CSCI 5520: Foundations of Data Privacy Lecture 7
The Chinese University of Hong Kong, Spring 2015 17 February 2015

In our discussion of differential privacy so far we did not address the computational complexity
of private data release. Let’s review the two mechanisms for counting (averaging) queries that
we studied and try to estimate their running time. We’ll fix the accuracy parameter « to some
constant, say o = 0.1.

Recall the mechanism of Blum, Ligett, and Roth. Given a database x € D™ as input, this
mechanism samples and outputs a synthetic database y € D? with probability proportional to
exp((en/4)u(z,y)), where € is the differential privacy parameter and u(z,y) is the maximum devi-
ation |[g(x) — q(y)| among all averaging queries g of interest.

To sample from the distribution of interest, it appears that we need to calculate all the utilities
u(z,y) for all y € D Calculating each such utility may in general take time proportional to the
number of queries |Q|, so it appears that the running time of this mechanism may be as large as
|Q| - |D|* = 200eel@lloglDl) - This number can be quite large even for moderately sized databases
and sets of queries.

The mechanism of Hardt and Rothblum represents the database x as a probability distribution
over the domain D. The main step in this mechanism is a multiplicative update on the entries of x:
Given a predicate P (coming from a counting query ¢p) and an estimate check that is too high or
too low, scale up those entries of x that satisfy or do not satisfy P (depending on the outcome of the
estimate check) and renormalize to a probability distribution. As there are |D| entries in the vector
x, a naive implementation of this step would take time ©O(|D|). Is there a faster implementation?

In general, the answer is a conditional but believable “no”: If cryptographic one-way functions
exist, then any mechanism that is guaranteed to answer, say, n® counting queries cannot have
complexity that is polynomial in both n and log|D|. We won’t show this result in its entirety in
this lecture (I don’t know how to prove it yet), but we will introduce a proof technique that shows
hardness of data release for a much less interesting setting of parameters. Hopefully in the next
lecture we will complete the proof of this negative result.

The kinds of databases that exemplify the computational hardness of private data release are not
particularly natural. If we impose some restrictions on the structure of the database and the types
of counting queries allowed, these limitations may sometimes be surmounted.

1 Hardness of generating synthetic databases

A synthetic database mechanism that on input a database x € D™ produces as its output a database
y € DY for some d. The mechanism is a-accurate for a set of averaging queries Q if for every query
7€ Q,|q(x) —g(M(x))| < a with probability 1 over the randomness of M.

We will show that if a synthetic database mechanism is efficient differentially private, then it cannot
be a-accurate for any o < 1 under a standard cryptographic assumption: The existence of message

authentication codes.

The role of the message authentication code will be to “force” the rows of the synthetic database
to come from the original database, thereby violating privacy.

Message authentication codes Informally, a message authentication code (MAC) is a scheme
for sending messages (from Alice to Bob) that ensures the integrity of messages: After receiving the
MAC of a message, Bob is convinced that the message is indeed the one that Alice intended to send
him and not some other message. There is no privacy requirement here: the objective of message
authentication is not to preserve secrecy but to prevent tampering. Message authentication codes
are usually implemented by appending some verification information to the message — a tag — that
certifies the authenticity and integrity of the message.

Message authentication codes are defined in the private-key model: Alice and Bob agree on a secret
key K, chosen uniformly at random from the space of all possible keys {0,1}*. Apart from Alice
and Bob, nobody else has any prior information about this secret key.

We begin by defining the functionality requirement for message authentication codes:

Definition 1. A message authentication code (MAC) with key length k, message length m, and
tag length ¢ is an algorithm (Tag, Ver), where Tag: {0,1}* x {0,1}™ — {0,1} and Ver: {0,1}* x
{0,1}™ x {0,1}* — {0, 1} so that for every key K € {0,1}* and message M € {0,1}™,

Ver(K,M,Tag(K,M)) = 1.

We will assume that the tagging and verification algorithms are deterministic.

We now define security. The security requirement should postulate that upon seeing the tag of a
message M, the adversary should not be able to produce a forgery M’ # M together with a tag
for M’'. The notion of security we will define is quite strong: The adversary can query a tagging
oracle that can tag messages of its choice, and its task will be to come up with a forged tag of any
message that it has not previously queried.

Definition 2. A MAC (Tag, Ver) is e-secure if for every efficient algorithm A’ with access to a
“tagging oracle”,
Pr[AT99) produces a forgery] < e

where a forgery is a pair (M,T) such that (1) M is different from all the queries A made to the
tagging oracle and (2) Ver(K, M,T) = 1. Here, the probability is taken over the choice of K and
the randomness of T'ag and Ver.

Under reasonable cryptographic assumptions (the existence of one-way functions that are exponen-
tially hard to invert), there exist efficiently computable message authentication codes with message
length and tag length O(k) that are 2~ k) _secure against chosen message attack.

A hard example Given a MAC (Tag,Ver), we now construct a distribution over databases z
and give a set of counting queries @ such that if M(z) is accurate for @) then it is not differentially
private.

Theorem 3. There exists a domain of size 2" and a set of counting queries Q of size 2% such
that if M: D" — D% is an a-accurate synthetic database mechanism for Q for some o < 1 and
10dn < 2™ then M is not (1,1/10n) differentially private or (T'ag, Ver) is not 1/2d-secure.

Blum, Ligett, and Roth show the existence of a differentially private synthetic database for n >
K (log|D|log|@Q|), where K is a sufficiently large constant. Theorem [3| shows that this mechanism
cannot in general be made efficient.

