
Codes, Boolean functions, and Expanders Lecture 6
Tokyo Institute of Technology 15 November 2013

Private-key encryption is perhaps the most basic cryptographic task. In the simplest model of
encryption there are two honest participants, Alice and Bob, who interact over a communication
channel. The channel interaction is observed by a third party Eve who may be malicious. Alice’s
goal is to send a single message M to Bob so that Bob can recover the message but Eve cannot
obtain information about what was sent.

In the private-key setting, Alice and Bob are assumed to have agreed upon a common key K that is
not known to Eve. Let us model messages and keys as binary strings: The message M can be any
string from the message space {0, 1}m, and the key K is a uniformly random string from {0, 1}n.

If n is at least as large as m, the following simple solution called the one-time pad achieves perfect
secrecy: Alice encrypts the message M under key K into the ciphertext M ⊕K obtained by taking
the pairwise XOR of the bits of M and K. Upon receiving C, Bob decrypts to C ⊕ K. Clearly
the decryption is correct. Intuitively, it is also secret because no matter what M is, M ⊕K is a
uniformly random string in {0, 1}m, so the distribution that Eve observes is completely independent
of the message being sent.

However the assumption that n is at least as large as m is often unrealistic. In usual applications
Alice and Bob want to agree on a fairly short key (at most several thousand bits) and use it to
encrypt much longer messages (megabytes or gigabytes long). But even if m = n+1 it is impossible
to make the encryption of a message statistically independent of the message.

The solution is to extend the n-bit key K into an m-long bit string G(K) which “looks” uniformly
random, even though it is statistically far from being random. Alice now encrypts by sending
M ⊕G(K), and Bob decrypts by computing C ⊕G(K). From Eve’s perspective, G(K) looks like
a uniformly random string in {0, 1}n, and so does M ⊕G(K).

1 Pseudorandom generators and one-way permutations

What does it mean for a string y coming from some distribution over {0, 1}m to “look” uniformly
random? Let’s ask the opposite question – what does it mean for y to not look random? It means
that we should have some way of distinguishing y from a uniformly random string u of the same
length. In computational complexity and cryptography, we model the distinguisher as an efficient
algorithm that takes y or u as an input, tends to accept when its input is y, and tends to reject
when its input is u.

This suggests the following definition: A distribution Y over {0, 1}m is (s, ε)-pseudorandom if for
every algorithm D of complexity at most s,

Pry∼Y [D(y) accepts]− Pru∼{0,1}m [D(u) accepts] ≤ ε.

We won’t define complexity formally, but you can think of it as the size of the program for D plus
the worst-case running time of this program on inputs of length m. A pseudorandom generator
is an algorithm that takes n uniformly random bits and expands them deterministically into m
pseudorandom bits.

1

Definition 1. A function G : {0, 1}n → {0, 1}m, where m > n, is an (s, ε) pseudorandom generator
if for every algorithm D of complexity at most s,

Prx∼{0,1}n [D(G(x)) accepts]− Pru∼{0,1}m [D(u) accepts] ≤ ε.

In a typical application like private-key encryption, we may think of the input length n as being
1000 or 2000 bits long, while s as much larger and ε as tiny, e.g. s = 2100 and ε = 2−100. What
about the output length m? Once we have a pseudorandom generator that produces n+ 1 bits of
output, we can bootstrap it to obtain as many output bits as we want, so we will focus on the case
m = n+ 1.

It is somewhat tricky to construct pseudorandom generators because the definition requires us to
argue about all possible distinguishers D and we may not know how such a distinguisher works. It
may be easier to build pseudorandom generators out of potentially more primitive objects.

One such object are one-way permutations. A one-way function is a function that is easy to
compute, but hard to invert, even for random inputs. A one-way permutation is a pseudorandom
function that is also a permutation, i.e. every output comes from exactly one input.

Definition 2. A permutation π : {0, 1}n → {0, 1}n is (s, ε)-one-way if for every algorithm Inv of
complexity at most s, Prx∼{0,1}n [Inv(π(x)) = x] ≤ ε.

In 1982 Yao showed how to obtain a pseudorandom generator from any one-way permutation. His
construction was simplified considerably by Goldreich and Levin who proved the following theorem:

Theorem 3 (Goldreich and Levin). If f : {0, 1}n → {0, 1}n is a (poly(n/ε)(s+ sπ), ε/2) one-way
permutation of complexity sπ, then the function G : {0, 1}2n → {0, 1}2n+1 given by

G(x, r) = (π(x), r, 〈x, r〉)

is an (s, ε)-pseudorandom generator.

