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Notes 18: Random Classification Noise model

1. Statistical Query and Random Classification Noise

If C is efficiently learnable from SQ’s, then C is efficiently PAC-learnable with RCN

Theorem 1. If some efficient algorithm A learns C to error ε from M statistical queries of tolerance
τ , then some efficient algorithm PAC-learns C with Random Classification Noise of rate η using

O

(
M

τ2(1− 2η)2
ln M

δ

)
samples

Proof. Suppose A makes a statistical query with predicate φ : X × {+1,−1} → {0, 1}
Any such φ can be decomposed (uniquely) as φ(x, y) = f(x)︸︷︷︸

indep. of y

+ g(x) · y︸ ︷︷ ︸
linear in y

since φ(x, y) = φ(x, 1)1(y = 1) + φ(x,−1)1(y = −1) = φ(x, 1)
1 + y

2
+ φ(x,−1)

1− y

2

=
φ(x, 1) + φ(x,−1)

2
+

φ(x, 1)− φ(x,−1)

2
· y

Estimating EEX(c,D)[φ(x, y)] within τ amounts to estimating expectations of both terms within τ/2

1st term (independent of y) has the same expectation under EX(c,D) and under EXη(c,D)
Since f(x) = (φ(x, 1) + φ(x,−1))/2 takes a value between 0 and 1
With prob ⩾ 1− δ/2M , can estimate EEX(c,D)[f(x)] within τ

2 using O
(

1
τ2

ln M
δ

)
samples

2nd term (linear in y) has expectation

E
EXη(c,D)

[g(x) · y] = (1− η) E
EX(c,D)

[g(x) · y] + η E
EX(c,D)

[g(x) · −y] = (1− 2η) E
EX(c,D)

[g(x) · y]

i.e. expectation under EXη(c,D) = (1− 2η) times expectation under EX(c,D)
To estimate expectation of 2nd term under EX(c,D) within τ

2
Suffices to estimate its expectation under EXη(c,D) within τ

2 (1− 2η)
and dividing this latter estimate by 1− 2η

Since g(x)y = (φ(x, 1)− φ(x,−1))y/2 takes a value between −1/2 and 1/2
With prob ⩾ 1− δ/2M , can estimate EEXη(c,D)[g(x)y] within τ

2 (1− 2η)

using O
(

1
τ2(1−2η)2

ln M
δ

)
samples (Hoeffding)

A makes M queries, by union bound, with prob ⩾ 1− δ, all estimates P̂φ are within ±τ of Pφ □

2. Guessing noise rate

So far we assumed learning algorithm knows true noise rate η exactly (unrealistic assumption)
Above proof suggests that knowing an approximate value η′ of η is enough

Algorithm pretends noise rate is η′ (and suppose 1− τ
2 ⩽ 1−2η

1−2η′ ⩽ 1 + τ
2 )

It wants to estimate EEX(c,D)[g(x)y], but cannot do so directly
It will first estimate EEXη(c,D)[g(x)y] (call this expectation Pη) within τ

4 (1− 2η′)

Denote algorithm’s estimate by P̂η

Algorithm then divides P̂η by 1− 2η′ to get an estimate for EEX(c,D)[g(x)y] =
1

1−2ηPη∣∣∣∣∣ 1

1− 2η′
P̂η − E

EX(c,D)
[g(x)y]

∣∣∣∣∣ =
∣∣∣∣ 1

1− 2η′
P̂η −

1

1− 2η′
Pη +

1

1− 2η′
Pη −

1

1− 2η
Pη

∣∣∣∣
⩽ 1

1− 2η′

∣∣∣P̂η − Pη

∣∣∣+ |Pη|
∣∣∣∣ 1

1− 2η′
− 1

1− 2η

∣∣∣∣
1st term is at most 1

1−2η′
τ
4 (1− 2η′) = τ

4
1



2

2nd term is at most

|Pη|
∣∣∣∣ 1

1− 2η′
− 1

1− 2η

∣∣∣∣ = ∣∣∣∣ 1

1− 2η
Pη

∣∣∣∣ ∣∣∣∣ 1− 2η

1− 2η′
− 1

∣∣∣∣ ⩽
∣∣∣∣∣ E
EX(c,D)

[g(x)y]

∣∣∣∣∣ τ2 ⩽ 1

2

τ

2
=

τ

4

Last inequality due to g(x)y = (φ(x, 1)− φ(x,−1))y/2 taking a value between −1/2 and 1/2
So algorithm’s actual estimate will be within τ

2 of EEX(c,D)[g(x)y] with high prob

What if only an upper bound η∗ to the true noise rate η is known? (0 ⩽ η ⩽ η∗ < 1/2)
Algorithm can try noise rates η1, η2, . . . , ηk such that

1− 2ηj =
(
1− τ

2

)j (
1 + τ

2

)−j for 1 ⩽ j < k and ηk ⩾ η∗
One of these noise rates, say ηℓ, will satisfy 1− τ

2 ⩽ 1−2η
1−2ηℓ

⩽ 1 + τ
2

Algorithm gets hypotheses h1, . . . , hk from different noise rates η1, . . . , ηk
Hypothesis hℓ corresponding to ηℓ (that is close to η) will have errD(hℓ, c) ⩽ ε with high prob

How can algorithm find out which hj is good?
Ideally, feed samples to hj and estimate errD(hj , c)
But algorithm can only access noisy samples from EXη(c,D), not clean samples from EX(c,D)
Observation: PEXη(c,D)[h(x) 6= y] = errD(h, c)(1− 2η) + η
Reason: If ε = errD(h, c) = PEX(c,D)[h(x) 6= y], then

PEXη(c,D)[h(x) 6= y] = (1− η)ε+ η(1− ε) = ε(1− 2η) + η
Transformation ε 7→ ε(1− 2η) + η mapping errD(h, c) to PEXη(c,D)[h(x) 6= y] is monotone
Thus hypothesis hj minimizing PEXη(c,D)[h(x) 6= y] will also minimize errD(hj , c)

How many noise rates (and hypotheses) to try?
Since 1− 2ηk =

(
1− τ

2

)k (
1 + τ

2

)−k, we want
(
1− τ

2

)k (
1 + τ

2

)−k ⩽ 1− 2η∗

so k =
(

ln 1
1−2η∗

)/
ln

((
1 + τ

2

)
/
(
1− τ

2

))
= O

(
1
τ log 1

1−2η∗

)
because

(
1 + τ

2

)
/
(
1− τ

2

)
= 1 + Θ(τ) for small τ > 0 and ln(1 + y) = Θ(y) for small y > 0
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