
ENGG 2440A: Discrete Mathematics for Engineers Lecture 9
The Chinese University of Hong Kong, Fall 2017 13 and 15 November 2017

Counting is the the task of finding the number of elements (also called the cardinality) of a given
set. When the set is small, we can count its elements “by hand”. When sets are larger we need a
more systematic way to count.

Say you have a six-sided die and a two-sided coin — it comes out heads (H) or tails (T). What is
the number of possible outcomes when both the die and the coin are tossed? There are 6 possible
outcomes for the die and 2 for the coin, so the total number of outcomes is 6× 2 = 12.

It will be useful to describe this kind of problem using the language of sets. The set S of possible
outcomes of the die is S = {1, 2, 3, 4, 5, 6}, so |S| = 6. The set T of possible outcomes of the coin
is T = {H, T}, so |T | = 2. The set of possible outcomes of the die and the coin is the product set
S × T :

S × T = {(1, H), (1, T), (2, H), (2, T), . . . , (6, H), (6, T)}.
The number of elements of S × T is |S| · |T | = 6 · 2 = 12.

In general, given any two finite sets S and T the product set S × T consists of all ordered pairs of
elements (s, t) such that s is in S and t is in T :

S × T = {(s, t) : s ∈ S and t ∈ T}.

The number of elements of S×T is the product of the number of elements of S and the number of
elements of T , i.e., |S × T | = |S| · |T |.

Let’s do another example: Let R and B be the sets of outcomes of a toss of a red and a blue
six-sided die, respectively. Then R = {1, 2, 3, 4, 5, 6} and B = {1, 2, 3, 4, 5, 6}. When both dies are
tossed, the set of outcomes is

R×B = {(1, 1), (1, 2), . . . , (6, 6)}

and the number of outcomes is |R×B| = |R| · |B| = 36.

In cases like this when S = T we can denote the set S × T by S2. (This is the square of a set, not
the square of a number). The set S2 has |S|2 elements.

We can also take the product of more than two sets. The set S1 × · · · × Sn (where S1, . . . , Sn are
finite sets) consists of all sequences1 (s1, . . . , sn) where si is in Si for all i between 1 and n:

S1 × · · · × Sn = {(s1, . . . , sn) : s1 ∈ S1 and . . . and sn ∈ Sn}.

The set S1 × · · · × Sn has |S1| · · · |Sn| elements.

When S1 = · · · = Sn = S, we write Sn for S1 × · · · × Sn. This set has |S|n elements.

For example, the set of outcomes when 9 different six-sided dies are tossed is {1, 2, 3, 4, 5, 6}9. This
set has 69 elements, so there are 69 possible outcomes.

1 Functions, bijections, and counting

One technique for counting the number of elements of a set S is to come up with a “nice” corre-
spondence between a set S and another set T whose cardinality we already know.

1The order of elements in a sequence matters and there can be repetitions: For example, (1, 1, 2), (2, 1, 1), and
(1, 2, 2) are all different sequences.

1

2

Let’s count the number of subsets of the set Sn = {1, 2, 3, . . . , n}.

For example, when n = 1, S1 = {1} are there are two subsets: ∅ and {1}. When n = 2, S2 = {1, 2}
and there are four subsets: ∅, {1}, {2}, and {1, 2}.

I suspect that most of you can come up with a proof by induction that shows the set Sn has 2n

elements. Instead of using induction, let me show you another way.

The set {0, 1}n consists of all possible n-bit sequences. This is a product set, so it has 2n elements.
We will show how to represent subsets of Sn by elements of {0, 1}n in a unique way: Each subset
of Sn is represented by an n bit sequence, and each n bit sequence represents some subset. So their
number must be the same.

Here is how the representation works: The subset {s1, . . . , sk} of Sn is represented by the bit
sequence that has ones in positions s1, . . . , sk and zeros in all the other positions. For example, if
n = 7, the subset {3, 4, 6} of Sn is represented by the bit sequence (0, 0, 1, 1, 0, 1, 0) in {0, 1}n.

