Codes, Boolean functions, and Expanders Lecture 6
Tokyo Institute of Technology 15 November 2013

Private-key encryption is perhaps the most basic cryptographic task. In the simplest model of
encryption there are two honest participants, Alice and Bob, who interact over a communication
channel. The channel interaction is observed by a third party Eve who may be malicious. Alice’s
goal is to send a single message M to Bob so that Bob can recover the message but Eve cannot
obtain information about what was sent.

In the private-key setting, Alice and Bob are assumed to have agreed upon a common key K that is
not known to Eve. Let us model messages and keys as binary strings: The message M can be any
string from the message space {0,1}™, and the key K is a uniformly random string from {0, 1}".

If n is at least as large as m, the following simple solution called the one-time pad achieves perfect
secrecy: Alice encrypts the message M under key K into the ciphertext M & K obtained by taking
the pairwise XOR of the bits of M and K. Upon receiving C, Bob decrypts to C' @& K. Clearly
the decryption is correct. Intuitively, it is also secret because no matter what M is, M & K is a
uniformly random string in {0, 1}, so the distribution that Eve observes is completely independent
of the message being sent.

However the assumption that n is at least as large as m is often unrealistic. In usual applications
Alice and Bob want to agree on a fairly short key (at most several thousand bits) and use it to
encrypt much longer messages (megabytes or gigabytes long). But even if m = n+1 it is impossible
to make the encryption of a message statistically independent of the message.

The solution is to extend the n-bit key K into an m-long bit string G(K) which “looks” uniformly
random, even though it is statistically far from being random. Alice now encrypts by sending
M & G(K), and Bob decrypts by computing C' @ G(K). From Eve’s perspective, G(K) looks like
a uniformly random string in {0,1}", and so does M & G(K).

1 Pseudorandom generators and one-way permutations

What does it mean for a string y coming from some distribution over {0, 1}"* to “look” uniformly
random? Let’s ask the opposite question — what does it mean for y to not look random? It means
that we should have some way of distinguishing y from a uniformly random string u of the same
length. In computational complexity and cryptography, we model the distinguisher as an efficient
algorithm that takes y or u as an input, tends to accept when its input is y, and tends to reject
when its input is u.

This suggests the following definition: A distribution) over {0,1}"™ is (s,&)-pseudorandom if for
every algorithm D of complexity at most s,

Pryy[D(y) accepts| — Pr,(0,1ym[D(u) accepts| < e.

We won’t define complexity formally, but you can think of it as the size of the program for D plus
the worst-case running time of this program on inputs of length m. A pseudorandom generator
is an algorithm that takes n uniformly random bits and expands them deterministically into m
pseudorandom bits.

Definition 1. A function G: {0,1}" — {0,1}™, where m > n, is an (s, ¢) pseudorandom generator
if for every algorithm D of complexity at most s,

Pry. 10,132 [D(G(x)) accepts] — Pr,, 0,1y [D(u) accepts] < e.

In a typical application like private-key encryption, we may think of the input length n as being
1000 or 2000 bits long, while s as much larger and ¢ as tiny, e.g. s = 219 and ¢ = 27199, What
about the output length m? Once we have a pseudorandom generator that produces n + 1 bits of
output, we can bootstrap it to obtain as many output bits as we want, so we will focus on the case
m=mn+ 1.

It is somewhat tricky to construct pseudorandom generators because the definition requires us to
argue about all possible distinguishers D and we may not know how such a distinguisher works. It
may be easier to build pseudorandom generators out of potentially more primitive objects.

One such object are one-way permutations. A one-way function is a function that is easy to
compute, but hard to invert, even for random inputs. A one-way permutation is a pseudorandom
function that is also a permutation, i.e. every output comes from exactly one input.

Definition 2. A permutation 7: {0,1}" — {0,1}" is (s,e)-one-way if for every algorithm Inv of
complexity at most s, Pr, o 1}»[Inv(n(7)) = 2] <e.

