
CSCI 5520: Foundations of Data Privacy Lecture 3
The Chinese University of Hong Kong, Spring 2015 20 January 2015

Last time we showed that given a database x with sufficiently many rows, and a large collection
Q of counting queries, there exists a distribution Y over synthetic databases such that on the one
hand, a database y sampled from Y is differentially private; and on the other hand, all the counting
queries Q can be accurately approximated if y was used as a reference database instead of x.

While we proved the existence of the distribution Y , we did not say how to go about sampling
a synthetic database from Y efficiently. It turns out that in general, this task is computationally
infeasible. (We may come back to this point in the future.) For this reason, the mechanism of
Blum, Ligett, and Roth may be of limited practical significance.

In this lecture we will describe a different mechanism that provides similar guarantees. Unlike
other mechanisms we have seen so far, this one is interactive: The state of the mechanism, and the
answer to a query, will in general depend on the previous queries.

An interactive data release protocol is an interactive protocol that involves two parties: A mechanism
and an inquirer. We model both of these parties as randomized algorithms.1 The mechanism takes
as private input a database x ∈ Dn. In each round i of interaction, the inquirer generates and sends
a query qi and the mechanism outputs an answer ai, possibly followed by the special symbol halt
that determines the end of the interaction. In this model both the inquirer and the mechanism
may be adaptive; that is, the i-th query qi may depend on the answers to the previous queries
a1, . . . , ai−1, and the i-th answer ai may depend on q1, . . . , qi−1.

The view of the inquirer in a given interaction consists of its private randomness and the sequence
of answers that it receives. We say a mechanism M is ε-differentially private if for every inquirer
I, every pair of adjacent databases x, x′ ∈ Dn, and every possible view v, the probability that the
view of I in its interaction with M(x) equals v is at most eε times the probability that the view of
I in its interaction with M(x′) equals v.

1 Threshold queries

One practical mechanism that mitigates certain privacy violations is to refuse providing answers to
counting queries if the answer is too small. To see why this might be desirable, suppose you want
to make a case that Andrej is an unfair teacher, so you query the CSE administrator how many of
the (say) 30 students in CSCI 5520 failed the class. Should she give you this information?

If the number of students that failed CSCI 5520 is indeed large, then there is no real shame in
having failed as the fault lies in the teacher. However, the situation is very different if only one or
two students failed. The mechanism in question would reveal the correct answer to the query as
long as the answer lies above a certain publicly known threshold t, and output the special symbol
⊥ otherwise. This mechanism is not randomized, so it is not differentially private.

1If we do not concern ourselves with the inquirer’s efficiency — as we won’t in this lecture — we can think, without
loss of generality, of the inquirer as deterministic.

1

2

We now describe an interactive mechanism that is a parametrized by a threshold t and a quota k.
The mechanism takes a sequence of counting queries, approximately answers those queries whose
answers are approximately above the threshold, and halts after providing k numerical answers. The
salient feature of this mechanism is that its privacy deteriorates with the number of above-threshold
answers k, not the total number of queries.

Let us first consider the case k = 1. The mechanism Thresholdt first generates a private threshold
T by adding noise to the public threshold t. Upon receiving a query q, it answers this query
independently by the Laplace mechanism as long as the answer is at least as large as T . Here is a
detailed description:

Mechanism Thrt(x):
Let T = t+N , where N is a Lap(1/ε) random variable.
Upon receiving the i-th counting query qi:

Sample an independent Lap(1/ε) random variable Ni.
If qi(x) +Ni < T , output ⊥.
Otherwise output ai = qi(x) +N ′i , where N ′i is a Lap(1/ε) random variable, and halt.

Lemma 1. Mechanism Thrt is 4ε-differentially private.

