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Notes 17: Random Classification Noise and Statistical Query models

1. Random Classification Noise (RCN)

Variant of PAC model where labels may be corrupted with probability η (0 ⩽ η < 1/2)
Let c ⊆ X be a concept and D be a distribution over instances space X
EXη(c,D) = distribution of labeled samples (x, y) ∈ X × {+1,−1}

x is drawn from D
y = c(x) with probability 1− η (correct label)
y = −c(x) with probability η (flipped label)

Definition: Algorithm A efficiently PAC-learns C with RCN if
for any target concept c ∈ C, any distribution D over X
for any accuracy ε > 0, confidence δ > 0, noise rate 0 ⩽ η < 1/2
given samples from EXη(c,D)
with prob. ⩾ 1− δ, A outputs polynomially evaluatable hypothesis h with errD(h, c) ⩽ ε
A runs in time poly(n, size(c), 1/ε, 1/δ, 1/(1− 2η))

If η = 1/2, label y is uniformly random and unrelated to x =⇒ no learning is possible
1− 2η = distance to impossible learning

Strictly harder than (noiseless) PAC learning (η = 0 reduces to usual PAC)
error of h is still measured with respect to c, not y

η assumed to be known to A

2. Monotone Conjunctions

PAC-learning C = {monotone conjunctions} over X = {0, 1}n with RCN
Original algorithm (eliminate variables inconsistent with labeled samples) breaks down
Idea: individual examples cannot be trusted, but statistics of whole data set can
For each variable xi, let pi = Px∼D[xi = 0 and c(x) = 1]

If variable xi belongs to c(x), then pi = 0
Each variable xi not in c(x) adds at most pi to errD(h, c) if h(x) contains xi
Algorithm aims to (1) include all xi in c(x) (2) exclude all xi with pi > ε/n
Even if hypothesis h(x) includes some xi with pi ⩽ ε/n, error is still ⩽ ε

Can estimate pi by p̂i using empirical samples (x1, y1), . . . , (xm, ym)
If Algorithm instead gets noiseless samples from EX(c,D)

Let p̂i = Ej∈{1,...,m}[x
j
i = 0 and yj = 1]

Hoeffding + Union bound: with prob. ⩾ 1− δ, every p̂i is within ±ε/(2n) of pi, provided
m ⩾ Ω
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)
(exercise)

Theorem 1 (Hoeffding). Let X1, . . . , Xn be independent random variables in [0, 1]. Let X =
1
n

∑
1⩽i⩽nXi be their empirical average. Then for any t ⩾ 0,

P[X ⩾ E[X] + t] ⩽ exp(−2nt2) .

See Wikipedia page on Hoeffding’s inequality for a proof if interested

But Algorithm only gets noisy samples from EXη(c,D)
pi = Px∼D[xi = 0 and c(x) = 1] = E(x,y)∼EX(c,D)[φ(x, y)] where φ : X × {1,−1} → {0, 1} is

φ(x, y) = 1(xi = 0)1(y = 1) = 1(xi = 0)
1 + y
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1(xi = 0)︸ ︷︷ ︸

independent of y

+
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1(xi = 0) · y︸ ︷︷ ︸

linear in y

1st term (independent of y) is the same under noisy and noiseless distributions
Algorithm can estimate expected value of 1st term within ±ε/(4n)
Since 1(xi = 0)/2 takes either 0 or 1/2 value

1



2

Estimate is accurate with prob ⩾ 1− δ/2n using O
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)
samples (Hoeffding)

2nd term (linear in y) has expectation
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]
i.e. expectation under noisy distribution = (1− 2η) expectation under noiseless distribution
Algorithm can estimate expectation of 2nd term (under noisy distribution) within ± ε

4n(1− 2η)
Then dividing this estimate by 1− 2η
⇐⇒ estimating expectation of 2nd term (under noiseless distribution) within ± ε

4n
Since 1(xi = 0) · y/2 takes either 0 or ±1/2 value
Estimate is accurate with prob ⩾ 1− δ/2n using O
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)
samples (Hoeffding)

m ⩾ Ω
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)
suffices using Hoeffding + union bound

3. Statistical Query (SQ) model

Above algorithm for monotone conjunctions with RCN uses only statistics, hence robust to noise
We now define a model to capture this type of learning algorithms

In this model, algorithm does not get labeled samples (x, c(x))
Can only query statistics of predicates φ : X × {+1,−1} → {0, 1} and get estimates for them

Denote Pφ = Px∼D[φ(x, c(x)) = 1] = EEX(c,D)[φ(x, c(x))]
Algorithm in Statistical Query model can query an oracle (i.e. black-box function) STAT(c,D)

about a predicate φ with tolerance 0 < τ ⩽ 1
STAT(c,D) returns an estimate P̂φ such that Pφ − τ ⩽ P̂φ ⩽ Pφ + τ

A normal PAC learning algorithm can simulate STAT(c,D) using m samples from EX(c,D)
succeeds with prob. ⩾ 1− δ when m ⩾ Ω
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(Hoeffding)

Definition: Algorithm A learns C from SQ’s if
for any target concept c ∈ C, any accuracy ε > 0, any distribution D over X
given access to STAT(c,D)
A outputs hypothesis h with errD(h, c) ⩽ ε

Definition: Algorithm A efficiently learns C from SQ’s if in addition
For every query (φ, τ) of A to STAT(c,D)

φ(x, c(x)) can be evaluated in time poly(n, size(c), 1/ε) (assuming X = {0, 1}n or Rn)
τ ⩾ 1/poly(n, size(c), 1/ε)

A runs in time poly(n, size(c), 1/ε)
Each call to STAT(c,D) takes 1 unit time

Algorithm to learn monotone conjunctions from SQ’s
For i = 1, . . . , n

φi = 1(xi = 0)1(y = 1)

Query STAT(c,D) with (φi, ε/2n) and get P̂φi

Output h(x) = conjunction of all xi such that P̂φi ⩽ ε/2n

Above algorithm runs in time O(n)
Exercise: Show that above algorithm learns C = {monotone conjunctions} from SQ’s
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