as vectors in Rn (with one entry for each vertex in the graph), and we will
say that two distributions p and p′ are ε-close (in `2 distance) if ‖p− p′‖ ≤ ε.

The (normalized) adjacency matrix of G is an n× n matrix A defined as follows:

Au,v =
number of edges between u and v in G

d

This matrix is symmetric and the entries in each row add up to one. Using A, we can write
equation 1 in matrix form as pt+1 = ptA (it is customary to represent pt as row vectors) and so
we immediately obtain that pt = p0At.

The eigenvalues and eigenvectors of A play a significant role in determining the behavior of random
walks on G. Recall that an eigenvalue-eigenvector pair is a complex number λ and a vector v such
that vA = λv. It is a basic theorem in linear algebra that symmetric matrices have an orthonormal
basis of eigenvectors with real eigenvalues. Let’s denote these pairs by (λ1,v1), . . . , (λn,vn) where
λ1 ≥ λ2 ≥ ... ≥ λn. (Some of the λi may be negative.)

What is the meaning of this? Initially the position of our particle is determined by the distribution
p0. Since the vectors v1, . . . ,vn form an orthonormal basis we can decompose p0 in the form

p0 = α1v1 + · · ·+ αnvn
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where αi = 〈p0,vi〉 and α2
1 + · · ·+ α2

n = 1.

After one step of the random walk, the distribution becomes

p1 = p0A = α1v1A+ · · ·+ αnvnA = α1λ1v1 + · · ·+ αnλnvn

and after t steps
pt = p0At = α1λ

t
1v1 + · · ·+ αnλ

t
nvn. (2)

Let’s think of what happens when t becomes large. We will assume the values αi are nonzero since
the initial position of the particle can be arbitrary.1 Eventually the right hand side of the expression
will be dominated by the term in which λi has largest absolute value; this is either |λ1| or |λn|. This
absolute value cannot exceed 1, because pt would then become very large, but its norm is bounded
since it is a probability distribution. Similarly, the absolute value cannot be less than 1 because
then pt would become very small when t gets large. Finally, the largest λi in absolute value cannot
be −1, because pt would then eventually be shifting signs; since it is a vector of probabilities, its
entries must always be nonnegative.

Therefore, it must be the case that λ1 = 1, and

max{|λi| : 2 ≤ i ≤ n} = max(λ2,−λn) ≤ 1.

The quantity on the left side is denoted by λ = λ(G) and plays a very important role. Because
uA = λ1u, so the eigenvector v1 associated to λ1 = 1 equals

√
n · u. Now from (2) we have that

‖pt − α1v1‖2 = α2
2λ

2t
2 + · · ·+ α2

nλ
2t
n ≤ λ2t.

The left hand side has a natural interpretation. Recall that α1 = 〈p0,v1〉 = 1/
√
n, so α1v1 equals

the uniform distribution u. Thus λt measures how close pt gets to the uniform distribution after t
steps of the walk:

‖pt − u‖ ≤ λt. (3)

Another way of saying this is that λ determines the rate at which pt converges to the uniform
distribution: The smaller λ is, the faster we will get to a uniformly random vertex.

2 Expander graphs

To get some intuition about equation (3), notice that in t steps the particle can reach at most
1 + (d − 1) + · · · + (d − 1)t ≤ (d − 1)t+1 vertices of the graph. This value is attained when the
t-neighborhood of s is a d-regular tree. Let t be the largest value for which (d − 1)t+1 is at most
n/2. Then at least half the entries of pt are zero and

λt ≥ ‖pt − u‖ ≥
(
n/2 · (0− 1/n)2

)1/2
=

1√
2n
≥ 1√

2(d− 1)t+2

from where λ ≥ (1/
√
d− 1) · (2(d− 1)2)−1/2t. As n gets larger, the second term approaches 1 and

λ must be at least as large as 1/
√
d− 1.