In 1982 Yao showed how to obtain a pseudorandom generator from any one-way permutation. His
construction was simplified considerably by Goldreich and Levin who proved the following theorem:

Theorem 3 (Goldreich and Levin). If f: {0,1}" — {0,1}" is a (poly(n/e)(s + sz),£/2) one-way
permutation of complexity s, then the function G: {0,1}*™ — {0,1}2" 1 given by

G(z,r) = (w(x),r, (z,7))

is an (s, e)-pseudorandom generator.

2 Fourier analysis of the Hadamard code

The proof of the Goldreich-Levin theorem is closely related to algorithmic aspects of decoding the
[2",n, 2" /2] Hadamard code. (We now change convention and use n to denote message length and
not block length as before.) Suppose we are given a corrupted codeword f of the Hadamard code.
We can decode f by brute force: Look at all 2" possible codewords Had,, compute their distances
to f and output the one that is closest to f. Since the block length is 2", the running time of this
decoding algorithm is about 22".

Can we decode any faster? The corrupted codeword f is 2™ bits long, so merely inspecting the
whole codeword will take 2™ time. This suggests we may not be able to substantially improve upon
the brute-force algorithm. However, this intuition is incorrect: We will show how to perform the
decoding by only inspecting a small number of random entries inside the codeword.

We will in fact solve a more general problem called list-decoding. Recall that in a code of distance
d, decoding is only possible (in the worst case) if the number of errors ¢ is at most (d — 1)/2. If
t is larger, there may be ambiguity in the decoding as there can be more than one answer within

distance ¢ of the corrupted codeword. In this setting, a sensible possibility would be to ask for a
description of all codewords within distance ¢. The maximum number of such codewords is called
the list size of the code at radius t.

Recall that the Hadamard encoding of a message a in {0, 1}" consists of the evaluations (a, z) mod 2
over all z in {0,1}". Let’s represent the codeword entries by {1, —1} instead of {0,1}. Then the
encoding of a consists of the evaluations of the character function y,(z) = (—=1)(%. We will
identify the codewords of the Hadamard code with the character functions.

Under this convention, a corrupted codeword can be viewed as some function f: {0,1}" — {1, —1}.
The list decoding problem asks us to find all codewords x, that has large agreement with the func-
tion f; specifically, given an agreement parameter € > 0, we want all a such that Pr ;o 13 [f(7) =
Xa(x)] > (1 4 €)/2, or equivalently all a such that

fa = E[f(z)xa(2)] = &

From this Fourier-analytic point of view, the list size of the Hadamard code can be bounded
immediately via Parseval’s identity: Every codeword X, in the list must contribute f2 > &2 to the
square sum of the Fourier coefficients, so the list size of the Hadamard code can be at most 1/¢2.

3 The Kushilevitz-Mansour algorithm

We will generalize our objective a little bit and seek to find all a such that fg > ¢2, and maybe
even allow for a few as that don’t quite satisfy this condition. The idea is to try to locate these
relevant as by a divide-and-conquer strategy. One nice way to visualize this strategy is as a search
process along the following full binary tree of depth n. The root of this binary tree is labeled by
the value) o (013" fg Its left and right children are labeled by the partial sums

> fioand >0 2
a: a1=0 a: a1=1
In general, a node at level i is indexed by a string v € {0, 1} and is labeled by the value
>,
a: a1 =V1,...,a;=0;
so that the leaf indexed by a is labeled by fg .

Let’s say a node v is relevant if its label is at least 2. Although there are exponentially many
nodes in the tree, there can be at most n/e? relevant ones because the labels in each level sum to
1. If we could calculate the labels, it would be easy to identify all the relevant nodes via depth-first
search starting at the root and pruning the search path at irrelevant nodes.

How do we calculate the values of the labels? Using the Fourier coefficient formula

fa = E[f (@)xa(2)] (1)

we can obtain these values in time exponential in n. But if we are willing to settle for a probabilistic
approximation, we can do much better. Let’s start at the leaves. From the formula (1) we get

f2 = E[f(2)xa(@)] E[f @)Xa(®)] = E[f(2) f (¥)Xa(z + y)]-

This suggests that to estimate fg, we ought to sample some number of random pairs (z,y) and
output the average of the values f(z)f(y)xa(z + y).

