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Independence of two events

Let E, be “first coin comes up H”

E, be “second coin comes up H”

Then P(E, | E,) = P(E))
P(ENE) = P(Ey)P(Ey)

Events .4 and B are if
P(ANB) = P(A) P(B)



Examples of (in)dependence

Qj& @X Let £, be “first dieis a 4”

Yol S be “sum of dice is a 6”
S- be “sum of diceisa 7”
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ER: “East Rail Line is working” P(ER) = 70%
MS: “Ma On Shan Line is working” P(MS) = 98%

P(erams) = PERP(MS) = ©.68¢



Algebra of independent events

If .4 and B are independent, then .4 and B° are also
independent.
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Parallel components

1. “Tsuen Wan Line is operational” P(TW) = 80%
TC: “Tung Chung Line is operational”  P(TC) = 85%
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Independence of three events

Events 4, B, and C are
P(ANB) = P(A) P(B)
P(BNC) = P(B) P(C)
P(ANC) = P(B) P(C)
P(ANBNC) = P(A4) P(B) P(C).
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(In)dependence of three events

@ o\ Let E; be “first die is a 4”
\é Yol E, be “second die is a 3”

S- be “sum of diceisa 7”
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(In)dependence of three events

@ Y\ LetAbe “firstrollis 1, 2, or 3”7 by
\é Yol B be “first roll is 3, 4, or 5" /2

C be “sum of rolls is 9” 2
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Independence of many events

Events 4, 4,, ... are independent if

of the events, the probability of the
intersection is the product of their probabilities.

Independence is preserved if we replace some
event(s) by their complements, intersections, unions
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Multiple components
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Playoffs

Alice wins 60% of her ping pong matches against
Bob. They meet for a 3 match playoff. What are the
chances that Alice will win the playoff?

W
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Let .1, be the event Alice wins match ;

Assume P(A,) = P(A,) = P(A;) = 0.6

Also assume 4, 4,, A, are



Playoffs

outcome probability
NN 0.6>
ANR 0.¢% 0.
AR A 0.6%-0.4
B AA 06" 0.6

Py = OL>+2 0L D4 =0.L68



Bernoulli trials

n trials, each succeeds independently with
probability p

The probability at least £ out of » succeed is

P (e O



Playoffs
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The Lakers and the Celtics meet for a 7-game
playoff. They play until one team wins four games.

Suppose the Lakers win 60% of the time. What is
the probability that all 7 games are played?
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Conditional independence

A and B are independent conditioned on F if
PANB | F)=PA| PG| L)

Alternative definition:

PA[ BN =PA | F)



today tomorrow

- 80% -, 20% -
40% -, 60% -

Itis -~ on Monday. Will it .- on Wednesday?
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Conditioning does not preserve independence

@ N\ Let I be “first dieis a 4
\é Yol E, be “second die is a 3”
S- be “sum of diceisa 7”
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&he New Hork Times

‘Crazy Rich Asians’ Has Soared,
but It May Not Fly in China
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Conditioning may destroy dependence
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Random variable

A assigns a discrete value
to every outcome in the sample space.

{ HH, HT, TH, TT }

N = number of Hs



Probability mass function

The of discrete
random variable X is the function

p) = PX =)

Ve Vi Y

N = number of HS

p(0) =P(N=0)=P({TT}) =1/4
»(1) = P(N = 1) = P({HT, TH}) = 1/2
p(2) = P(N=2)=P({HH}) = 1/4



Probability mass function

We can describe the p.m.f. by a table or by a chart.
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Two six-sided dice are tossed. Calculate the
p.m.f. of the D of the rolls.

fg WP

What is the probability that D > 1? D is odd?
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The binomial random variable

Binomial(#, p): Perform » , each of
which succeeds with probability p

X = number of successes

Toss 7~ coins. “number of heads” is Binomial(z, 72).

Toss # dice. “Number of | |s” is Binomial(z, 1/6).



A less obvious example

Toss 7 coins. Let C be the number of

(HT or TH).
0 C(w)
HHHHHHH 0
HHH 2
HH 3

Then Cis Binomial(z — 1, V2).



A non-example

Draw a 10-card hand from a 52-card deck.

Let N = number of aces among the drawn cards

Is N a Binomial(10, 1/13) random variable?

N o' Trial outcomes are

m independent.



Probability mass function

If X'is Binomial(z, p), its p.m.f. is

pk) = PX=k) = (3)pt (1-p)
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Geometric random variable

Let X, X,, ... be independent trials with success ».

A Geometric(p) random variable N is the
among X, X, ...:

N = first (smallest) » such that X, = 1.

SoPIN=#n=PX,=0,....X,;,=0,X,=1)
=1 =p"p
This is the p.m.f. of ]\l
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Apples

About 10% of the apples on your farm are rotten.

You sell 10 apples. How many are rotten?

Number of rotten apples you sold is
Binomial(z = 10, p = 1/10).
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Apples

You improve productivity; now only 5% apples rot.

You can now sell 20 apples.

N is now Binomial(20, 1/20).
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The Poisson random variable

A Poisson(A) random variable has this p.m.f.:

pk) = et A5/ A £=0,1,2.3, ...

Poisson random variables do not occur “naturally” in
the sample spaces we have seen.

They Binomial(#, p) random variables
when A = np is and ~ is (so p is small)

P Poisson(A4) (’é> — hmﬁ —op Binomial(n, A/ 7) (’é>



Functions of random variables
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If X is a random variable with p.m.f. py,
then Y = fX) is a random variable with p.m.f.

PY0) = D =y Px()-



Two six-sided dice are tossed. D is the
difference of rolls. Calculate the p.m.f. of |D|.
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