
Codes, Boolean functions, and Expanders Lecture 11
Tokyo Institute of Technology 20 December 2013

In this lecture and the next one we will study a special class of regular graphs called Cayley graphs.
The eigenvalues and eigenvectors of the adjacency matrix of a Cayley graph have a particularly
nice form.

Today we will study Cayley graphs over the group Zn2 and their connection to small-biased sets.
We will then see how small-biased sets are used in a beautiful algorithm of Prasad Raghavendra
for solving linear equations modulo 2.

1 Cayley graphs, Abelian groups, and small-biased sets

Recall that a group is a set with an operation that is associative ((ab)c = a(bc) for all a, b, c) with
an identity (there is an element 1 such that a1 = 1a = a for every a) and inverses for all elements
(for every a there is an a−1 such that aa−1 = a−1a = 1). A set S of group elements is called a
generating set if every element of G can be written as a finite product of elements in S. Here we
will only worry about finite groups.

Let S be a generating set for a group G which is closed under inverse (for every a in S, a−1 is
also in S). The Cayley graph Cay(G,S) is the |S|-regular graph where there is a vertex for every
element in G and an edge from g to sg for every g ∈ G and s ∈ S. (Parallel edges and loops are
allowed.) Since S is closed under inverse, this graph is undirected.

We are interested in constructing infinite families of Cayley graphs which are expanding. It is
common to start with a specific family of groups {Gn} and try to construct a set of generators Sn,
|Sn| ≤ d for Gn so that λ(Cay(Gn, Sn)) ≤ 1− ε.

To illustrate the connection between the algebra of the groups Gn and the expansion of the cor-
responding Cayley graphs let us start with some groups we already have some experience with,
namely Gn = Zn2 . Unfortunately it will not be possible to obtain expander families out of these
groups. Nevertheless, they will serve as a good introduction to Cayley graphs.

Let S = {s1, . . . , sd} be a subset of Zn2 . (In Zn2 every element is its own inverse, so S is automatically
closed under inverse.) Notice that S is a generating set for Zn2 if and only if the rank of s1, . . . , sd
viewed as vectors in Zn2 is n, which is only possible if d ≥ n. So it is not even possible to generate
Zn with a number of elements independent of n, much less make it into an expanding family. But
let us anyway try to answer the following question:

How small can λ = λ(Cay(Zn2 , S)) get among all sets S of size d?

We saw that λ(Cay(Zn2 , S)) = 1 unless d ≥ n, so let’s see what happens when d becomes larger.
Last time we showed that

λt ≥ ‖pt − u‖

for every t > 0, where pt is the distribution of a random walk after t steps starting from some
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vertex s. Because of commutativity, after t = αd steps the random walk can reach at most(
d

0

)
+

(
d

1

)
+ · · ·+

(
d

t

)
≤ 2dH(α)

vertices. Let us choose t ≤ d/2 so that dH(α) = n− 1. Then at least 2n−1 of the vertices have not
been reached with t steps and

‖pt − u‖ ≥
√

2n−1 · (0− 2−n)2 = 2−(n+1)/2.

Therefore
λ ≥ 2−(n+1)/2t = 2−(n−1)/2t−1/t = 2−H(α)/2α−1/t.

Applying the upper bound H(α) ≤ α log2(1/α) +O(α), we obtain

λ ≥ 2− log2(1/α)/2−O(1)−O(1/t) = Ω(
√
α).

from where H(α) = O(λ2/ log(1/λ)), and so d = Ω(n/λ2 log(1/λ)). This bound is tight up to the
Ω(log(1/λ)) factors by the following lemma:

Lemma 1. λ(Cay(Zn2 , S)) = maxa6=0|Es∼S [χa(s)]|.

This equation says that λ(Cay(Zn2 , S)) ≤ δ if and only if the set S is δ-biased.1 In Lecture 2
we showed we can achieve |S| = O(n/δ2), and we just saw that it is necessary to have |S| =
Ω(n/δ2 log(1/δ)). It is not known if the logarithmic factor is necessary.

Proof. Let A be the normalized 2n × 2n adjacency matrix of Cay(Zn2 , S). Then we can write

A =
1

d

∑
s∈S

As

where As(g, h) = 1 if h = s+ g (using additive notation for the operation in Zn2 , and 0 otherwise).

A very nice property of abelian groups is that all the matrices As have the same eigenvectors, and
so these must also be the eigenvectors of A. The 2n eigenvectors of As are the character functions
χa viewed as vectors whose entries are indexed by Zn2 :

(χaAs)(h) =
∑
g

χa(g)As(g, h) = χa(s+ h) = χa(s)χa(h)

because the only g for which As(g, h) is nonzero is g = s + h. So χa is an eigenvector of As with
eigenvalue χa(s), and by linearity χa is an eigenvector of A with eigenvalue

λa =
1

d

∑
s∈S

χa(s) = Es∼S [χa(s)]

This gives us a formula for all 2n eigenvalues of A. When a = 0, λ0 = 1, and so

λ(Cay(Zn2 , S)) = maxa6=0|Es∼S [χa(s)]|.