A more precise analysis shows that for every graph, λ ≥ 2
√
d− 1/d−on(1), where on(1) is quantity

that converges to zero as n gets large. There exist graphs such that λ = 2
√
d− 1/d for infinitely

many values of n. Such graphs are called Ramanujan graphs.2

1This is not quite right: The correct way to say it is that for every index i there exists an initial position for the
particle that makes αi 6= 0.

2Ramanujan graphs are known to exist for every d such that d+ 1 is a power of a prime larger than two.
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For our purposes, it will be enough to consider graph families for which as n grows, λ stays bounded
away from one. If this is the case, then after only t = Θ(log n) steps of the random walk, we have
that

‖pt − u‖ ≤ λΘ(logn) = n−Θ(1) (4)

so pt gets very close to the uniform distribution, and in fact all vertices of G are reached with
probability 1/n± o(1/n) for the correct choice of Θ(·) constant.

Definition 3. A family of graphs {Gn}, where Gn has n vertices and is d-regular, is called an
expander family if there is a constant ε > 0 such that λ(Gn) ≤ 1− ε for every sufficiently large n.

3 Edge expansion

Suppose you start at a random vertex of some set S that is not too large and you take a random
edge out of this vertex. How likely are you to get out of S? If a random walk out of any vertex s
approaches the uniform distribution quickly, we would expect such a walk to avoid “getting stuck”
in any set S. The following claim makes this intuition precise. The probability is taken over a pair
of endpoints (u,w) of a random directed edge of G.

Theorem 4. For every set S of vertices,

Pr(u,w)[u ∈ S and w 6∈ S] ≥ (1− λ2) Pru[u ∈ S] Prw[w 6∈ S].

To prove this theorem it is useful to describe the eigenvalues of A, the normalized adjacency matrix
of G, in an alternative way. We look at the value of the expression vAvT as v ranges over all
vectors of norm 1. We expand v in the basis of eigenvectors

v = α1v1 + · · ·+ αnvn

where α2
1 + · · ·+ α2

n = 1. Then

vAvT =
( n∑
i=1

αivi

)
A
( n∑
j=1

αjvj

)
=

n∑
i,j=1

αiαj · viAvT
j .

Since viAvT
j = λiviv

T
j = λi〈vi,vj〉 takes value λi when i = j and zero otherwise, we get

vAvT = α2
1λ1 + α2

2λ2 + · · ·+ α2
nλn.

It follows that vAvT can be at most λ1 and this value is attained when α1 = 1, namely when
v = v1. So we can describe λ1 as

λ1 = max‖v‖=1 vAvT.

Similarly, we can describe λ2 as the maximum of vAvT but taken only over those v for which
α1 = 0, namely those v that are perpendicular to v1. In our case v1 is parallel to u so we can write

λ2 = max‖v‖=1,v⊥u vAvT.

We will now give a probabilistic interpretation to the quantity 1 − λ2. Fix v such that ‖v‖ = 1
and notice that

n∑
u,w=1

Auw(v(u)− v(w))2 =

n∑
u,w=1

Auwv(u)2 +

n∑
u,w=1

Auwv(w)2 − 2

n∑
u,w=1

Auwv(u)v(w).

4



Since each row and each column of A adds up to one, each of the first two sums equals the sum of
squares of the entries of v, which is 1. The third sum equals vAvT. Therefore we can write

1− λ2 =
1

2
min‖v‖=1,v⊥u

n∑
u,v=1

Auw(v(u)− v(w))2 =
1

2
minv⊥u

∑n
u,v=1Auw(v(u)− v(w))2∑n

u=1 v(u)2
.

Since there are dn directed edges of G, we get that
∑
Auw(v(u)−v(w))2 = nE(u,w)[(v(u)−v(w))2].

We also have
∑

v(u)2 = nEu[v(u)2]. Therefore

1− λ2 =
1

2
minv⊥u

E(u,w)[(v(u)− v(w))2]

Eu[v(u)2]
. (5)

Proof of Theorem 4. Let S be any set of vertices, α = Pr[u ∈ S] = |S|/n and set

v(u) =

{
1− α, if u ∈ S
−α, if u 6∈ S.

