CSCI4230 Computational Learning Theory Spring 2021

Lecturer: Siu On Chan Based on Maria-Florina Balcan's and Rocco Servedio's notes **Notes 17: Random Classification Noise and Statistical Query models**

1. Random Classification Noise (RCN) Variant of PAC model where labels may be corrupted with probability η ($0 \le \eta < 1/2$) Let $c \subseteq X$ be a concept and D be a distribution over instances space X $EX^{\eta}(c, \mathcal{D}) =$ distribution of labeled samples $(x, y) \in X \times \{+1, -1\}$ *x* is drawn from *D* $y = c(x)$ with probability $1 - \eta$ (correct label) $y = -c(x)$ with probability η (flipped label) **Definition:** Algorithm *A* efficiently PAC-learns *C* with RCN if for any target concept $c \in \mathcal{C}$, any distribution \mathcal{D} over X for any accuracy $\varepsilon > 0$, confidence $\delta > 0$, noise rate $0 \le \eta < 1/2$ given samples from $\mathbb{E}X^{\eta}(c, \mathcal{D})$ with prob. $\geq 1 - \delta$, *A* outputs polynomially evaluatable hypothesis *h* with err_{*D*}(*h, c*) $\leq \varepsilon$ *A* runs in time poly $(n, size(c), 1/\varepsilon, 1/\delta, 1/(1-2n))$ If $\eta = 1/2$, label *y* is uniformly random and unrelated to $x \implies$ no learning is possible $1 - 2\eta =$ distance to impossible learning Strictly harder than (noiseless) PAC learning $(\eta = 0 \text{ reduces to usual PAC})$

error of *h* is still measured with respect to *c*, not *y*

η assumed to be known to *A*

2. MONOTONE CONJUNCTIONS

PAC-learning $C = \{$ monotone conjunctions $\}$ over $X = \{0, 1\}^n$ with RCN Original algorithm (eliminate variables inconsistent with labeled samples) breaks down **Idea:** individual examples cannot be trusted, but statistics of whole data set can For each variable x_i , let $p_i = \mathbb{P}_{x \sim \mathcal{D}}[x_i = 0 \text{ and } c(x) = 1]$ If variable x_i belongs to $c(x)$, then $p_i = 0$ Each variable x_i not in $c(x)$ adds at most p_i to $\exp(h, c)$ if $h(x)$ contains x_i Algorithm aims to (1) include all x_i in $c(x)$ (2) exclude all x_i with $p_i > \varepsilon/n$ Even if hypothesis $h(x)$ includes some x_i with $p_i \leq \varepsilon/n$, error is still $\leq \varepsilon$ Can estimate p_i by \hat{p}_i using empirical samples $(x^1, y^1), \ldots, (x^m, y^m)$ If Algorithm instead gets noiseless samples from $EX(c, \mathcal{D})$ Let $\hat{p}_i = \mathbb{E}_{j \in \{1, ..., m\}}[x_i^j = 0 \text{ and } y^j = 1]$ Hoeffding + Union bound: with prob. $\geq 1 - \delta$, every \hat{p}_i is within $\pm \varepsilon/(2n)$ of p_i , provided $m \geqslant \Omega \left(\frac{n^2}{\varepsilon^2} \right)$ $\frac{n^2}{ε^2}$ ln $\frac{n}{δ}$ (exercise)

Theorem 1 (Hoeffding). Let X_1, \ldots, X_n be independent random variables in [0,1]. Let \overline{X} = 1 $\frac{1}{n} \sum_{1 \leq i \leq n} X_i$ *be their empirical average. Then for any* $t \geq 0$ *,*

$$
\mathbb{P}[\overline{X} \geq \mathbb{E}[\overline{X}] + t] \leq \exp(-2nt^2) .
$$

See Wikipedia page on Hoeffding's inequality for a proof if interested

But Algorithm only gets noisy samples from $EX^{\eta}(c, \mathcal{D})$ $p_i = \mathbb{P}_{x \sim \mathcal{D}}[x_i = 0 \text{ and } c(x) = 1] = \mathbb{E}_{(x,y) \sim \text{EX}(c, \mathcal{D})}[\varphi(x, y)]$ where $\varphi: X \times \{1, -1\} \to \{0, 1\}$ is $\varphi(x, y) = \mathbb{1}(x_i = 0)\mathbb{1}(y = 1) = \mathbb{1}(x_i = 0)\frac{1+y}{2} = \frac{1}{2}$ $\frac{1}{2} \mathbb{1}(x_i = 0)$ independent of *y* $+\frac{1}{2}$ $\frac{1}{2}\mathbb{1}(x_i=0)\cdot y$ linear in *y*

1st term (independent of *y*) is the same under noisy and noiseless distributions Algorithm can estimate expected value of 1st term within $\pm \varepsilon/(4n)$ Since $\frac{1}{x_i} = 0/2$ takes either 0 or $1/2$ value