Proof Sketch of Theorem[3. The domain D is the set {0,1}™ x {0,1}" of all possible message,
tag pairs. To construct z we choose n random messages M, ..., M, ~ {0,1}", a random key
K ~ {0,1}*, and set x; = (M;, Tag(K, M;)) as the i-th row of x.

For every possible key K € {0,1}", let gk be the query that counts the number of rows (M, T) for
which T is a correct tag for message M under key K, namely such that Ver(K, M,T) = 1. Let Q
be the set of all such 2% queries qx-.

Now suppose M is an efficient, a-accurate synthetic database mechanism for). By construction,
all rows of x are valid (message, tag) pairs under K, so Gx(z) = 1. If a < 1, then Gx (M (z)) > 0,
so at least one of the rows of M (x) must be a valid (message, tag) pair (M’, Tagyx (M')).

We now distinguish two cases. If (M, Tagr (M')) is a row of z with probability at least 1/2, then
M’ is not (1,0.1) differentially private as long as 2™ > 10dn by the following theorem which you
will prove in your homework:

Theorem 4. Suppose M: D" — D? is an (e, 6)-differentially private synthetic database mecha-
nism. Let D be a probability distribution over some finite set in which no element has probability
greater than 27 and x ~ D" be a random database whose rows are independent samples from D.
The probability that M (x) contains a row of x is at most e*dn /2™ + nd.

If (M',Tagk(M'")) is not a row of x with probability at least 1/2, then the following efficient
algorithm produces forged tags of (T'ag, Ver) with probability at least 1/2d:

1. Query the tagging oracle on messages Mji, ..., M, to obtain respective tags 11,...,7T,.
2. Construct the database z by setting its ith row to x; = (M;, T;).

3. Output a random row of M (z).

With probability at least 1/2, M’ is different from Mj, ..., M,, so the probability that a random
row of M(x) is the forgery (M', Tagx(M')) is at least 1/2d. O

2 Sanitized data

A sanitization mechanism is a generalization of a synthetic database mechanism. The purpose of
the sanitization mechanism is to publish data that, on the one hand, provides accurate answers
to queries, and on the other, protects privacy of the database participants. Unlike a synthetic

database, sanitized data does not have to “look like” a database at all; we merely want to be able
to extract the answers to queries from it.

A sanitized data release mechanism for a collection of queries) is a mechanism M that takes as
input a database z € D™ and outputs a data item y together with a conversion algorithm that
turns every query g € (Q about z into a query ¢’ about y. Such a mechanism is efficient if both M
and the query conversion algorithm are efficient.

We say M is a-accurate for a set of counting queries Q if for every ¢ € Q,

|¢'(M(x)) — q(z)] < an.

We now give an example of a collection @) of counting queries for which no sanitized database can
provide answers that are private and accurate at the same time. This example is not particularly
surprising as the number of counting queries in @ is larger than the number |D|™ of possible
databases, so it is quite plausible that the answers to all queries in) completely specify the
database and destroy differential privacy. Nevertheless, the reasoning will presumably turn out to
be helpful in ruling out more realistic scenarios, where the size of @) is much smaller.

A hard example The domain for the rows of our “hard” database is the set [n] x {0,1}. To
each strings ¢ = (c1,...,¢,) € {0,1}" we associate a counting query ¢.(z) that counts the number
of rows of the form (i, ¢;) for some i € [n].

Now consider a database x whose i-th row has the form (i, z;), where x1,...,z, are some strings

in {0,1}*. Then gy, ., (7) = n, while ¢z, _z,(z) = 0 (where b is the negation of bit b.)

If the sanitized data release mechanism M is a-accurate for any a < 1/2, then it must be true that
Gy oz (@) > /2 and &5 5 (x) <n/2.

for every x of the given form. Now consider what happens when z1,...,z, are independent uni-
formly random bits. We can rewrite the above two constraints as

Pr[qi’len(M(x)) >n/2] =1 and Pr[q’fh_.ﬁn(M(:E)) >n/2] =0.
By a hybrid argument, there must then exist an index ¢ such that

Pi| (M(x)) > n/2 — Prld,, (M(x)) > n/2) > 1/n.

/
qﬂ?l7--~755i7175’3i7§i+1»~~-75n Ti—1,%5,Lit15--,%n

If T, is the set of all outputs y of M such that

Pr[qgnl,..‘,xi_l,xi,ii+1,...,§n (y) > n/2] - Pr[QZ/Bl,...,wi_l,fi,fi_‘_l,“.,fn (y) > n/Q] Z]‘/n
then M (z) is in T, with probability 1 over the randomness of the mechanism M.

Now let 2’ be the database obtained by replacing the i-th row of z by (¢, 2}), where 2} is a uniformly
random bit independent of x. Then the random variables

qlxl,...,;B,-_l,aci,ii+1,...,fn (M(':LJ)) a‘nd qé;l7"'7$7;—17§7:7E’L'+17"'1En (M(:E,))

are identically distributed, so

Pr| M(2") >n/2] — Pr[q;hm’ M(2") >n/2] =0

: ((
qﬂﬁl,~~~7$i—1,$i,fi+1w~,fn Ti—1,L5,Li41,--,%n

and so the probability that M(z') is in T} is zero. Therefore the differential privacy condition
Pr[M(z) € T,] < e Pr[M(2') € T,] + 6

cannot hold for any nontrivial setting of € and J.

References

These notes are based on Chapter 9 of the survey The Algorithmic Foundations of Differential
Privacy by Cynthia Dwork and Aaron Roth.

The background on message authentication codes is from my lecture notes on cryptography. For
more, see the book Introduction to Modern Cryptography by Jonathan Katz and Yehuda Lindell.

http://www.cse.cuhk.edu.hk/~andrejb/csc5440/

	Hardness of generating synthetic databases
	Sanitized data