2 Fourier analysis of the Hadamard code

The proof of the Goldreich-Levin theorem is closely related to algorithmic aspects of decoding the
[2n, n, 2n/2] Hadamard code. (We now change convention and use n to denote message length and
not block length as before.) Suppose we are given a corrupted codeword f of the Hadamard code.
We can decode f by brute force: Look at all 2n possible codewords Hada, compute their distances
to f and output the one that is closest to f . Since the block length is 2n, the running time of this
decoding algorithm is about 22n.

Can we decode any faster? The corrupted codeword f is 2n bits long, so merely inspecting the
whole codeword will take 2n time. This suggests we may not be able to substantially improve upon
the brute-force algorithm. However, this intuition is incorrect: We will show how to perform the
decoding by only inspecting a small number of random entries inside the codeword.

We will in fact solve a more general problem called list-decoding. Recall that in a code of distance
d, decoding is only possible (in the worst case) if the number of errors t is at most (d − 1)/2. If
t is larger, there may be ambiguity in the decoding as there can be more than one answer within

2

distance t of the corrupted codeword. In this setting, a sensible possibility would be to ask for a
description of all codewords within distance t. The maximum number of such codewords is called
the list size of the code at radius t.

Recall that the Hadamard encoding of a message a in {0, 1}n consists of the evaluations 〈a, x〉 mod 2
over all x in {0, 1}n. Let’s represent the codeword entries by {1,−1} instead of {0, 1}. Then the
encoding of a consists of the evaluations of the character function χa(x) = (−1)〈a,x〉. We will
identify the codewords of the Hadamard code with the character functions.

Under this convention, a corrupted codeword can be viewed as some function f : {0, 1}n → {1,−1}.
The list decoding problem asks us to find all codewords χa that has large agreement with the func-
tion f ; specifically, given an agreement parameter ε > 0, we want all a such that Prx∼{0,1}n [f(x) =
χa(x)] ≥ (1 + ε)/2, or equivalently all a such that

f̂a = E[f(x)χa(x)] ≥ ε.

From this Fourier-analytic point of view, the list size of the Hadamard code can be bounded
immediately via Parseval’s identity: Every codeword χa in the list must contribute f̂2a ≥ ε2 to the
square sum of the Fourier coefficients, so the list size of the Hadamard code can be at most 1/ε2.

3 The Kushilevitz-Mansour algorithm

We will generalize our objective a little bit and seek to find all a such that f̂2a ≥ ε2, and maybe
even allow for a few as that don’t quite satisfy this condition. The idea is to try to locate these
relevant as by a divide-and-conquer strategy. One nice way to visualize this strategy is as a search
process along the following full binary tree of depth n. The root of this binary tree is labeled by
the value

∑
a∈{0,1}n f̂

2
a . Its left and right children are labeled by the partial sums∑

a : a1=0

f̂2a and
∑

a : a1=1

f̂2a .

In general, a node at level i is indexed by a string v ∈ {0, 1}i and is labeled by the value∑
a : a1=v1,...,ai=vi

f̂2a

so that the leaf indexed by a is labeled by f̂2a .

Let’s say a node v is relevant if its label is at least ε2. Although there are exponentially many
nodes in the tree, there can be at most n/ε2 relevant ones because the labels in each level sum to
1. If we could calculate the labels, it would be easy to identify all the relevant nodes via depth-first
search starting at the root and pruning the search path at irrelevant nodes.

How do we calculate the values of the labels? Using the Fourier coefficient formula

f̂a = E[f(x)χa(x)] (1)

we can obtain these values in time exponential in n. But if we are willing to settle for a probabilistic
approximation, we can do much better. Let’s start at the leaves. From the formula (1) we get

f̂2a = E[f(x)χa(x)] E[f(y)χa(y)] = E[f(x)f(y)χa(x+ y)].

3

This suggests that to estimate f̂2a , we ought to sample some number of random pairs (x, y) and
output the average of the values f(x)f(y)χa(x+ y).

Now let v ∈ {0, 1}i be an arbitrary node in the tree at level i and FIX(v) be the set of those
a ∈ {0, 1}n with a1 = v1, . . . , ai = vi. We want to estimate the value∑

a∈FIX(v)

f̂2a = E

[
f(x)f(y)

∑
a∈FIX(v)

χa(x+ y)

]
.

