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Questions

1. Raindrops are falling at the rate of 1 drop per second.

(a) Use Markov’s inequality to argue that the probability of getting more than 120 raindrops
within a minute is at most 50%.

(b) Use Chebyshev’s inequality to argue that the probability of getting more than 120 rain-
drops within a minute is in fact at most 2%.

Solution: Let X be the number of rain drops per minute. It follows that X is a Poisson
random variable with λ = 60. Hence the mean and the standard derivation of X are µ = 60
and σ =

√
60, respectively.

(a) By Markov’s inequality, we have:

P (X ≥ 120) ≤ µ/120 = 60/120 = 0.5.

(b) By Chebyshev’s inequality, we have:

P (X ≥ 120) ≤ P (|X − 60| ≥ 60) = P (|X − µ| ≥
√
60σ) ≤ 1/(

√
60)2 ≈ 0.016.

2. Alice is mailing letters to solicit donations from CUHK alums. From past experience she
knows that 30% of the alums make a 500 dollar donation, and 10% of the alums make a
1, 000 dollar donation. Use the central limit theorem to estimate the number of letters Alice
should mail to meet a 50,000 dollar donation target with probability 90%.

Solution: The alumni donations X1, . . . , Xn are independent random variables with mean
µ = E[Xi] = 500 ·0.3+1000 ·0.1 = 250 dollars and variance σ2 = Var[Xi] = 5002 ·0.3+10002 ·
0.1 − 2502 = 112500 dollars. By the central limit theorem we approximate the sum of their
donations X1 + · · ·+Xn as a normal random variable with mean µn and standard deviation
σ
√
n. A Normal(0, 1) random variable takes values −1.2816 or higher 90% of the time. To

achieve the desired probability of success, we need to pick n so that µn − 1.2816σ
√
n is at

least 50, 000 dollars. Plugging in the values of µ and σ we obtain the inequality

250n− 1.2816 ·
√

112, 500 ·
√
n ≥ 50, 000.

By the quadratic formula, it is enough to choose n = 226 for this. Hence, Alice needs to mail
about 226 alums.

3. The following exam statistics are posted on the course website:

section no. students average grade std. dev.

A 30 65 5
B 20 70 10

what can you say about the number of students whose exam grade was 30 or below?

Estimate the quantity of your interest using (a) Markov’s inequality, (b) Chebyshev’s inequal-
ity and (c) the Central Limit Theorem. Explain the assumptions you are making about the
probability model (if any).



Solution:

(a) LetXA andXB be the grade of a random student in section A and section B, respectively.
The table tells us that µA = E[XA] = 65 and µB = E[XB] = 70. Markov’s inequality
only gives us a bound on the probability that XA and XB are at least as large as some
value so they cannot be applied directly.

However, if we assume that the maximum grade is 100, then we can apply Markov’s
inequality to the nonnegative random variable YA = 100−XA:

P(XA ≤ 30) = P(YA ≥ 70) ≤ E[YA]

70
=

35

70
=

1

2
.

Similarly,

P(XB ≤ 30) = P(YB ≥ 70) ≤ E[YB]

70
=

30

70
=

3

7
.

Therefore we can say that the number of students with grade 30 or below is at most
30 · 1/2 + 20 · 3/7 ≤ 23.6, so there are at most 23 of them.

(b) From the table, σA =
√

Var[XA] = 5, , σB =
√
Var[XB] = 10. By Chebyshev’s

inequality, for a random student in section A,

P(XA ≤ 30) = P(XA ≤ µA − 7 · σA) ≤ P(|XA − µA| ≥ 7σA) ≤ 1/49 ≈ 0.0204.

Although we are only interested in the probability that XA is 7 standard deviations
smaller than its mean, Chebyshev’s inequality only tells us the probability of the possibly
larger event that XA is either 7 standard deviations smaller or 7 standard deviations
larger than its mean. This is already a tremendously small probability – about 2%.

