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9. Limit Theorems
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Many times we do not need to calculate
probabilities

An or estimate often
suffices

P(magnitude 7+ earthquake within 10 years) = -



| toss a coin 1000 times. The probability that |

get a streak of e
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| toss a coin 1000 times. The probability that |
get a streak of IS
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Markov’s inequality

For every random variable X
and every value z:
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1000 people throw their hats in the air. What is the
probability at least 100 people get their hat back?

N = NUM®BER OF HATS e TURNED
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X = Uniform(0, 4). How does P(X = x) compare with
Markov’s inequality?
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| toss a coin 1000 times. What is the
probability | get

(a) at least 700 times

(b) at most 50 times
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Chebyshev’s inequality

For every random variable X and every ~
P(|X—u| 2t <1/~

where 1 = E[X], o= \/me[}q.
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Chebyshev’s inequality

For every random variable X and every
P(|X—u| 2t <1/~

where 1 = E[X], o= \/chr[X].
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Markov’s inequality:
P X2a)=u/a

H— 10 y7; U+ o

Chebyshev’s inequality:
P(| X~y 2to)<1/ 7~




| toss a coin 64 times. What is the probability |
get at most 24 heads?
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Polling
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Polling

is the pollster’s estimate X/ #?
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Polling
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The weak law of large numbers

Xi,..., X, are with

u=E[X],c=VValX], X=X, +..+X
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We want o =10% and
g = 5% . How many people should we poll?
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1000 people throw their hats in the air. What is the
probability at least 100 people get their hat back?
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| toss a coin 1000 times. What is the
probability | get

(a) at least 250 times

(b) at most 50 times
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A polling simulation
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3 X, ..., X, independent Bernoulli(1/2)
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A polling simulation
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< 20 simulations
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X{,..., X, are with
Let's assume 7 is large.

Weak law of large numbers:

X+ ...+ X, = un with high probability

P(|X—pn| = to\Nn) <1/ A

this suggests X, + ... + X, = un \n
CANDOM  VARIARLE



Some experiments

X=X +..+X
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X=X +..+X X, independent Poisson(1)
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X=X, +..+
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The central limit theorem

Xi,..., X, are independent with same PMF/PDF

u=E[X], c=aX], X=X, + ... + X,

For every 7 (positive or negative):

lim P(X < un + to\Nn) = PN < )
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where N is a normal random variable.



eventually,
everything
IS hormal




Toss a die 100 times. What is the probability that the
sum of the outcomes exceeds 4007
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We want o =1% and
g = 5%. How many people should we poll?
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Drop three points at random on a square. What is
the probability that they form an ?
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method

Markov’s
inequality

Chebyshev’s
inequality

weak law of
large numbers

central limit
theorem

requirements

E[X] only

E[X] and Var[X]

pairwise
independence

independence
of many samples

weakness

one-sided,
often imprecise

often imprecise

often imprecise

no rigorous bound



The strong law of large numbers
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The strong law of large numbers

Xi,..., X, are with

u=EX], X=X, +..+X

n

If E[X] is finite then

Plim, . X/7n = i) = 1