Estimate is accurate with prob $\geq 1 - \delta/2n$ using $O\left(\frac{n^2}{\epsilon^2}\right)$ $\frac{n^2}{ε^2}$ ln $\frac{n}{δ}$ \setminus $(Hoeffding)$

2nd term (linear in *y*) has expectation

$$
\mathbb{E}_{\mathbf{X}^{\eta}(c,\mathcal{D})}\left[\frac{1}{2}\mathbb{1}(x_i=0)\cdot y\right] = (1-\eta)\mathbb{E}_{\mathbf{X}(c,\mathcal{D})}\left[\frac{1}{2}\mathbb{1}(x_i=0)\cdot y\right] + \eta \mathbb{E}_{\mathbf{X}(c,\mathcal{D})}\left[\frac{1}{2}\mathbb{1}(x_i=0)\cdot -y\right]
$$

$$
= (1-2\eta)\mathbb{E}_{\mathbf{X}(c,\mathcal{D})}\left[\frac{1}{2}\mathbb{1}(x_1=0)\cdot y\right]
$$

i.e. expectation under noisy distribution $=(1-2\eta)$ expectation under noiseless distribution Algorithm can estimate expectation of 2nd term (under noisy distribution) within $\pm \frac{\varepsilon}{4}$ $\frac{\varepsilon}{4n}(1-2\eta)$ Then dividing this estimate by $1 - 2\eta$

⇐⇒ estimating expectation of 2nd term (under noiseless distribution) within *± ε* 4*n* Since $\mathbb{1}(x_i = 0) \cdot y/2$ takes either 0 or $\pm 1/2$ value

Estimate is accurate with prob $\geq 1 - \delta/2n$ using $O\left(\frac{n^2}{\epsilon^2(1-\delta)}\right)$ $\frac{n^2}{\varepsilon^2(1-2\eta)^2}$ ln $\frac{n}{\delta}$ \setminus $(Hoeffding)$ $m \geqslant \Omega \left(\frac{n^2}{\varepsilon^2 (1-\varepsilon)} \right)$ $\frac{n^2}{\varepsilon^2(1-2\eta)^2}$ ln $\frac{n}{\delta}$ suffices using Hoeffding + union bound

3. STATISTICAL QUERY (SQ) MODEL

Above algorithm for monotone conjunctions with RCN uses only statistics, hence robust to noise We now define a model to capture this type of learning algorithms

In this model, algorithm does not get labeled samples $(x, c(x))$

Can only query statistics of **predicates** φ : $X \times \{+1, -1\} \rightarrow \{0, 1\}$ and get estimates for them Denote $P_{\varphi} = \mathbb{P}_{x \sim \mathcal{D}}[\varphi(x, c(x)) = 1] = \mathbb{E}_{\text{EX}(c, \mathcal{D})}[\varphi(x, c(x))]$

Algorithm in **Statistical Query** model can query an oracle (i.e. black-box function) $STAT(c, D)$ about a predicate φ with **tolerance** $0 < \tau \leq 1$

 $\text{STAT}(c, \mathcal{D})$ returns an estimate \hat{P}_{φ} such that $P_{\varphi} - \tau \leqslant \hat{P}_{\varphi} \leqslant P_{\varphi} + \tau$

A normal PAC learning algorithm can simulate $STAT(c, \mathcal{D})$ using m samples from $EX(c, \mathcal{D})$ succeeds with prob. $\geq 1 - \delta$ when $m \geq \Omega\left(\frac{1}{\tau^2}\right)$ $\frac{1}{\tau^2}$ ln $\frac{1}{\delta}$) (Hoeffding)

Definition: Algorithm *A* learns C from SQ's if

for any target concept $c \in \mathcal{C}$, any accuracy $\varepsilon > 0$, any distribution \mathcal{D} over X given access to $STAT(c, \mathcal{D})$

A outputs hypothesis *h* with $err_{\mathcal{D}}(h, c) \leq \varepsilon$

Definition: Algorithm *A* **efficiently** learns C from SQ 's if in addition

For every query (φ, τ) of A to $STAT(c, \mathcal{D})$

 $\varphi(x, c(x))$ can be evaluated in time poly $(n, \text{size}(c), 1/\varepsilon)$ (assuming $X = \{0, 1\}^n$ or \mathbb{R}^n) $\tau \geq 1/\text{poly}(n,\text{size}(c),1/\varepsilon)$

A runs in time poly $(n, \text{size}(c), 1/\varepsilon)$

Each call to $STAT(c, \mathcal{D})$ takes 1 unit time

Algorithm to learn monotone conjunctions from SQ's

For $i = 1, \ldots, n$ $\varphi_i = \mathbb{1}(x_i = 0)\mathbb{1}(y = 1)$ Query STAT (c, \mathcal{D}) with $(\varphi_i, \varepsilon/2n)$ and get \hat{P}_{φ_i} Output $h(x) =$ conjunction of all x_i such that $\hat{P}_{\varphi_i} \leqslant \varepsilon/2n$

Above algorithm runs in time *O*(*n*)

Exercise: Show that above algorithm learns $C = \{$ monotone conjunctions $\}$ from SQ's