The set FIX(v) could be exponentially large so we have to be a bit careful here. Recall that
χa(z) = (−1)〈a,z〉 so: ∑

a∈FIX(v)

χa(z) =
∑

a∈FIX(v)

(−1)〈a,z〉

If z is nonzero along any of the coordinates i + 1 up to n, this sum vanishes; otherwise, it equals
2n−iχv(z). So the only (x, y) pairs that contribute to the sum are those in which x and y agree on
the last n− i coordinates, and we can rewrite the identity as∑

a∈FIX(v)

f̂2a = Ex′,y′∼{0,1}i,u∼{0,1}n−i [f(x′u)f(y′u)χv(x
′ + y′)].

Here, the first i bits x′ and y′ of x and y are chosen independently at random, while the last n− i
bits are random but identical in x and y. (When i = 0 the right side equals E[f(u)2] = 1, which is
a good sign.)

We now have all the ingredients for the Kushilevitz-Mansour algorithm. First, we have a prob-
abilistic procedure Ŝamp(f, v) which estimates the label of node v as follows: Sample O(n/ε6)
random triples (x′, y′, u) and output the average of the values f(x′u)f(y′u)χv(x

′ + y′).

Lemma 4. With probability at least 1 − ε2/20n, Ŝamp(f, v) outputs a value between `(v) − ε2/3
and `(v) + ε2/3, where

`(v) =
∑

a : a1=v1,...,ai=vi

f̂2a .

Now here is the Kushilevitz-Mansour algorithm:

Algorithm KM: On input a function f : {0, 1}n → {1,−1} and ε > 0,
Apply the following recursive procedure P(v) starting with v equal to the empty string:

If Ŝamp(f, v) ≥ 2ε2/3:
If v has length n, output v.
Otherwise, call P(v0) and P(v1).

Theorem 5. With probability at least 1/2, the outputs of KM(f, ε) include all a such that f̂2a ≥ ε2,
but it produces no more than O(n/ε2) outputs in total.

Proof. Let v be any node such that `(v) ≥ ε2. By Lemma 4,

Pr[Ŝamp(f) < 2ε2/3] ≤ ε2/20n

Since there are at most n/ε2 such nodes v, by a union bound we have

Pr[Ŝamp(f) < 2ε2/3 for some v s.t. `(v) ≥ ε2] ≤ n

ε2
· ε

2

20n
≤ 1

20
.

4

Therefore, all a ∈ {0, 1}n such that `(a) = f̂2a ≥ ε2 will be included in the output of KM(f, ε) with
probability at least 1− 1/20 = 19/20.

Let B be the set of nodes whose label exceeds ε2/3 and B′ be the set of nodes outside B whose
parent node is in B. Since the nodes in B form a tree, we must have |B′| ≤ |B|+ 1. There must be
fewer than 3n/ε2 nodes in B, so B′ can have at most 3n/ε2 +1 nodes. By a very similar calculation
as above,

Pr[Ŝamp(f, v) ≥ 2ε2/3 for some v in B′] ≤
(3n

ε2
+ 1
)
· ε

2

20n
≤ 1

5
.

Therefore, with probability at least 4/5, Ŝamp(f, v) will output a value smaller than than 2ε2/3
on all nodes v in B′, so KM(f, ε) will not make any recursive calls to P on a node outside B ∪B′.
Since there are at most O(n/ε2) nodes inside B ∪ B′, KM(f, ε) can produce at most this many
outputs.

With probability at least 1− 1/20− 1/5 ≥ 1/2, both of these conditions are met.

It remains to prove Lemma 4. We make use of Chebyshev’s inequality:

Theorem 6 (Chebyshev’s inequality). For any random variable X and t > 0,

Pr
[
|X − E[X]| > t

√
Var[X]

]
< 1/t2.

Proof of Lemma 4. LetXi = f(x′iui)f(y′iui)χv(x
′
i+y

′
i), where (x′i, y

′
i, ui) is the i-th sample. Ŝamp(f, v)

outputs the value X = 1
m(X1 + · · ·+Xm), where m is the number of samples used. By linearity of

expectation,

E[X] =
1

m
(E[X1] + · · ·+ E[Xm]) = E[f(x′u)f(y′u)χv(x

′ + y′)] = `(v)

and by independence of Xi and Xj for every pair i 6= j,

Var[X] =
1

m2
(Var[X1] + · · ·+ Var[Xm]) ≤ 1

m

since the variables X1, . . . , Xm are {−1, 1} valued and can have variance at most 1. From Cheby-
shev’s inequality we get that

Pr
[
|X − `(v)| > t/

√
m
]
< 1/t2.