Proof. Let x and x′ be two adjacent databases. Without loss of generality, we will assume that the
sequence of queries issued by the inquirer is infinite. To show differential privacy, we need to argue
that on inputs x and x′, the mechanism halts at the same step and produces the same answer with
similar probability, or more precisely

Pr[Thrt,1(x) halts at time h with answer ah] ≤ eε Pr[Thrt,1(x
′) halts at time h with answer ah].

for every possible value of i and ai. The event on the left happens if (1) T > maxi<h{qi(x) +Ni};
(2) qh(x) +Nh ≥ T and (3) ah = qh(x) +N ′h. Then

Pr[Thrt,1(x) halts at time h with answer ah]

= Pr[T > maxi<h{qi(x) +Ni} and qh(x) +Nh ≥ T and ah = qh(x) +N ′h]

= Pr[T > maxi<h{qi(x) +Ni} and Nh ≥ T − qh(x) and N ′h = ah − qh(x)]

= EN−h

[
Pr[T > maxi<h{qi(x) +Ni} and Nh ≥ T − qh(x) and N ′h = ah − qh(x)]

]
= EN−h

[
Pr[T > maxi<h{qi(x) +Ni} and Nh ≥ T − qh(x)] · Pr[N ′h = ah − qh(x)]

]
where the last line follows from the fact that for every fixing of N−h, N ′h is independent of Nh and
T . We now fix N−h and analyze the change in the two probabilities when x is replaced by x′. We
will show that they change by at most a factor of e3ε and eε, respectively, so the total change in
probability is bounded by a factor of e4ε as desired.

Since qh is a counting query, and therefore 1-Lipschitz, we can say

Pr[N ′h = ah − qh(x)] ≤ eε Pr[N ′h = ah − qh(x′)].

3

The value m(x) = maxi<h{qi(x) +Ni} is also 1-Lipschitz and so

Pr[T > m(x) and Nh ≥ T − qh(x)] =
∑

t : t>m(x)

Pr[Nh ≥ t− qh(x)] Pr[T = t]

≤ eε
∑

t : t>m(x)

Pr[Nh ≥ t− qh(x′)] Pr[T = t]

≤ e2ε
∑

t : t>m(x)

Pr[Nh ≥ t− qh(x′)] Pr[T = t+ 1]

≤ e3ε
∑

t : t>m(x)

Pr[Nh ≥ (t+ 1)− qh(x′)] Pr[T = t+ 1]

= e3ε
∑

t′ : t′>m(x)+1

Pr[Nh ≥ t′ − qh(x′)] Pr[T = t′]

≤ e3ε
∑

t′ : t′>m(x′)

Pr[Nh ≥ t′ − qh(x′)] Pr[T = t′]

= e3ε Pr[T > m(x′) and Nh ≥ T − qh(x′)].

Here, the first and fourth inequality use the fact that qh and m are 1-Lipschitz, respectively, and
the third inequality follows from Lemma 4 from Lecture 2.

For larger values of k, we apply the following variant of the product construction for online mech-
anism M :

Mechanism Mk(x):
While k > 0,

Emulate a new independent copy of M(x) until it halts.
Decrease k by 1.

halt.

You will prove the following theorem in the homework.

Theorem 2. If M is ε-differentially private, then Mk is kε-differentially private.

From Lemma 1 and Theorem 2 it follows that the mechanism Thrkt is 4kε-differentially private.

2 Interactive control of privacy loss

We will now begin our description of the interactive mechanism of Hardt and Rothblum for a
sequence of counting queries. For the purposes of describing and analyzing this mechanism, it will
be easier to work in a slightly different formal setting. To each database x ∈ Dn we can associate
a probability distribution over D obtained by sampling every row of x with probability 1/n, which
(abusing notation) we also denote by x. For example the database

4

name favorite fruit

Alice orange
Bob banana
Alice orange
Charlie banana
Erica apple

yields the probability distribution that assigns the entry (Alice, orange) probability 2/5, and the
entries (Bob, banana), (Charlie, banana), and (Erica, apple) probability 1/5 each. The probabil-
ity distribution x contains enough information to answer all averaging queries The answer to an
averaging query qP corresponding to predicate P (e.g. “favorite fruit is a banana”) equals exactly

qP (x) = Prr∼x[P (r)] =
∑

r : P (r)=1

x(r)

where we write x(r) for the probability of outcome r in distribution x.

The Hardt-Rothblum mechanism answers queries using a proxy public distribution y in lieu of
the true distribution x. The distribution y will change over the course of the interaction. To
understand the privacy of this mechanism, it will be useful to think of the distribution y as being
jointly maintained by the mechanism and the inquirer. In an actual implementation, the work of
maintaining y can be fully emulated by the mechanism.

