CSCI4230 Computational Learning Theory

Lecturer: Siu On Chan Based on Maria-Florina Balcan's and Rocco Servedio's notes

Notes 17: Random Classification Noise and Statistical Query models

1. RANDOM CLASSIFICATION NOISE (RCN)

 $(0 \le \eta < 1/2)$ Variant of PAC model where labels may be corrupted with probability η Let $c \subseteq X$ be a concept and \mathcal{D} be a distribution over instances space X $\mathrm{EX}^{\eta}(c, \mathcal{D}) = \mathrm{distribution}$ of labeled samples $(x, y) \in X \times \{+1, -1\}$ x is drawn from \mathcal{D} y = c(x) with probability $1 - \eta$ (correct label) y = -c(x) with probability η (flipped label) Algorithm A efficiently PAC-learns \mathcal{C} with RCN if Definition: for any target concept $c \in \mathcal{C}$, any distribution \mathcal{D} over X for any accuracy $\varepsilon > 0$, confidence $\delta > 0$, noise rate $0 \leq \eta < 1/2$ given samples from $\mathrm{EX}^{\eta}(c, \mathcal{D})$ with prob. $\geq 1 - \delta$, A outputs polynomially evaluatable hypothesis h with $\operatorname{err}_{\mathcal{D}}(h, c) \leq \varepsilon$ A runs in time poly $(n, \text{size}(c), 1/\varepsilon, 1/\delta, 1/(1-2\eta))$ If $\eta = 1/2$, label y is uniformly random and unrelated to x no learning is possible \implies $1 - 2\eta$ = distance to impossible learning Strictly harder than (noiseless) PAC learning $(\eta = 0 \text{ reduces to usual PAC})$ error of h is still measured with respect to c, not y

 η assumed to be known to A

2. MONOTONE CONJUNCTIONS

PAC-learning $\mathcal{C} = \{\text{monotone conjunctions}\}\$ over $X = \{0, 1\}^n$ with RCN Original algorithm (eliminate variables inconsistent with labeled samples) breaks down Idea: individual examples cannot be trusted, but statistics of whole data set can For each variable x_i , let $p_i = \mathbb{P}_{x \sim \mathcal{D}}[x_i = 0 \text{ and } c(x) = 1]$ If variable x_i belongs to c(x), then $p_i = 0$ Each variable x_i not in c(x) adds at most p_i to $\operatorname{err}_{\mathcal{D}}(h, c)$ if h(x) contains x_i Algorithm aims to (1) include all x_i in c(x)(2) exclude all x_i with $p_i > \varepsilon/n$ Even if hypothesis h(x) includes some x_i with $p_i \leq \varepsilon/n$, error is still $\leq \varepsilon$ Can estimate p_i by \hat{p}_i using empirical samples $(x^1, y^1), \ldots, (x^m, y^m)$ If Algorithm instead gets noiseless samples from $\text{EX}(c, \mathcal{D})$ Let $\hat{p}_i = \mathbb{E}_{j \in \{1,...,m\}}[x_i^j = 0 \text{ and } y^j = 1]$ Hoeffding + Union bound: with prob. $\geq 1 - \delta$, every \hat{p}_i is within $\pm \varepsilon/(2n)$ of p_i , provided $m \geqslant \Omega\left(\frac{n^2}{\varepsilon^2}\ln\frac{n}{\delta}\right)$ (exercise)

Theorem 1 (Hoeffding). Let X_1, \ldots, X_n be independent random variables in [0,1]. Let $\overline{X} = \frac{1}{n} \sum_{1 \leq i \leq n} X_i$ be their empirical average. Then for any $t \geq 0$,

$$\mathbb{P}[\overline{X} \ge \mathbb{E}[\overline{X}] + t] \le \exp(-2nt^2) \; .$$

See Wikipedia page on Hoeffding's inequality for a proof if interested

But Algorithm only gets noisy samples from $\mathrm{EX}^{\eta}(c, \mathcal{D})$ $p_i = \mathbb{P}_{x \sim \mathcal{D}}[x_i = 0 \text{ and } c(x) = 1] = \mathbb{E}_{(x,y) \sim \mathrm{EX}(c,\mathcal{D})}[\varphi(x,y)]$ where $\varphi : X \times \{1, -1\} \rightarrow \{0, 1\}$ is $\varphi(x,y) = \mathbb{1}(x_i = 0)\mathbb{1}(y = 1) = \mathbb{1}(x_i = 0)\frac{1+y}{2} = \underbrace{\frac{1}{2}\mathbb{1}(x_i = 0)}_{\text{independent of } y} + \underbrace{\frac{1}{2}\mathbb{1}(x_i = 0) \cdot y}_{\text{linear in } y}$

1st term (independent of y) is the same under noisy and noiseless distributions Algorithm can estimate expected value of 1st term within $\pm \varepsilon/(4n)$ Since $\mathbb{1}(x_i = 0)/2$ takes either 0 or 1/2 value Estimate is accurate with prob $\ge 1 - \delta/2n$ using $O\left(\frac{n^2}{\varepsilon^2} \ln \frac{n}{\delta}\right)$ samples (Hoeffding)