Getting back to our objective of constructing an expanding family of Cayley graphs over Zn2 , we see
that this is impossible as λ(Cay(Zn2 , S)) = Ω(

√
d/n). The situation is similar over other Abelian

groups, and to make this approach work we have to turn to non-Abelian groups.

1What we mean more precisely is that the uniform distribution over the elements of S is δ-biased. In general, S
can be a multiset, in which case each element is chosen with probability proportional to its multiplicity.
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2 An algorithm for linear equations modulo 2

Consider the following algorithm for solving linear equations modulo 2. The algorithm maintains
a set S of candidate solutions. At each step, the algorithm looks at a new equation in the system
and updates the set S. Initially, let S = {0, 1}n; that is, S contains all possible solutions. After
looking at the first equation, we keep those s in S that satisfy the equation and throw away those
that do not satisfy it. We continue with the rest of the equations one by one. After we have looked
at all the equations, what is left in S are only the solutions to the system.

This algorithm is not efficient as the set {0, 1}n is exponentially large. We want to run the same
algorithm, but on a much smaller set S of candidate solutions. Let us try to specify the properties
we want S to have.

1. At each point, all s ∈ S satisfy all previously seen equations.

2. Upon seeing a new equation 〈a, x〉 = b, S should contain at least one solution to it, provided
that it is consistent with the previous equations.

We start with the first equation. Since we do not know what this equation will be ahead of time,
we must ensure that S initially contains solutions to all possible equations. This brings to mind a
small-biased set: Every linear equation is satisfied by about half the elements of a small-biased set.
The following generalization of δ-biased sets will be useful.

Definition 2. Let A be a linear subspace of {0, 1}n. A set S over {0, 1}n is δ-biased over A if for
every a ∈ A, |Es∼S [χa(s)]| ≤ δ.

Just as in the special case A = F2, S is δ-biased over A if and only if λ(Cay(A,S)) ≤ δ.

Let us initially set S to be a δ-biased set over {0, 1}n. After looking at the first equation (a1, b1),
we throw out those x ∈ S that fail to satisfy it – about half of them. We expect to be left with a
small-biased set over the linear space A1 of equations orthogonal to a1. How does the discarding
affect the bias of the other equations a ∈ A1? To answer this question we use this formula:

Claim 3. Let X and Y be {−1, 1}-valued random variables. Then for every value x ∈ {−1, 1},

E[Y | X = x] =
E[Y ] + xE[XY ]

1 + xE[X]
.

If X = (−1)〈a1,x〉 and Y = 〈a, x〉, then because S is δ-biased we get that |E[X]|, |E[Y ]|, |E[XY ]| ≤ δ
and so

Ex∼S [(−1)〈a,x〉 | 〈a1, x〉 = b1] ≤
2δ

1− δ
. (1)

This suggests that after we discard the incorrect solutions to the first equation, the bias of S with
respect to the other equations may grow by a factor of about two. Thus after seeing about log(1/δ)
equations, S may fail to contain any feasible solutions to the remaining equations. The following
lemma gives a way to reduce the bias of S:

Lemma 4. If S is δ-biased over A, then the (multi)set St consisting of s1 + · · · + st, where
s1, . . . , st ∈ S, is δt-biased over A.
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Proof. For every a ∈ A,

|E[χa(s1 + · · ·+ st)]| = |E[χa(s1) · · ·χa(st)]| = |E[χa(s1)]| · · · |E[χa(st)]| ≤ δt.

In the language of Cayley graphs, this lemma says that λ(Cay(A,St)) = λ(Cay(A,S))t. This
statement has a graph-theoretic interpretation (and alternate proof). A random walk on Cay(A,S)
starting at a vertex a chooses s at random from S and moves to the vertex a + s. A random
walk on Cay(A,St) takes t random steps out of a. Thus Cay(A,St) is the graph one obtains after
taking t steps in the random walk. Its adjacency matrix is the t-th power of the adjacency matrix
of Cay(A,S). Therefore the eigenvalues of Cay(A,St) are the t-th power of the eigenvalues of
Cay(A,S).

So to reduce the bias of S, we can replace its entries with their t-wise sums s1 + · · ·+ st. But what
is the effect of this transformation on condition 1? Suppose that we are looking at an equation
〈a, x〉 = b that is a linear combination of previous equations. By assumption, all s1, . . . , st ∈ S will
satisfy this equation. But then

〈a, s1 + · · ·+ st〉 = 〈a, s1〉+ · · ·+ 〈a, st〉 = tb (2)

and we see that in general, St will satisfy this equation only when t is odd! The smallest value of
t that both reduces the bias and does not violate previously satisfied equations is t = 3.

We now have almost all the elements of the algorithm. Starting with a δ-biased set S for a suitably
chosen constant δ, we look at the equations one by one. After seeing a new equation, we discard
the entries of S that are not solutions to this equation. Then we replace S with the multiset
{s1 + s2 + s3 : s1, s2, s3 ∈ S}. After we have exhausted all the equations, we return any s from S
as a solution.

