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We now analyze the privacy and accuracy of the interactive mechanism from last lecture. The
privacy analysis of this mechanism is fairly straightforward.

1 Analysis of the interactive mechanism

There are two sources of public information release in the interactive update mechanism: The
noisy estimate checker N(x) and the approximation mechanism Apxk(x). In Theorem 5 in the last
lecture we showed that Apxk(x) is O(k/(εn))-differentially private.

The output of the estimate checker is almost subsumed in the approximation mechanism’s answer:
Apxk(x) outputs ⊥ when and only when N(x) outputs correct. When N(x) outputs too high or
too low, Apxk(x) outputs an actual number a′ that approximates q(x). Owing to random noise,
the sign of a′− q(y) may not always be consistent with the answer of N(x). However, I don’t think
it should be to hard to show that the additional “bit of information” provided by N(x) does not
affect privacy along the same lines as the proof of Lemma 1 from last lecture.

So we can conclude that interactive mechanism is O(k/(εn)) differentially private. Which value of
k should we choose?

Remember that k is the number of times that N(x) provides an estimate that is incorrect. In
the analysis of the multiplicative update algorithm (Theorem 3 from last lecture) we showed that
if E(x) was used as an estimate checker instead of N(x) then the number of incorrect answers
of E(x) (when queried by MW ) can be at most ln|D|/α2. So we set k = ln|D|/α2 to obtain a
privacy guarantee of ln|D|/(α2εn); but now we need to argue that replacing the checker E(x) by
N(x) does not increase the number of incorrect answers. The following claim tells us that with
high probability, N(x) behaves like E(x).

Claim 1. For every x and every input (q, a), the probabilities of the following events are bounded
by O(exp(−α/ε)):

• N(x) outputs too high or too low, assuming that E(x) outputs correct;

• N(x) outputs too high, assuming that E(x) outputs too low;

• N(x) outputs too low, assuming that E(x) outputs too high.

Proof. We work out of the four cases; the proofs to the others are similar. Assume E(x) outputs
correct. Then a ≤ q(x) + 2α; for N(x) outputs too high only when a > q(x) + N/n+ 3α, so it
must be that N ≥ αn. By the tail bound for the Laplace distribution you showed in the homework,
the probability of this is at most O(exp(−α/ε)).
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If we take a union bound over all the |Q| queries that the interactive mechanism issues over its
lifetime, we conclude that the probability that the event in Claim 1 happens for at least one
query is at most O(|Q| exp(−α/ε)). If we set ε = α/2 log|Q|, we conclude that with probability
at least 1 − 1/|Q|, N(x) does not answer incorrect more than k times and the mechanism is
ln|D|/(α2εn) = O(log|D| log|Q|/(α3n))-differentially private.

What about the accuracy of this mechanism? All of the its answers will be within an additive
term of 4α from the true answer as long as the noise generated by the approximation mechanism
never exceeds α. For a single query, the tail bound for the Laplace distribution tells us that this
bad event happens with probability at most O(exp(−α/ε)) = O(1/|Q|2). Taking a union bound,
we conclude that the probability that an answer deviating from the true value by more than 4α is
produced over the lifetime of the mechanism is at most O(1/|Q|).

We just sketched a proof of the following theorem:

Theorem 2. For every parameter α > 0, domain D, and query sequence Q, the interactive mecha-
nism for averaging queries is O(log|D| log|Q|/(α3n))-private and the answers to all queries is within
an additive error of 4α from the true value with probability 1−O(1/|Q|).

If we set the accuracy α to be O((log|D| log|Q|)/n)1/3, this mechanism gives us constant differential
privacy. In contrast, the Blum-Ligett-Roth mechanism has O(1/αn)-differential privacy (assuming
a small constant probability of the mechanism failing to be accurate).

The accuracy of the mechanism can be improved if we relax our notion of differential privacy.

2 Almost always differential privacy and the product mechanism

The best we could say about the k-fold product of an ε-differentially private mechanism, is that
it is kε-differentially private. Let us show that this bound is, in general, tight by looking at the
Laplace mechanism with parameter ε for a counting query q. Let us assume that q(x) = 0 and
q(x′) = 1. The privacy of this mechanism is the maximum value of the log-ratio

ln
Pr[q(x) +N = y]

Pr[q(x′) +N = y]
= ln

Pr[N = y]

Pr[N = y − 1]

over all pairs of adjacent databases x, x′ and all possible outcomes y. If we take the outcome y = 1,
this ratio equals exactly ε, showing our analysis of the Laplace mechanism was tight.