Clearly every subset of Sn is represented by some n bit sequence. It is also true that every n bit
sequence represents a subset: The sequence (b1, . . . , bn) represents the set of all i between 1 and
n such that bi = 1. For example, the sequence (0, 0, 1, 1, 0, 1, 1) represents the set {3, 4, 6, 7}. We
showed a “one-to-one” correspondence between the subsets of Sn and the elements of {0, 1}n (n-bit
sequences), so their number must be the same.

As this is our first argument of this type, let us explicitly write out the correspondence between
the elements of S2 and the sequences in {0, 1}2:

∅↔ (0, 0) {1} ↔ (1, 0) {2} ↔ (0, 1) {1, 2} ↔ (1, 1).

It is useful to have a language to describe these correspondences between sets. For this we need to
talk about functions.

Functions A function f from a set X to a set Y associates to every element x in X an element
f(x) in Y . For example, f(0) = 0, f(1) = 1, f(2) = 0, f(3) = 3, f(4) = 0 is a function from set
X = {0, 1, 2, 3, 4} to the set Y = {0, 1, 2, 3}.

One way to specify a function is to list the values on all elements x in X:

x: 0 1 2 3 4

f(x): 0 1 0 3 0

or by means of a bipartite graph Gf whose vertices2 are partitioned into X and Y and whose edges
are those {x, y} such that f(x) = y:

0

1

2

3

4

X

0

1

2

3

Y

A more convenient way is to describe the function using logic. This can be done in many ways, for

2We abuse notation here and use the same label for vertices in X and vertices in Y .

3

example by giving a formula for calculating f :

f(x) =

{
x, if x is odd,

0, if x is even
x ∈ {0, 1, 2, 3, 4}

an algorithm for calculating f :

Function f(x), where x ∈ {0, 1, 2, 3, 4}:
Let b = x mod 2.
Output b · x.

or, say, by giving a recurrence:

f(x) = (x mod 2) · (f(x− 2) + 2) for x ≥ 2, f(0) = 0, f(1) = 1.

No matter which way you describe a function, you must make sure that f(x) is well-defined for
every x in X: This value is specified and it is specified uniquely. For example, here is a bad way to
define a function:

f(x)2 = x.

this specification is consistent with both f(1) = 1 and f(1) = −1, so it does not uniquely describe
the value f(1).

We write f : X → Y for “a function from set X to set Y ”.

A function f : X → Y is a injective if distinct elements in x are mapped to distinct elements in Y .
More precisely, f is injective if for every pair of elements x and x′ in X such that x 6= x′, we have
f(x) 6= f(x′). The above function is not injective because 0 6= 2 but f(0) = f(2).

A function f : X → Y is surjective if every element y in Y is mapped to by some x in X. More
precisely, f is surjective if for every y in Y there exists x in X such that f(x) = y. The above
function is not surjective because 2 ∈ Y but nothing maps to it.

Let’s assume X and Y are finite sets. When f is injective, the edges of the graph Gf are a matching
and they match all the vertices of X, so Y must be at least as large as X, that is |Y | ≥ |X|. When f
is surjective, then every element of Y can be matched to some element of X (by taking an arbitrary
edge incident to it), so Y can be at most as large as X, that is |Y | ≤ |X|.

We say f is bijective if it is injective and surjective. When X,Y are finite and f is bijective, the
edges of Gf form a perfect matching between X and Y , so |X| = |Y |.

This is why bijective functions are useful for counting: If we know |X| and can come up with a
bijective f : X → Y , then we immediately get that |Y | = |X|. The tricky part is coming up with
f and showing that it is bijective — namely, both injective and surjective.

Let’s rework our previous example in this language. Let X = {0, 1}n and Y be the set of all subsets
of {1, . . . , n}. Let f : X → Y be the function that on input (b1, . . . , bn) outputs the set of indices i
such that bi = 1, namely

f((b1, . . . , bn)) = {i : bi = 1}.

Theorem 1. f is a bijective function.

Proof. First we prove f is injective: Different bit sequences map to different sets. Suppose two bit
sequences x and x′ are different. Then they must differ in one of their positions, say position i.
Then the element i is in one of the sets f(x), f(x′) but not in the other, so f(x) 6= f(x′).

4

Now we show f is surjective. Given any subset S of Y , we’ll show there exists a bit sequence x
such that f(x) = S. Let x be the n-bit sequence that has a 1 in position i if i is in S and 0 if i is
not in S. Then f(x) = S.