To get the desired conclusion, we choose m and t so that t/
√
m = ε2/3 and 1/t2 = ε2/20n.

4 Proof of the Goldreich-Levin theorem

We prove the contrapositive statement: Suppose that G is not an (s, ε)-pseudorandom generator,
namely there is a distinguisher D of complexity s such that

Prx,r∼{0,1}n [D(G(x, r)) accepts]− Pru∼{0,1}2n+1 [D(u) accepts] > ε.

We will argue that there is then an algorithm Inv of complexity poly(n/ε)(s+ sπ) such that

Prx∼{0,1}n [Inv(π(x)) = x] > ε/2

5

and so π is not (poly(n/ε)(s+ sπ), ε/2)-one-way.

Without loss of generality, let us assume that D outputs 1 when it accepts and −1 when it rejects.
Because E[D(·)] = 2 Pr[D(·) = 1]− 1, we can rewrite our assumption on D as

Ex,r∼{0,1}n [D(G(x, r))]− Eu∼{0,1}2n+1 [D(u)] > 2ε.

Unwinding the definition of G, we get

Ex,r∼{0,1}n [D(π(x), r, 〈x, r〉)]− Eu∼{0,1}2n+1 [D(u)] > 2ε.

We can write u in the form (π(x), r, b), where x, r ∼ {0, 1}n and b ∼ {0, 1} are independent. (Since
π is a permutation, (π(x), r, b) is uniformly distributed in {0, 1}2n+1.)

Ex,r∼{0,1}n [D(π(x), r, 〈x, r〉)]− Ex,r∼{0,1}n,b∼{0,1}[D(π(x), r, b)] > 2ε.

We now make use of the following technical lemma. This lemma tells us that if F (X) is distin-
guishable from F (X̃), then X̃F (X̃) can predict X to some advantage.

Lemma 7. Let F (−1), F (1) ∼ R and X ∼ {−1, 1} be (possibly dependent) random variables, and
X̃ ∼ {−1, 1} be uniformly random and independent of F and X. Then

E[X̃F (X̃) ·X] = E[F (X)]− E[F (X̃)].

Applying the lemma to F (·) = D(π(x), r, ·), X = (−1)〈x,r〉, and X̃ = (−1)b we get that

Ex,b,r[(−1)bD(π(x), r, b) · (−1)〈x,r〉] > 2ε

from where
Ex,b[Er[(−1)bD(π(x), r, b) · (−1)〈x,r〉]] > 2ε

It follows that with probability at least ε over the choice of x and b, we must have

Er[(−1)bD(π(x), r, b) · (−1)〈x,r〉] > ε. (2)

Now consider the following algorithm Inv: On input π(x), choose a random b and run KM(f, ε),
where f(r) = (−1)bD(π(x), r, b). If the output of KM(f, ε) contains an a such that π(a) = π(x),
output this a.

If x and b satisfy (2), then by Theorem 5 with probability at least 1/2, the output of KM(f, ε) will
contain x, and Inv(π(x)) outputs x with probability at least ε/2.

We now analyze the running time of Inv. From Theorem 5 (more precisely, from its proof) it follows
that algorithm KM makes no more than O(n/ε2) calls to Ŝamp, and each of these calls results in
O(n/ε6) evaluations ofD. Since each evaluation ofG has complexity s, the complexity of this part of
the algorithm is O(n2/ε8)·s. In addition, Inv evaluates π on the O(n/ε2) outputs of KM. This part
has complexity O(n/ε2) ·sπ. Thus Inv has complexity O(n/ε2)sπ+O(n2/ε8)s = poly(n/ε)(s+sπ).

Proof of Lemma 7. Let P = F (X̃)(1 +XX̃). Since X̃ is random and independent of F,X we have

E[P] = 1
2 E[P | X = X̃] + 1

2 E[P | X 6= X̃] = 1
2 E[2F (X)] + 1

2 · 0 = E[F (X)].

Therefore E[F (X̃)(1 +XX̃)] = E[F (X)]. The lemma follows by linearity of expectation.

6

	Pseudorandom generators and one-way permutations
	Fourier analysis of the Hadamard code
	The Kushilevitz-Mansour algorithm
	Proof of the Goldreich-Levin theorem