Notice that v ⊥ u, and that (v(u)−v(w))2 is 1 when exactly one of u and w is in S and the other
is in S, and 0 otherwise. In the first case we will say (u,w) crosses (S, S). Plugging into (5) we
obtain

1− λ2 ≤
1

2

Pr(u,w)[(u,w) crosses (S, S)]

Eu[v(u)2]
.

where
Pr(u,w)[(u,w) crosses (S, S)] = 2 Pr[u ∈ S and w 6∈ S]

and
Eu[v(u)]2 = α(1− α)2 + (1− α)α2 = α(1− α) = Pr[u ∈ S] Pr[w 6∈ S].

4 Proof of Theorem 2

We now show how to deduce Theorem 2 from Theorem 1. Let Φ be a 2CSP with no restrictions on
the number of occurrences of each variable. We show how to get a new instance Φ′ out of Φ where
every variable occurs at most d times.

Each variable xi in Φ gives rise to ni variables x′i1, . . . , x
′
ini

in Φ′. For each constraint φii′(xi, xi′) in
Φ we assign unique copies x′ij , x

′
i′j′ in Φ′ and add d/2 copies of the constraint φii′(x

′
ij , x

′
i′j′) in Φ′.

Finally, for every i we fix a d/2-regular graph Gi on ni vertices with edge expansion λ(Gi) ≥ 1/2
and introduce equality constraints x′ij = x′ij′ for every edge (i, i′) of Gi. We will call these the
equality constraints for i. We will talk about how to construct such an expander in the next two
lectures.

If Φ has m/2 constraints, then Φ′ will have m variables and dm constraints. If Φ is satisfiable, then
Φ′ is clearly satisfiable. Now suppose we could find an assignment x′ that satisfies a 1− ε fraction
of the constraints of Φ′. Then the following claim allows us to convert x′ into an assignment that
satisfies a 1− 18ε fraction of the constraints of Φ:
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Claim 5. If some assignment x′ the violates at most an ε-fraction of contraints in Φ′, then the
assignment x where

xi = plurality (most frequent) value among x′i1, . . . , x
′
ini

violates at most a 34ε fraction of constraints in Φ.

By Theorem 4, within every graph Gi

|E(S, S)| ≥ d|S||S|
4ni

for every subset S of vertices in Gi, where E(S, S) is the number of edges from a vertex in S to a
vertex outside S.

Let Si be the set of variables x′ij that agree with the plurality value xi. Let εi be the fraction of

the dni/4 equality constraints for i violated by the assignment x′. We will argue that |Si| ≤ 8εini:

• If |Si| > ni/2, then |E(Si, Si)| ≥ d|Si|/8. Since all the equality constraints for i between Si
and Si are violated by x′, εi(dni/4) ≥ |E(Si, Si)|, so |Si| ≤ 2εini.

• If ni/4 ≤ |Si| ≤ ni/2, then |E(Si, Si)| ≥ d|Si|/8 ≥ dni/32. Since all the equality constraints
for i between Si and Si are violated by x′, it follows that εi ≥ 1/8, so |Si| ≤ ni ≤ 8εini.

• If |Si| < ni/4, then no value in Σ is taken by more than a 1/4-fraction of the x′ijs, so there
must exist some subset of values Σ′ ⊆ Σ so the number of x′ij taking values in Σ′ is between

ni/4 and ni/2. Just like in the previous case, we get |Si| ≤ ni ≤ 8εini.

Now consider what happens in Φ′ when we replace the assignment x′ with the plurality assignment
x′plur ij = xi for every j. Replacing x′ by x′plur may cause the violation of at most (d/2)|Si| non-
equality constraints for every i. If x′ violates εdm constraints, x′plur will then violate at most

εdm+
n∑
i=1

(d/2)|Si| ≤ εdm+
n∑
i=1

(d/2)(8εini) = εdm+ 16
n∑
i=1

εidni/4 ≤ 17εdm

constraints of Φ′. This is a 17ε-fraction of all the constraints in Φ′. Since exactly half the constraints
in Φ′ are equality constraints, x cannot violate more than a 34ε fraction of constraints in Φ.
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