Corollary 2. The number of subsets of {1, . . . , n} is 2n.

Proof. By Theorem 1, there is a bijection from elements of {0, 1}n to subsets of {1, . . . , n}. There-
fore the number of subsets of {1, . . . , n} equals the number of elements of {0, 1}n, which is 2n.

2 The sum rule

The sum rule says that if A1, . . . , An are disjoint sets then

|A1 ∪ · · · ∪An| = |A1|+ · · ·+ |An|.

This rule is useful when the set whose number of elements we want to count can be written as a
disjoint union of simpler sets.

For example, if you have 10 red balls, 7 blue balls, and 4 red balls, then the total number of balls
you have is 10 + 7 + 4 = 21. You could have done this in first grade. So why do we need sets and
unions? Sets help us break complicated counting problems into simpler ones.

Suppose you need to choose a password between 6 and 8 symbols out of which the first symbol
must be a letter (lowercase or uppercase) and the remaining ones must be letters or digits. How
many possible passwords are there?

Let P be the set of possible passwords, L be the set of letters, and S be the set of symbols (letters
or digits). The English alphabet has 26 letters, each of which can be lowercase or uppercase, so
|L| = 52. The set S contains all the letters plus the ten digits, so |S| = 62.

To count the number of passwords |P |, it makes sense to “decompose” the set P in terms of the
simpler sets L and S. Here is how we do it. First, P is a disjoint union of six, seven, and eight
letter passwords — let’s denote these sets by P6, P7, and P8. Therefore

|P | = |P6|+ |P7|+ |P8|.

The set P6 is a product set: It consists of all sequences of a letter followed by five symbols, so
P6 = L× S × S × S × S × S = L× S5. Similarly, P7 = L× S6 and P8 = L× S7. Therefore

|P | = |L× S5|+ |L× S6|+ |L× S7|
= |L| · |S|5 + |L| · |S|6 + |L| · |S|7

= 52 · 625 + 52 · 626 + 52 · 627

≈ 1.8 · 1014.

The sum rule can also be used backwards as in the following example. You toss a blue six-sided
die and a red six-sided die. How many outcomes are there in which the face values of the two dice
come out different? Here, the set A of all possible outcomes for the pair of dice can be written as
a disjoint union of the set D of outcomes in which the two face values are different and the set S
in which the two are the same. By the sum rule, |A| = |D| + |S|. Since |A| = 36 and |S| = 6, we
get that |D| = 36− 6 = 30 possible outcomes in which the two face values are different.

5

3 The general product rule and permutations

Let’s see a different solution to the last example. The set of possible outcomes in which the two face
values are different is not a product set, but we can still reason like this: There are 6 possibilities
for the face value of the first die. For each one of these six possibilities, we are interested in the
outcomes in which the second die has a different face value. No matter what the toss of the first
die came out to be, there are always five possible choices for the toss of the second die that make
their face values different. Therefore the total number of outcomes is 6× 5 = 30.

This is an instance of the general product rule: Given a set S of sequences of length k, where

• There are n1 possible first entries,

• There are n2 possible second entries for each first entry

• There are n3 possible third entries for each combination of first and second entries, and so on
up to nk

the size of S is n1 · n2 · · ·nk.

A permutation of a set S is a sequence that contains every element of S exactly once. For example,
the permutations of the set {1, 2, 3} are the sequences (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2),
(3, 2, 1).

How many permutations does an n element set have? The first entry in the permutation sequence
can be chosen in n possible ways. Each such choice leaves out n − 1 possibilities for the second
element. Each combination of choices for the first two elements leaves out n− 2 combinations for
the third element. Continuing like this, we get that the number of permutations of an n element
set is

n · (n− 1) · (n− 2) · · · 1 = n!.

Let’s do another example of the product rule. In how many ways can you place three different
pieces on an 8× 8 chessboard — a bishop, a knight, and a pawn — so that no two pieces share a
row or a column? The position of the three pieces is specified by a six numbers (br, bc, kr, kc, pr, pc).
The first number br indicates the bishop’s row, the second number bc indicates the bishop’s column,
and so on.