Similarly, for a random student in section B,

P(XB ≤ 30) = P(XB ≤ µB − 4 · σB) ≤ P(|XB − µB| ≥ 4σB) ≤ 1/16 ≈ 0.00625.

Since there are 30 students in section A, at most 1/49 · 30 students must have received
30 or below, so nobody got that kind of grade. In section B, at most 1/16 · 20 students
got 30 or below, so at most one student in the whole class could have received 30 or
below on the exam.

(c) In order to apply the Central Limit Theorem we need to model the grade X of a random
student as a sum of many independent random variables. The sample space here consists
of 50 students, which is quite small to allow representing a grade as a sum of many
independent random variables. So the Central Limit Theorem is not really applicable
to this problem.

If we however pretended that the sample space was larger, the Central Limit Theorem
would suggest modeling XA as µA +NAσA and XB as µB +NBσB, where NA and NB

are Normal(0, 1) random variables. Then we would get that

P(XA ≤ 30) ≈ P(NA ≤ (30− µA)/σA) = P(NA ≤ −7) ≈ 0

and
P(XB ≤ 30) ≈ P(NB ≤ (30− µB)/σB) = P(NB ≤ −4) ≈ 0,

leading to the conclusion that nobody got a grade below 30.



4. There are 6 computers. Every pair of computers connects with probability 10%, independently
of the other pairs. Say a computer is isolated if it didn’t connect to any of the other computers.
Let N be the number of isolated computers.

(a) Calculate the expected value of N .

(b) Calculate the variance of N .

(c) Argue that the probability that at least one computer is isolated is 70% or more.

Solution: Let Xi be an indicator random variable for the event that computer i is isolated.
Then N = X1 + · · ·+X6.

(a) By linearity of expectation E[N ] = E[X1] + · · ·+E[X6]. The value E[X1] = P (X1 = 1)
is the probability of the event that computer 1 is isolated. Because the computers
connect independently with probability 0.1, the number of connections computer 1
makes is a Binomial(5, 0.1) random variable. Computer 1 is isolated when it makes
zero connections, which happens with probability (0.9)5, so E[X1] = (0.9)5. Similarly
E[X2] = · · · = E[X6] = (0.9)5 and so E[N ] = 6× (0.9)5 ≈ 3.543.

(b) The variance of N can be computed using the following formula:

Var[N ] = V ar[X1 + · · ·+X6] =
6∑

i=1

V ar[Xi] +
∑
i 6=j

Cov[Xi, Xj ].

Like before V ar[Xi] = P (Xi = 1)(1 − P (Xi = 1)) = (0.9)5(1 − (0.9)5). Similarly
Cov[Xi, Xj ] = P (Xi = 1, Xj = 1) − P (Xi = 1)P (Xj = 1) and P (Xi = 1) = P (Xj =
1) = (0.9)5. It remains to calculate P (Xi = 1, Xj = 1). The event “Xi = 1 and Xj = 1”
occurs when both computers i and j are isolated. This happens when all 9 connections
that these two computers are involved in fail to happen. Since these connections are
independent and each has probability 0.1, P (Xi = 1, Xj = 1) = (0.9)9 so we get that

Cov[Xi, Xj ] = (0.9)9 − (0.9)5(0.9)5 = (0.9)9 − (0.9)10 = 0.1× 0.99.

Therefore the variance of N is given by:

V ar[N ] =
6∑

i=1

V ar[Xi]+
∑
i 6=j

Cov[Xi, Xj ] = 6×0.95(1−0.95)+6×5×(0.1×0.99) ≈ 2.613.

(c) The expectation of N is µ ≈ 3.543 and its standard deviation is σ ≈
√
2.613 ≈ 1.616.

By Chebyshev’s inequality, we have:

P (N = 0) = P (N ≤ 0) ≤ P (|N − µ| ≥ 2.192σ) ≤ 1/(2.192)2 ≤ 0.208 < 30%

and so P (at least one computer is isolated) = P (N > 0) = 1− P (N = 0) > 70%.