Initially, y is set to the uniform distribution over the whole domain D. Upon receiving a counting
query q, the mechanism does roughly the following:

1. If the values q(x) and q(y) are “close”,2 the inquirer is told to calculate q(y) by himself as an
approximation of q(x). The protocol does this formally by sending the message ⊥.

2. If the values q(x) and q(y) are “far”, the mechanism outputs the answer q(x) plus some noise
and tells the inquirer to perform a public, joint update to the distribution y.

The view of the inquirer consists of a sequence of symbols: The symbol ⊥ in case 1 and a numerical
approximation to its query in case 2, when an update is also performed. In analogy with the
threshold mechanism we may expect that its privacy deterioration is governed not by the total
number of queries, but by the number of updates. Thus the update is not relevant for the current
query q evaluated on the current distribution Y , but the accuracy of typical future queries and
future distributions.

This sounds incredulous: The mechanism is not clairvoyant, so how can it optimize for future
queries? There is a general technique for this exact purpose called the method of multiplicative
weights. Let us first explain how this technique works in a simpler model that does not incorporate
privacy.

2I put close in quotes because in order to preserve privacy the actual test for closeness is randomized, so it may
sometimes output the wrong answer.

5

3 Multiplicative weights update

Suppose you have a predictor that receives a sequence of averaging queries (possibly adaptively
chosen) and wants to approximate their values on a secret probability distribution x over D. Upon
receiving query qP , the predictor produces a guess a of the value qP (x) and obtains one of the
following three answers from an estimate checker E(x) (with private access to x) which given an
averaging query q and an estimate a, outputs

E(x) on input (q, a) =


correct, if |q(x)− a| < 2α,

too low, if a ≤ q(x)− 2α,

too high, if a ≥ q(x) + 2α.

The objective of the predictor is to maximize the number of correct guesses.

In the multiplicative weights algorithm, the predictor maintains an empirical distribution y that
approximates x in a certain sense. Initially, he sets y to the uniform distribution over D. His guess
to a given query qP is the value qP (y). If his guess is correct, he does not change y. If his guess is
too low, he reasons that his distribution assigns too little probability to the elements r ∈ D that
satisfy P , so he increases all these probabilities by a factor proportional eα. If his guess is too low,
he applies an analogous update to those r that do not satisfy P .

Algorithm MWC , where C is an estimate checker:
Set y to be the uniform distribution over D.
Upon receiving counting query qP ,

Set a = qP (y).
Query C on input (qP , a).

If too low, mutliply y(r) by eα for every r that satisfies P .
If too high, mutliply y(r) by eα for every r that does not satisfy P .
Normalize y so that

∑
r∈D y(r) = 1.

Theorem 3. Assume α ≤ 1.79. For every distribution x, MWE(x) fails to answer correct at
most ln|D|/α2 times.

To prove this theorem we make use of a notion from information theory. Given two distributions
x and y over a finite domain D, the information divergence Div(x‖y) is the quantity

Div(x‖y) = Er∼x[ln(x(r)/y(r))].

(If y(r) = 0 for some r in the support of x, then this quantity is undefined; this won’t happen in
our application.) We need the following two facts about information divergence:

Fact 1. For every pair of distributions x and y, Div(x, y) ≥ 0.

Fact 2. If y is the uniform distribution, then for every x, Div(x, y) ≤ ln|D|.

6

Proof of Theorem 3. We will show that every time y is updated, Div(x, y) decreases by at least
α2. Since it starts at ln|D| or below and it cannot dip below zero, there can be at most ln|D|/α2

updates.

An update to the distribution y happens whenever |qP (x) − qP (y)| ≥ 2α. Let y′ denote the
distribution after the update. We will show that Div(x‖y′) ≤ Div(x‖y)−α2. We only work out the
case when Ex outputs too low, i.e. qP (x)− qP (y) ≥ 2α. The other case is completely analogous.
All expectations are taken with respect to r sampled from x:

Div(x‖y)−Div(x‖y′) = E

[
ln
x(r)

y(r)

]
− E

[
ln
x(r)

y′(r)

]
= E

[
ln
y′(r)

y(r)

]
= E

[
ln
y(r)eαP (r)/Y ′

y(r)

]
= E

[
ln
eαP (r)

Y ′

]
= αEr∼x[P (r)]− lnY ′

where P (r) takes value 1 if r satisfies P and 0 if not, and Y ′ =
∑

r∈D y(r)eαP (r) is the normalization
factor for the distribution y′. We can rewrite the term lnY ′ as

lnY ′ = ln
∑
r∈D

y(r)eαP (r) = ln
∑
r∈D

y(r)
(
1 + (eα − 1)P (r)

)
= ln

(
1 + (eα − 1) Er∼y[P (r)]

)
.