We can count the number of allowed sequences with the generalized product rule. There are 8
possibilities for the bishop’s row br. For each such choice, there are 8 possibilities for the bishop’s
column bc. Once the bishop’s position was chosen, there are 7 choices for the knight’s row kr (any
one but br) and (for each of them) 7 choices from kc (any one but bc. Once the bishop and the
knight were positioned, there are 6 choices for pr and (for each of them) 6 choices of pc. The total
number of configurations is 8 · 8 · 7 · 7 · 6 · 6 = (8 · 7 · 6)2.

4 The pigeonhole principle

The pigeonhole principle says that if you toss more pigeons into fewer holes, at least two pigeons
will land in the same hole. If X is the set of pigeons, Y is the set of holes, and f : X → Y is
the function that tells you which pigeon goes into which hole, we get the following mathematical
statement:

Theorem 3 (The pigeonhole principle). For any two finite sets X and Y such that |X| > |Y | and
any function f : X → Y , there exist inputs x 6= x′ such that f(x) = f(x′).

6

Proof. We prove the contrapositive. If for all inputs x 6= x′, f(x) 6= f(x′), then f is injective so
|Y | ≥ |X|.

The pigeonhole principle quickly answers questions that may otherwise look impossibly difficult.
Let’s do a few examples.

Example 1. In a room of 400 people, there must be two that have the same birthday.

Here, X is the set of people in the room, Y is the set of 365 days in the year, and f(x) = y if person
x was born on day y of the year. By the pigeonhole principle, there must be a pair of people x 6= x′

such that f(x) = f(x′), that is they are born on the same day of the year.

Example 2. Among any 10 points in a unit (1 × 1) square, there must be a pair that are within
distance

√
2/3 ≈ 0.471.

Divide the unit square evenly into nine 1
3 ×

1
3 blocks. Let X be the set of ten points, Y be the set

of nine blocks, and f(x) = y if point x falls inside block y. By the pigeonhole principle, at least two
points must fall into the same block. The diameter of this block is 1

3

√
2, so the distance between

the two points within the block cannot be larger than this number.

Here is an example of a possible configuration. The two vertices connected by a line fall within the
same block, so they must be within a distance of 1

3

√
2.

Example 3. You have a set A of 8 integers, each of them between 0 and 30. There are two different
subsets of S so that the sum of the numbers in each subset is the same.

Let X be the set of all subsets of A, Y be the set {0, 1, . . . , 240}, and f : X → Y be the function
that on input S, outputs the sum of all integers in S. Since there are 8 numbers between 0 and 30,
this sum is always a number between 0 and 8 · 30 = 240.

The number of subsets of A is 28 = 256. On the other hand, |Y | = 241. By the pigeonhole principle,
two different subsets S1, S2 of A must have the same sum.

We can even make the stronger conclusion that there exists two disjoint subsets of S with the same
sum: If S1 and S2 are not disjoint, take away the elements in their intersection from both of them.
This changes the value of both sums by the same amount, so the sums stay equal but the sets are
now disjoint.

There is a more general variant of the pigeonhole principle that is sometimes useful.

Theorem 4 (Generalized pigeonhole principle). For every integer k every pair of sets X,Y such
that |X| > k|Y | and every function f : X → Y , there exist k + 1 distinct elements x1, . . . , xk+1 of
X such that f(x1) = · · · = f(xk+1).

7

Proof. We prove the contrapositive. Suppose that for every y ∈ Y , there are at most k distinct
elements of x that map to it. Order the elements of X in some way from smallest to largest. Let
f ′ : X → Y × {1, . . . , k} be the function such that f ′(x) = (y, i) if x is the i-th smallest element of
X among those that f(x) = y. Then the function f is injective, so |Y × {1, . . . , k}| ≥ |X|. By the
product rule, |Y × {1, . . . , k}| = k|Y | and so k|Y | ≥ |X|.

Example 4. In a group of 1500 people, there must be three people of the same gender that have
the same birthday.

Since 1500 > 4 · 365, by the generalized pigeonhole principle there must be at least five people in
the group that have the same birthday. Let X be these five people, and f : X → {male, female} be
the map that assigns each person their gender. By the generalized pigeonhole principle, there are
at least three people among the five that have the same gender.

