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Notes 18: Random Classification Noise model
1. STATISTICAL QUERY AND RANDOM CLASSIFICATION NOISE
If C is efficiently learnable from SQ’s, then C is efficiently PAC-learnable with RCN

Theorem 1. If some efficient algorithm A learns C to error € from M statistical queries of tolerance
T, then some efficient algorithm PAC-learns C with Random Classification Noise of rate n using

M M
O <T2(1_277)2 In 5) Samples

Proof. Suppose A makes a statistical query with predicate ¢ : X x {+1,—1} — {0,1}
Any such ¢ can be decomposed (uniquely) as p(z,y) = f(x) + g(x)-y
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Estimating Egx(.,p)[#(z,y)] within 7 amounts to estimating expectations of both terms within 7/2

1st term (independent of y) has the same expectation under EX(¢, D) and under EX"(c, D)
Since f(z) = (p(x,1) + ¢(z,—1))/2 takes a value between 0 and 1
With prob > 1 —6/2M, can estimate Egx(.p)[f(z)] within § using O (%2 In %) samples

2nd term (linear in y) has expectation

E [g(x)-yl=0-n) E [g(z)-yl+n E [g(z)-—yl=00-2n) E [g9(z)-y]
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i.e. expectation under EX"(c, D) = (1 — 27) times expectation under EX(c, D)
To estimate expectation of 2nd term under EX(c, D) within §

Suffices to estimate its expectation under EX"(c, D) within Z(1 — 27)

and dividing this latter estimate by 1 — 2n
Since g(x)y = (¢(x,1) — p(x, —1))y/2 takes a value between —1/2 and 1/2
With prob > 1 — §/2M, can estimate Egxn(cp)[g(®)y] within 7(1 — 2n)

using O <T2(17i2n)2 In %) samples  (Hoeffding)
A makes M queries, by union bound, with prob > 1 — §, all estimates ]ADLP are within 7 of P, Il

2. GUESSING NOISE RATE

So far we assumed learning algorithm knows true noise rate n exactly (unrealistic assumption)
Above proof suggests that knowing an approximate value 1’ of 7 is enough

Algorithm pretends noise rate is 7’ (and suppose 1 — 7 < 11__722:7’, <143)

It wants to estimate Egx(c,p)[g(z)y], but cannot do so directly

It will first estimate Egxn(c,p)lg(2)y] (call this expectation P) within 7(1 — 2n")
Denote algorithm’s estimate by f’n

Algorithm then divides Pn by 1 — 27 to get an estimate for Egx(.,p)[g9(z)y] = L P,
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Last inequality due to g(x)y = (p(z,1) — p(z,—1))y/2 taking a value between —1/2 and 1/2
So algorithm’s actual estimate will be within § of Egx(c,p)[g(x)y) With high prob

What if only an upper bound 7, to the true noise rate n is known? 0<n<n<1/2)
Algorithm can try noise rates 71,72, ..., such that
1—2n; = (1—%)J (1—1—%)_] for1<j<k and n >

One of these noise rates, say 7y, will satisfy 1 — 3 < 11__7227;7[ <1+3

Algorithm gets hypotheses h1, ..., hi from different noise rates n1,...,n
Hypothesis hy corresponding to 7, (that is close to 1) will have errp(h¢, ¢) < € with high prob

How can algorithm find out which h; is good?
Ideally, feed samples to h; and estimate errp(hj, c)
But algorithm can only access noisy samples from EX"(c, D), not clean samples from EX(c, D)
Observation:  Pgxn(.p)[h(z) # y] = errp(h,c)(1 —2n) +1
Reason: If € = errp(h, ¢) = Pex(c,p)[h(7) # y], then
Pexn(ep)[h(z) #yl = (1 —n)e+n(l—¢c) =c(l—2n)+n
Transformatlon e+ (1 — 2n) + 1 mapping errp(h, ¢) to Pgxa(.p)[h(r) # y] is monotone
Thus hypothesis h; minimizing Pgxn(.p)[h(z) # y] will also minimize errp(h;, c)

How many noise rates (and hypotheses) to try?
Since 1 — 2 = (1= )  (14+3) ", wewant (1-2)* (1+7) " <1-21

5)"
so k= (In =) /In ((1+3) / (1= 3)) = O (Flog =)
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because (1+ %) /(1 —%) =1+ ©O(7) for small 7 > 0 and In(1 + y) = O(y) for small y > 0
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