In general, the privacy of the k-fold product of this mechanism (for the same query) is the maximum
of the ratio

ln
Pr[q(x) +N1 = y1] · · ·Pr[q(x) +Nk = yk]

Pr[q(x′) +N1 = y1] · · ·Pr[q(x) +Nk = yk]
= ln

Pr[N1 = y1]

Pr[N1 = y1 − 1]
+ · · ·+ Pr[Nk = yk]

Pr[Nk = yk − 1]

over all possible sequences of answers (y1, . . . , yn). If we take the sequence (y1, . . . , yn) = (1, . . . , 1)
we obtain a privacy loss of exactly kε, showing that the analysis for the k-fold product of the
Laplace mechanism is also tight.



3

However, this “lower bound” can be criticized on the grounds that the answer sequence (1, . . . , 1) is
far from typical. In fact, for this sequence of queries, we would expect the output yi of the product
mechanism to be positive about half the time and negative about half the time (and zero about
an ε fraction of the time). The positive yi’s contribute ε to the summation while the negative
ones contribute −ε, so they cancel out each other! So in a “typical case”, the privacy loss of the
product mechanism should be proportional to the discrepancy between the number of positive and
the number of negative answers. This is typically on the order of

√
k (the standard deviation of

the unbiased binomial, which models the choice of sign) and not k.

To take advantage of this insight we need to change the definition of differential privacy in a way
that distinguishes between “typical” and “atypical” outputs of the mechanism. When the output
(sequence) is atypical, there will be no privacy guarantee. Informally, we achieve this by assigning
a small failure probability δ to the event that the output M(x) is atypical.

Definition 3. A mechanism M is (ε, δ)-differentially private if for every set S of outcomes of the
mechanism and all pairs of adjacent databases x, x′:

Pr[M(x) ∈ S] ≤ eε Pr[M(x′) ∈ S] + δ.

We now give an improved analysis for the privacy of the product mechanism under this definition:

Theorem 4. if M is ε-differentially private and ε ≤ 1.79, then Mk is (3kε2, e−kε/2)-differentially
private.

When ε is larger than 1/k (but still smaller than 1/
√
k), this theorem tells us that the k-fold

product mechanism is still almost always o(1/k)-private.

We will prove this theorem in the non-interactive setting; it is not difficult to extend it to the
interactive case using some tools from probability.

Fix a pair of adjacent databases x and x′ and let p(y) and q(y) denote the probabilities of the
events M(x) = y and M(x′) = y, respectively. Consider the probability space of outcomes of M(x)
and let L be a random variable that takes value ln(p(y)/q(y)) when outcome y happens, i.e. with
probability p(y). Then L always takes values in the range [−ε, ε] and

E[L] =
∑
y

p(y) ln(p(y)/q(y)) = Div(p‖q).

It turns out that this divergence is significantly smaller than ε.

Lemma 5. If ln(p(y)/q(y)) ∈ [−ε, ε] for all y then Div(p‖q) + Div(q‖p) ≤ ε(eε − 1).
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Proof. We write

Div(p‖q) + Div(q‖p) =
∑
y

(p(y)− q(y)) ln
p(y)

q(y)

≤ ε
∑
y

|p(y)− q(y)|

≤ ε
∑
y

(eε − 1) min{p(y), q(y)}

≤ ε(eε − 1).

In the k-fold product mechanism Mk(x), the privacy loss (as a function of the outcome) is given
by the random variable L1 + · · ·+ Ln, where Li is the privacy loss of the i-th instantiation of the
mechanism M(x). The random variables Li are independent copies that take values in the range
[−ε, ε] and have mean value at most ε(eε− 1). After appropriate scaling and shifting we can apply
the Chernoff bound to obtain:

Pr
[
|L1 + · · ·+ Ln − kε(eε − 1) > kε2|

]
≤ e−kε/2

and conclude that with probability 1 − e−kε2/2, the privacy loss of the product mechanism is at
most kε(eε − 1) + kε2 ≤ 3kε2.

Since the approximation mechanism is a product mechanism, we can apply Theorem 4 to obtain an
improved analysis of it. This improvement carries over to the interactive data release mechanism.
After going over the same steps in the analysis, one concludes that the interactive data release
mechanism is (ε, e−t)-differentially private and accurate within α with probability 1− 1/|Q| for

ε = O

(
(log|Q|)2(log|D|)

α4n2

)
and t = Ω

(
(log|Q|)(log|D|)

α3n

)
.

For example, when α is a small constant and n is slightly larger than (log|Q|)
√

log|D|, this bound
tells us that (for a suitable choice of α) the resulting mechanism is almost always differentially
private, while Theorem 2 gives no guarantee.
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