Now let v € {0,1}% be an arbitrary node in the tree at level i and FIX(v) be the set of those

a € {0,1}"™ with a; = v1,...,a; = v;. We want to estimate the value
> fi=E [f(w)f(y) > Xalz+ y)} -
ac€FIX(v) a€FIX(v)

The set FIX(v) could be exponentially large so we have to be a bit careful here. Recall that

Xa(z) = (1)@ so:
> ow= Y (e

ac€FIX(v) aceFIX(v)

If z is nonzero along any of the coordinates ¢ + 1 up to n, this sum vanishes; otherwise, it equals
2""x(2). So the only (x,y) pairs that contribute to the sum are those in which x and y agree on
the last n — 7 coordinates, and we can rewrite the identity as

Z fg = Em/,y'N{o,l}i,uN{o,l}n—i [f(mlu)f(y/U)Xv(gcl + y’)]
a€FIX(v)

Here, the first 7 bits 2’ and 3’ of x and y are chosen independently at random, while the last n — i
bits are random but identical in # and y. (When i = 0 the right side equals E[f(u)?] = 1, which is
a good sign.)

We now have all the ingredients for the Kushilevitz-Mansour algorithm. First, we have a prob-
abilistic procedure Samp(f,v) which estimates the label of node v as follows: Sample O(n/e°)
random triples (2/,4,u) and output the average of the values f(z'u)f(y'u)xo (2’ +¢').

Lemma 4. With probability at least 1 — £2/20n, Samp(f,v) outputs a value between ((v) — €2/3
and {(v) + 2/3, where
=" > £

a: a]=u1,...,a; =v;

Now here is the Kushilevitz-Mansour algorithm:

Algorithm KM: On input a function f: {0,1}" — {1, -1} and € > 0,
Apply the following recursive procedure P(v) starting with v equal to the empty string:
If Samp(f,v) > 262/3:
If v has length n, output v.
Otherwise, call P(v0) and P(v1).

Theorem 5. With probability at least 1/2, the outputs of KM(f,¢) include all a such that ff > 2,
but it produces no more than O(n/e?) outputs in total.

Proof. Let v be any node such that £(v) > ¢2. By Lemma 4,
Pr[Samp(f) < 262/3] < %/20n

Since there are at most n/e? such nodes v, by a union bound we have

n 62

& 1
Pr[Samp(f) < 2¢%/3 for some v s.t. £(v) > €] < 2 50m = 30"

™

Therefore, all a € {0,1}" such that £(a) = f2 > €2 will be included in the output of KM(f,) with
probability at least 1 — 1/20 = 19/20.

Let B be the set of nodes whose label exceeds £2/3 and B’ be the set of nodes outside B whose
parent node is in B. Since the nodes in B form a tree, we must have |B’| < |B|+ 1. There must be
fewer than 3n/e% nodes in B, so B’ can have at most 3n/e%+ 1 nodes. By a very similar calculation
as above,
Pr[Samp(f,v) > 22/3 for some v in B'] < <3£ + 1) : i < !
T — \e2 20n — 5’
Therefore, with probability at least 4/5, Samp(f,v) will output a value smaller than than 2¢2/3
on all nodes v in B’; so KM(f,) will not make any recursive calls to P on a node outside BU B’.
Since there are at most O(n/e?) nodes inside B U B, KM(f,¢) can produce at most this many
outputs.

With probability at least 1 —1/20 — 1/5 > 1/2, both of these conditions are met. O

It remains to prove Lemma 4. We make use of Chebyshev’s inequality:

Theorem 6 (Chebyshev’s inequality). For any random variable X and t > 0,
Pr[|X — E[X]| > ty/Var[X]] < 1/¢%.