Here is another solution. Let X be the group of 1500 people, Y be the product set {1, . . . , 365} ×
{male, female}, and g : X → Y be the function that assigns to each person x in the group their
birthday and their gender. Since |Y | = 365 · 2 = 730 and 1500 > 2 · 730, by the generalized
pigeonhole principle there are three people in the group with the same birthday and the same
gender.

5 Comparison based sorting

In Lecture 8 we showed that the Merge Sort procedure makes n log n− n+ 1 pairwise comparisons
when sorting any sequence of length n (assuming n is a power of two). Is there a different procedure
that performs fewer comparisons?

We will argue that any procedure for sorting a sequence of numbers that only relies on comparing
pairs of numbers (and not on other things, like the values of these numbers) cannot do substantially
better. No matter what the procedure does, there exists at least one sequence of length n on which
the procedure performs Ω(n log n) comparisons.

How can we even reason about a sorting procedure without knowing how it works? The main
difficulty here is to come up with a good model of sorting procedures. Once we do that, the
calculations won’t be hard. Instead of sorting, let’s first talk about a simpler but related example
— the game of twenty questions.

Twenty questions The game of twenty questions involves two players, Alice and Bob. Alice
thinks of an integer between 0 and N − 1 and writes it on a piece of paper. Bob and Alice then
alternate in asking and answering questions about this number. Bob can ask any question as long
as it has a yes/no answer and Alice always answers Bob’s questions truthfully. How many questions
does Bob need to ask in order to find out Alice’s number with certainty?

Here is a simple strategy for Bob, assuming N is a power of two, say N = 2q. Represent each
integer between 0 and N −1 uniquely by its base 2 expansion (b1, . . . , bq).

3 For each i ranging from
1 to q, ask the question “Is bi = 1”? Alice’s answer to this question determines the value of bi (if
yes bi = 1, if no bi = 0) so after q questions Bob finds the binary representation of Alice’s secret.
With this strategy, Bob asks q = logN questions.

3The binary-to-integer conversion f((b1, . . . , bn)) = b1 + 2b2 + · · · + 2q−1bq−1 is a bijective function from {0, 1}n
to the set {0, . . . , N − 1}, so each number x ∈ {1, . . . , N} is uniquely represented by a bit sequence (b1, . . . , bq) such
that f((b1, . . . , bq)) = x.

8

Let us now argue that no matter which strategy Bob uses, there is at least one possible secret
for Alice that makes Bob ask at least logN questions. Assume, for contradiction, that Bob can
guess Alice’s secret with certainty after asking q < logN questions. If we represent the answers to
Bob’s questions by a {yes,no} sequence of length q, then the number of possible answer sequences
is |{yes,no}q| = 2q. As there are N possible secrets for Alice and N > 2q, by the pigeonhole
principle at least two of Alice’s possible secrets would result in the same sequence of answers to
Bob’s questions. After asking q questions and seeing these answers, Bob will not know which of
these two is Alice’s real secret so he cannot guess it with certainty.

We model the execution of a comparison-based sorting procedure as a “twenty questions” game
between the input sequence (Alice) and the sorting procedure (Bob). The procedure only asks
questions of the type “is entry i in the sequence smaller than entry j?” which have yes/no answers.

Let’s do a small example. Suppose we have some sorting procedure — which we call Bob — that
was given the sequence (a1, a2, a3) to sort. We’ll assume a1, a2, a3 are all distinct. Initially, Bob
does not know anything about this sequence so he asks a question like “is a1 < a2?” Say the answer
to this question is “yes”. Then he asks for example “Is a2 < a3?” If the answer to this question
is also “yes”, then Bob has enough information to determine the correct order of the sequence,
namely a1 < a2 < a3.

Now suppose to the first question “Is a1 < a2” is “yes” but the answer to “Is a2 < a3?” is
“no”. There are two possible orderings of the sequence that are consistent with these answers:
a1 < a2 < a3 and a2 < a1 < a3. Bob cannot sort the sequence just based on this information.