The running time of this algorithm is determined by the size of S. The discarding step reduces the
size of S by about a factor of two. The bias reduction step increases the size of the step by a cubic
rate. Thus the dominant effect comes from bias reduction and the size of S grows very quickly.
The last ingredient we will need is a method for reducing the size of S without affecting its bias
too much. The proof is given at the end of the section.

Lemma 5. Let S be a δ-biased set where δ ≤ 1/2. Let S′ be a random sample consisting of O(n/ε2)
entries of S (chosen with repetition). With probability at least 1− 2n, S is (δ + ε)-biased.

We can now state and analyze Raghavendra’s algorithm:

On input (a1, b1), . . . , (am, bm), where a1, . . . , am ∈ {0, 1}n, b1, . . . , bm ∈ {0, 1}:
1 Let S be a 1

5 -biased multiset of size O(n) over {0, 1}n.
2 For i = 1 to m repeat the following:
3 Discard all s ∈ S such that 〈ai, s〉 6= bi.
4 Replace S by the multiset {s1 + s2 + s3 : s1, s2, s3 ∈ S}.
5 Keep O(n) entries of S chosen at random with repetition and discard the rest.
6 If S is non-empty, output any s ∈ S.
7 Otherwise, output inconsistent.

The running time of the algorithm is O(n4m). The factor of O(n4) comes from step 4. By combining
steps 4 and 5 into a single step that randomly samples O(n) random vectors of the form s1+s2+s3,
this improves to O(n2), giving an overall running time of O(n2m). We now show correctness.
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Theorem 6. With probability at least 1 − m2−n, Raghavendra’s algorithm outputs s such that
〈ai, s〉 = bi for all i if such s exists, and inconsistent otherwise.

Let Ai denote the subspace of {0, 1}n orthogonal to a1, . . . , ai and let Si indicate the state of the
set S after the i-th iteration. Theorem 6 will follow from these two lemmas:

Lemma 7. For every 1 ≤ i ≤ m, all s ∈ Si satisfy the first i equations 〈a1, s〉 = b1, . . . , 〈ai, s〉 = bi.

Lemma 8. For every 1 ≤ i ≤ m, if the first i equations are consistent then with probability 1−i2−n,
Si is non-empty and 1

5 -biased over Ai.

In particular, after the last iteration, Lemma 7 guarantees that all i ∈ S satisfy all the equations,
and Lemma 8 says that there is at least one solution in S provided the equations are consistent.

The proofs of the two lemmas are by induction on i.

Proof of Lemma 7. The base case i = 0 holds trivially. Now assume the statement holds for i− 1,
so the first i− 1 equations are satisfied for all s ∈ S = Si−1. After step 4, the i-th equation is also
satisfied. Step 4 preserves satisfiability by (2), and step 5 only discards elements of s. Therefore
by the end of the i-th iteration, S = Si satisfies the first i equations.

Proof of Lemma 8. Initially, S = S0 is non-empty and 1
5 -biased, so the base case holds. Now assume

the statement holds for i−1 and the first i equations are consistent. By inductive assumption, with
probability 1 − (i − 1)2−n, the set S = Si−1 is non-empty and 1

5 -biased over Ai−1. By (1), after

step 3 S is 2 · 15/(1−
1
5) = 1

2 -biased over Ai. By Lemma 4, after step 4 S is 1
2

3
= 1

8 -biased over Ai.
By Lemma 5 with ε = 3

40 , with probability 1− 2−n, after step 5, Si is 1
8 + 3

40 = 1
5 -biased. Clearly

Si is also non-empty. By the union bound, this is true with probability at least 1− i2−n.

Missing proofs

Proof of Claim 3. Using the formula for conditional expectations, we have

E[Y ] = E[Y | X = 1] Pr[X = 1] + E[Y | X = −1] Pr[X = −1]

E[XY ] = E[Y | X = 1] Pr[X = 1]− E[Y | X = −1] Pr[X = −1].

Therefore

E[Y | X = 1] =
E[Y ] + E[XY ]

2 Pr[X = 1]
=

E[Y ] + E[XY ]

1 + E[X]

and

E[Y | X = −1] =
E[Y ]− E[XY ]

2 Pr[X = −1]
=

E[Y ]− E[XY ]

1− E[X]
.

Proof of Lemma 5. Let f be any function of the form χa of −χa where a 6= 0. Since S is δ-biased,
Es∼S [f(s)] ≤ δ. By the Chernoff bound, for independently chosen s1, . . . , sm ∼ S:

Pr[f(s1) + · · ·+ f(sm) > δm+ εm] ≤ e−2ε2m.

Taking a union bound over all 2(2n − 1) ≤ 2n+1 choices of f , we get

Pr[f(s1) + · · ·+ f(sm) > δm+ εm for some f ∈ {χa,−χa : a 6= 0}] ≤ 2n+1 · e−2ε2m.

If we set m = d(n+ 1
2)/ε2 ln 2e, this probability is at most 2−n, proving the lemma.
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