Proof of Lemma 4. Let X; = f(2hu;) f(yiui)xo (2 +y}), where (), i}, u;) is the i-th sample. Samp(f,v)
outputs the value X = %(X 1+ -+ X;n), where m is the number of samples used. By linearity of
expectation,

E[X] = %(E[Xﬂ + -+ E[Xn]) = E[f(#"u) f(yu)xo (' +)] = £(v)

and by independence of X; and X for every pair i # j,

1 1
Var[X] = —(Var[X <o+ Var[X,,]) < —
ar[X] = —5 (Var[Xi] +--- + Var[Xn]) < —
since the variables X7,..., X, are {—1,1} valued and can have variance at most 1. From Cheby-
shev’s inequality we get that
Pr[|X — ((v)| > t/vm] < 1/£%.
To get the desired conclusion, we choose m and t so that t/y/m = €2/3 and 1/t = £2/20n. O

4 Proof of the Goldreich-Levin theorem

We prove the contrapositive statement: Suppose that G is not an (s,)-pseudorandom generator,
namely there is a distinguisher D of complexity s such that

Pry (0,137 [D(G(z,7)) accepts] — Pryqo,132n+1[D(u) accepts] > e.
We will argue that there is then an algorithm Inwv of complexity poly(n/e)(s + s;) such that

Pr, oy [Inv(r(z)) = 2] > ¢/2

and so 7 is not (poly(n/e)(s + sx),e/2)-one-way.

Without loss of generality, let us assume that D outputs 1 when it accepts and —1 when it rejects.
Because E[D(-)] = 2Pr[D(-) = 1] — 1, we can rewrite our assumption on D as

Ez,r‘N{O,l}” [D(G(xa T))] - Eu~{0,1}2”+1 [D(u)] > 2e.
Unwinding the definition of G, we get
Ea:,rw{O,l}" [D(ﬂ'(l’), T, <$7 7“))] -]--_QuN{O,l}Q"JF1 [D(u)] > 2e.

We can write w in the form (7 (x),r,b), where z,r ~ {0,1}" and b ~ {0, 1} are independent. (Since
7 is a permutation, (7(z),7,b) is uniformly distributed in {0, 1}2"*1))

Eyrmfo1yn [D(m(2), 7, (2, 7))] — Eg pofo,13n pofo, 13 [D((2), 7, 0)] > 2e.

We now make use of the following technical lemma. This lemma tells us that if F'(X) is distin-
guishable from F(X), then X F(X) can predict X to some advantage.

Lemma 7. Let F(—1), F(1) ~R and X ~ {—1,1} be (possibly dependent) random variables, and
X ~ {=1,1} be uniformly random and independent of F' and X. Then

E[XF(X)-X] = E[F(X)] — E[F(X))].

Applying the lemma to F(-) = D(n(z),r,-), X = (=1){*" and X = (—1)" we get that
Eppr[(=1)"D(w(@),m,b) - (=1)¢7] > 2¢

from where

E,[Er[(=1)"D(n(2),7,b) - (=1)""]] > 2¢

It follows that with probability at least & over the choice of x and b, we must have
E,[(=1)"D(m(x),7,b) - (=1)¥"] > e, (2)

Now consider the following algorithm Inv: On input 7(z), choose a random b and run KM(f,¢),
where f(r) = (=1)’D(r(z),r,b). If the output of KM(f,e) contains an a such that 7(a) = 7(z),
output this a.

If x and b satisfy (2), then by Theorem 5 with probability at least 1/2, the output of KM(f,) will
contain z, and Inv(r(z)) outputs z with probability at least /2.

We now analyze the running time of Inv. From Theorem 5 (more precisely, from its proof) it follows
that algorithm KM makes no more than O(n/e?) calls to Samp, and each of these calls results in
O(n/e%) evaluations of D. Since each evaluation of G has complexity s, the complexity of this part of
the algorithm is O(n?/e8)-s. In addition, Inv evaluates m on the O(n/e?) outputs of KM. This part
has complexity O(n/e?)-s;. Thus Inv has complexity O(n/e?)s, +O(n?/e®)s = poly(n/e)(s+s,).

Proof of Lemma 7. Let P = F(X)(1+ XX). Since X is random and independent of F, X we have
E[P] = JE[P| X = X]+ $E[P | X # X] = § E2F(X)] + § - 0 = E[F(X)].

Therefore E[F(X)(1 + X X)] = E[F(X)]. The lemma follows by linearity of expectation. O

	Pseudorandom generators and one-way permutations
	Fourier analysis of the Hadamard code
	The Kushilevitz-Mansour algorithm
	Proof of the Goldreich-Levin theorem