Let’s fix a1, . . . , an to be any n distinct values to sort and let S be the set of all permutations of
{a1, . . . , an}. Bob could be given any of these permutations as an input sequence. The answers
to his first q comparison questions are {yes,no} sequences of length q. If |S| > 2q, then by the
pigeonhole principle at least two input sequences lead to the same sequence of answers. Bob cannot
distinguish which one of these two is his input, and so he cannot sort it properly.

We conclude that if S has strictly more than 2q elements, then not all sequences of n elements can
be sorted after q comparisons. The set S consists of the permutations of {a1, . . . , an}, so it has size
n!. Sorting with q comparisons is impossible as long as n! > 2q; in other words sorting requires at
least log n! comparisons.

What does the number log n! look like? We can write

log n! =
lnn!

ln 2
=

1

ln 2
ln(1 · 2 · · ·n) =

1

ln 2
(ln 1 + ln 2 + · · ·+ lnn).

This sum is perfect for the integral method.

1 2 3 4 5
x

lnx

Lower bounding the sum by the related integral minus the error term gives

ln 1 + ln 2 + · · ·+ lnn ≥
∫ n+1

1
lnx dx− ln(n + 1)

9

The antiderivative of lnx is x lnx− x, so

ln 1 + ln 2 + · · ·+ lnn ≥ (n + 1) ln(n + 1)− n− ln(n + 1).

Therefore any procedure for comparison-based sorting requires at least

(n + 1) log(n + 1)− n

ln 2
− log(n + 1) = Ω(n log n)

comparisons on at least one input sequence.

6 Data integrity*

Bob has downloaded a piece of software from that was supposedly produced by trusted Alice from
an internet software provider. He is not sure that the provider is legitimate and are afraid that it
may install a virus on your computer instead. How can Bob verify the integrity of the file?

A collision-resistant hash function is a special type of function that can be used to certify data
integrity. A hash function is a function h that takes as an input an arbitrarily long string x
(representing some data like a piece of software) and outputs a short (say, 1000-bit) certificate of
integrity h(x). The hash function is collision-resistant if it is infeasible to find two distinct inputs
with the same certificate, namely two strings x 6= x′ such that h(x) = h(x′). Such a pair of strings
is said to form a collision under h.

Armed with a collision-resistant hash function h, Bob can verify the integrity of his download x′

by computing the value h(x′) and checking that it matches the value of h(x) for the original file x.
Alice can, for instance, post the short string h(x) on her web page for this purpose. For a malicious
software provider to pass Bob’s test, it must produce a corrupted copy x′ that collides with the
original x under h, which is an infeasible task.

How does one construct a collision-resistant hash function? There are several proposals that appear
to work, although we do not know how to prove that any of them are secure with respect to finding
collisions. I will describe a particularly elegant construction based on modular arithmetic.

Modular subset sum To describe the hash function we need a few concepts from modular linear
algebra. An n-dimensional vector modulo q is a sequence of n numbers in the range {0, . . . , q− 1},
each representing a possible residue modulo q. Vectors of the same dimension can be added element-
wise using the rules of modular arithmetic, for instance3

6
1

 +

5
7
0

 mod 8 =

0
5
1


where we use the standard convention of representing vectors as columns.

The modular subset sum function is a function whose inputs are subsets of the set {1, . . . ,m} and
whose outputs are n-dimensional vectors modulo q. We first fix a collection of m n-dimensional
vectors modulo q, which we denote by a1 up to am. These vectors are chosen independently at
random among all qn possibilities. The modular subset sum function applied to a set S is the
modular sum of the vectors indexed by S, namely

h(S) =
∑
i∈S

ai mod q.

10

For example, when m = 10, n = 3, q = 8, we may have3 1 1 6 1 3 0 0 1 5
3 4 5 2 3 6 0 6 3 2
4 4 1 2 2 3 2 2 6 6


with ai being the i-th column of this matrix. Then

h({2, 3, 5, 7}) =

1
4
4

 +

1
5
1

 +

1
3
2

 +

0
0
2

 mod 8 =

3
4
1

 . (1)

In general, the domain of h consists of all subsets of {1, . . . ,m}, of which there are 2m. Each subset
can be identified with an m-bit string through the bijection in Theorem 1. The range of h consists
of all n-dimensional vectors modulo q, of which there are qn. If q is a power of two and we represent
each number modulo q by its base 2 representation, then the output can be viewed as a bit string
of length n log q obtained by concatenating the bit string representations of all the vector entries.
Under this representation, the function h in our example can be viewed as a function from 10-bit
strings to 9-bit strings. In this notation, (1) can be rewritten as

h(0110101000) = 011 100 001.