2nd term (linear in y) has expectation

$$\begin{split} \mathop{\mathbb{E}}_{\mathrm{EX}^{\eta}(c,\mathcal{D})} \left[\frac{1}{2} \mathbbm{1}(x_i = 0) \cdot y \right] &= (1 - \eta) \mathop{\mathbb{E}}_{\mathrm{EX}(c,\mathcal{D})} \left[\frac{1}{2} \mathbbm{1}(x_i = 0) \cdot y \right] + \eta \mathop{\mathbb{E}}_{\mathrm{EX}(c,\mathcal{D})} \left[\frac{1}{2} \mathbbm{1}(x_i = 0) \cdot -y \right] \\ &= (1 - 2\eta) \mathop{\mathbb{E}}_{\mathrm{EX}(c,\mathcal{D})} \left[\frac{1}{2} \mathbbm{1}(x_1 = 0) \cdot y \right] \end{split}$$

i.e. expectation under noisy distribution = $(1 - 2\eta)$ expectation under noiseless distribution Algorithm can estimate expectation of 2nd term (under noisy distribution) within $\pm \frac{\varepsilon}{4n}(1 - 2\eta)$

Then dividing this estimate by $1 - 2\eta$ \iff estimating expectation of 2nd term (under noiseless distribution) within $\pm \frac{\varepsilon}{4n}$

Since $\mathbb{1}(x_i = 0) \cdot y/2$ takes either 0 or $\pm 1/2$ value

Estimate is accurate with prob $\geq 1 - \delta/2n$ using $O\left(\frac{n^2}{\varepsilon^2(1-2\eta)^2}\ln\frac{n}{\delta}\right)$ samples (Hoeffding) $m \geq \Omega\left(\frac{n^2}{\varepsilon^2(1-2\eta)^2}\ln\frac{n}{\delta}\right)$ suffices using Hoeffding + union bound

3. Statistical Query (SQ) model

Above algorithm for monotone conjunctions with RCN uses only statistics, hence robust to noise We now define a model to capture this type of learning algorithms

In this model, algorithm does not get labeled samples (x, c(x))

Can only query statistics of **predicates** $\varphi : X \times \{+1, -1\} \rightarrow \{0, 1\}$ and get estimates for them Denote $P_{\varphi} = \mathbb{P}_{x \sim \mathcal{D}}[\varphi(x, c(x)) = 1] = \mathbb{E}_{\mathrm{EX}(c, \mathcal{D})}[\varphi(x, c(x))]$

Algorithm in **Statistical Query** model can query an oracle (i.e. black-box function) STAT(c, D)about a predicate φ with **tolerance** $0 < \tau \leq 1$

 $\operatorname{STAT}(c, \mathcal{D})$ returns an estimate \hat{P}_{φ} such that $P_{\varphi} - \tau \leq \hat{P}_{\varphi} \leq P_{\varphi} + \tau$

A normal PAC learning algorithm can simulate $\text{STAT}(c, \mathcal{D})$ using m samples from $\text{EX}(c, \mathcal{D})$ succeeds with prob. $\geq 1 - \delta$ when $m \geq \Omega\left(\frac{1}{\tau^2} \ln \frac{1}{\delta}\right)$ (Hoeffding)

Definition: Algorithm A learns C from SQ's if

for any target concept $c \in C$, any accuracy $\varepsilon > 0$, any distribution \mathcal{D} over X given access to $\text{STAT}(c, \mathcal{D})$

A outputs hypothesis h with $\operatorname{err}_{\mathcal{D}}(h, c) \leq \varepsilon$

Definition: Algorithm A **efficiently** learns C from SQ's if in addition

For every query (φ, τ) of A to $\operatorname{STAT}(c, \mathcal{D})$

 $\varphi(x, c(x))$ can be evaluated in time $\operatorname{poly}(n, \operatorname{size}(c), 1/\varepsilon)$ (assuming $X = \{0, 1\}^n$ or \mathbb{R}^n) $\tau \ge 1/\operatorname{poly}(n, \operatorname{size}(c), 1/\varepsilon)$ *A* runs in time $\operatorname{poly}(n, \operatorname{size}(c), 1/\varepsilon)$

Each call to $\text{STAT}(c, \mathcal{D})$ takes 1 unit time

Algorithm to learn monotone conjunctions from SQ's

For i = 1, ..., n $\varphi_i = \mathbb{1}(x_i = 0)\mathbb{1}(y = 1)$ Query STAT (c, \mathcal{D}) with $(\varphi_i, \varepsilon/2n)$ and get \hat{P}_{φ_i} Output $h(x) = \text{conjunction of all } x_i \text{ such that } \hat{P}_{\varphi_i} \leq \varepsilon/2n$

Above algorithm runs in time O(n)

Exercise: Show that above algorithm learns $C = \{\text{monotone conjunctions}\}$ from SQ's