By the lemma below, the last expression is at most αEr∼y[P (r)]− α2. Therefore

Div(x‖y)−Div(x‖y′) ≥ α(Er∼x[P (r)]− Er∼y[P (r)])− α2 ≥ α · 2α− α2 = α2.

Lemma 4. For every 0 ≤ α ≤ 1.79 and every 0 ≤ t ≤ 1, ln(1 + (eα − 1)t) ≤ αt+ α2.

Proof Sketch. We can write

ln(1 + (eα − 1)t) ≤ (eα − 1)t ≤ (α+ α2)t ≤ αt+ α2.

the first inequality holds because ln(1 + x) ≤ x for every x ≥ 0, and the second one is valid for
every α that falls between the two roots of the equation ex = 1 + x + x2, which are x = 0 and
x = 1.79328 . . . Both of these facts can be proven using basic calculus.

4 The interactive mechanism for counting queries

We now have all the elements to describe the mechanism of Hardt and Rothblum. The private input
to the mechanism is a database x with n rows, which we also view as a probability distribution
over D.

The first component is a noisy estimate checker N(x) with private access to the database x. This
estimator takes as input an averaging query q and an estimate a, samples a random variable N
from the distribution Lap(εn) and outputs the value

correct, if |q(x) +N/n− a| < 3α,

too low, if a ≤ q(x) +N/n− 3α,

too high, if a ≥ q(x) +N/n+ 3α.

7

The second component is an approximation mechanism for averaging queries. Given an averaging
query q and an estimate a for q(x), this mechanism outputs ⊥ if the estimate is accurate, and an
approximation of the estimate otherwise. It is very similar to the threshold mechanism.

Mechanism ApxC(x) where C is an estimate checker:
Let T = t+N , where N is a Lap(εn) random variable.
Upon receiving the i-th query (qi, ai):

If C(qi, ai) outputs correct, output ⊥.
Otherwise, output qi(x) +N ′i/n, where N ′i is a Lap(εn) random variable and halt.

In your homework you will prove that the Apx is O(1/(εn)) differentially private. Using Theorem 2,
we have the following privacy guarantee for the product mechanism Apxk.

Theorem 5. Mechanism Apxk(x) with estimate checker N(x) is O(k/(εn))-differentially private.

The final component is the multiplicative update algorithm MW , but with access to the noisy
estimate checker N(x) instead of E(x).

Here is how these components are interconnected. We set the parameter k to ln|D|/ε2. The
estimate checker N(x) and the approximation mechanism Apxk(x) are private to the mechanism.
The algorithm MW is shared publicly between the mechanism and the inquirer.

When the inquirer issues an averaging query q, this query is first forwarded to MW , which produces
a guess a for the value q(x). MW then queries the noisy checker N(x) if the guess is correct. The
query, answer and the output of the noisy checker are also forwarded to Apxk(x). If this algorithm
outputs ⊥, then the answer to the query q(x) is a. Otherwise, the output of Apxk(x) is taken as
the answer.

Here is a somewhat complicated diagram. The shaded boxes and pathways are the private compo-
nents of the mechanism. All other items are public.

N MW

Apxk a′
?
= ⊥

x q

a

a′

q

a

chk

a′

yes

no

In the next lecture we will analyze the privacy and utility of this mechanism.

8

References

These notes are based on Chapters 3 and 4 of the survey The Algorithmic Foundations of Differential
Privacy by Cynthia Dwork and Aaron Roth. My presentation of the interactive mechanism for
counting queries also borrows from these lecture notes of Jonathan Ullman.

For formal definitions of interactive computation, see for example the book Computational Com-
plexity by Oded Goldreich. For more on information divergence and proofs of its basic properties,
see the book Information Theory by Cover and Thomas.

http://www.cs.bu.edu/~reyzin/teaching/s11cs937/notes-jonathan-1.pdf

	Threshold queries
	Interactive control of privacy loss
	Multiplicative weights update
	The interactive mechanism for counting queries