By the pigeonhole principle, h must contain a collision. More generally, when m > n log q, the
pigeonhole principle guarantees that h must contain a collision. How easy is it to find this collision?

One possibility is to carry out exhaustive search over all possible subsets. For example, by trying
out all possible 210 subsets S in the above example I found that the set {1, 2, 3, 6, 7, 8} collides with
the empty set, namely

h({1, 2, 3, 6, 7, 8}) = h(∅) =

0
0
0

 .

For larger values of m, like m = 1, 536, exhaustive search over all 2m possible subsets becomes
prohibitively expensive. A more efficient strategy is to try random sets until we find a pair that
collides. It turns out that in order to observe a collision with good probability one needs to try out
about

√
qn = 2(n log q)/2 sets (see the birthday paradox). This is an improvement, but still quite

costly when, say, n = 64 and q = 4, 096. There are more sophisticated methods for finding collisions,
but for this setting of parameters even the best known ones may need to try out something on the
order of 2100 different inputs, which is infeasible. It seems therefore reasonable to conjecture that

It is infeasible to find collisions in the subset sum function h with parameters m = 1, 536,
n = 64, and q = 4, 096.

Viewed as a function between bit strings, h hashes strings of length m = 1, 536 into strings of
length n log q = 768, so h shrinks the size of its input by half. In terms of sets, the domain and
range of h have size 21,536 and 2768, respectively, so by the generalized pigeonhole principle h must
have at least 2768 distinct inputs that map to the same output. Nonetheless, even a single pair of
such inputs is extremely difficult to find!

The hash function h we just described is presumably collision-resistant, but it can only be applied
to inputs that are 1,536 bits long. How can we use it to certify the integrity of a data file x that
could be several hundreds of megabytes long? One solution is to break x into chunks x1x2 . . . x`,
each of them 768-bits long, and to apply h iteratively on the chunks like this:

H(x) = h(· · ·h(h(h(x1x2)x3)x4) · · ·x`).

https://en.wikipedia.org/wiki/Birthday_problem

11

This is a legitimate way to compose h, as each copy takes two inputs of length 768 (a total of of
1, 536 input bits) and produces an output of length 768.

We claim that if h is collision-resistant, so is H. For concreteness, let’s work out the case ` = 3; the
argument can easily be extended to larger values of `. Suppose, for contradiction, that a malicious
software provider Eve managed to find two different files x = x1x2x3 and x′ = x′1x

′
2x

′
3 that collide

under H. By the definition of H, this means

h(h(x1x2)x3) = h(h(x′1x
′
2)x

′
3)

There are two possibilities. One possibility is that h(x1x2)x3 is distinct from h(x′1x
′
2)x

′
3. In this

case, Eve found the strings h(x1x2)x3 and h(x′1x
′
2)x

′
3 (viewed as strings of length 1, 536 each)

that collide under h, which is infeasible. The other possibility is that the strings h(x1x2)x3 and
h(x′1x

′
2)x

′
3 are equal. Then x3 = x′3, so x1x2 and x′1x

′
2 must be distinct, but h(x1x2) and h(x′1x

′
2)

are equal. So eve found a collision between x1x2 and x′1x
′
2 under h, which is also infeasible. In

either case, the only way in which Eve can find a collision under H is by finding a collision under
h, which is an infeasible problem.

References

This lecture is based on Chapters 4 and 15 of the text Mathematics for Computer Science by E.
Lehman, T. Leighton, and A. Meyer. The discussion on collision-resistant hashing and modular
subset sum is partly based on Section 4 of the paper Lattice-based Cryptography by D. Micciancio
and O. Regev and on Section 4.6 of the book Introduction to Modern Cryptography by J. Katz and
Y. Lindell.

https://www.cims.nyu.edu/~regev/papers/pqc.pdf

	Functions, bijections, and counting
	The sum rule
	The general product rule and permutations
	The pigeonhole principle
	Comparison based sorting
	Data integrity*

