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Notes 17: Random Classification Noise and Statistical Query models

1. RANDOM CLASSIFICATION NOISE (RCN)

Variant of PAC model where labels may be corrupted with probability n (0<n<1/2)
Let ¢ € X be a concept and D be a distribution over instances space X
EX" (¢, D) = distribution of labeled samples (z,y) € X x {+1, -1}
x is drawn from D
y = c¢(x) with probability 1 —n (correct label)
y = —c(z) with probability n (flipped label)
Definition:  Algorithm A efficiently PAC-learns C with RCN if
for any target concept ¢ € C, any distribution D over X
for any accuracy € > 0, confidence § > 0, noise rate 0 < n < 1/2
given samples from EX"(c, D)
with prob. > 1 — 4, A outputs polynomially evaluatable hypothesis h with errp(h,c) < e
A runs in time poly(n,size(c),1/e,1/6,1/(1 — 2n))
If n = 1/2, label y is uniformly random and unrelated to # =  no learning is possible
1 — 2 = distance to impossible learning
Strictly harder than (noiseless) PAC learning (n = 0 reduces to usual PAC)
error of h is still measured with respect to ¢, not y
1 assumed to be known to A

2. MONOTONE CONJUNCTIONS

PAC-learning C = {monotone conjunctions} over X = {0,1}" with RCN
Original algorithm (eliminate variables inconsistent with labeled samples) breaks down
Idea: individual examples cannot be trusted, but statistics of whole data set can
For each variable z;, let p; = Py plz; = 0 and ¢(x) = 1]

If variable x; belongs to ¢(x), then p; =0

Each variable x; not in ¢(z) adds at most p; to errp(h, c) if h(x) contains x;

Algorithm aims to (1) include all z; in c(z) (2) exclude all x; with p; > ¢/n
Even if hypothesis h(z) includes some z; with p; < €/n, error is still < e
Can estimate p; by p; using empirical samples (z!,y'), ..., (2™, y™)

If Algorithm instead gets noiseless samples from EX(c, D)

Let p; = Ejeq1,.. my[2] =0 and ¢/ = 1]

Hoeffding + Union bound: with prob. > 1 — 4, every p; is within +¢/(2n) of p;, provided
m = Q (Z—j In %) (exercise)

Theorem 1 (Hoeffding). Let Xi,..., X, be independent random wvariables in [0,1]. Let X =
% Zlgign X; be their empirical average. Then for any t > 0,

P[X > E[X] + t] < exp(—2nt?) .

See Wikipedia page on Hoeffding’s inequality for a proof if interested

But Algorithm only gets noisy samples from EX"(¢, D)

pi = Peoplz; = 0 and c(z) = 1] = E(y4)~Ex(c,0)[2(2; Y)] where ¢ : X x {1,-1} — {0,1} is
1+ 1 1
o(z,y) = 1(z; = 0)1(y = 1) = 1(z; = O)Ty = J1(@; = 0)+ 5L(zi = 0) -y
independent of y linear in y

1st term (independent of y) is the same under noisy and noiseless distributions
Algorithm can estimate expected value of 1st term within +e/(4n)

Since 1(z; = 0)/2 takes either 0 or 1/2 value
1



2

Estimate is accurate with prob > 1 — §/2n using O <Z—22 In %) samples  (Hoeffding)

2nd term (linear in y) has expectation

—(-2) B [Gin=0)y
EX(c,D)
i.e. expectation under noisy distribution = (1 — 27) expectation under noiseless distribution
Algorithm can estimate expectation of 2nd term (under noisy distribution) within £ (1 — 2n)
Then dividing this estimate by 1 — 2n
<= estimating expectation of 2nd term (under noiseless distribution) within
Since 1(z; = 0) - y/2 takes either 0 or +1/2 value

Estimate is accurate with prob > 1 — 6/2n using O (ﬁ In %) samples  (Hoeffding)

2

m = € (% In %) suffices using Hoeffding + union bound

3. STATISTICAL QUERY (SQ) MODEL

Above algorithm for monotone conjunctions with RCN uses only statistics, hence robust to noise
We now define a model to capture this type of learning algorithms
In this model, algorithm does not get labeled samples (z, ¢(z))
Can only query statistics of predicates ¢ : X x {+1,—1} — {0,1} and get estimates for them
Denote P, = Py~plp(z, c(x)) = 1] = Erx(c,p)le(z, c(2))]
Algorithm in Statistical Query model can query an oracle (i.e. black-box function) STAT (¢, D)
about a predicate ¢ with tolerance 0 < 7 <1
STAT(c, D) returns an estimate P@ such that P, — 7 < ép SPy+7
A normal PAC learning algorithm can simulate STAT (¢, D) using m samples from EX(c, D)
succeeds with prob. > 1 — ¢ when m > Q (%2 In 3) (Hoeffding)
Definition:  Algorithm A learns C from SQ’s if
for any target concept ¢ € C, any accuracy € > 0, any distribution D over X
given access to STAT (¢, D)
A outputs hypothesis A with errp(h,c) < e
Definition: Algorithm A efficiently learns C from SQ’s if in addition
For every query (¢, 7) of A to STAT (¢, D)
¢(x,c(x)) can be evaluated in time poly(n,size(c), 1/¢) (assuming X = {0,1}" or R™)
T > 1/ poly(n, size(c), 1/¢)
A runs in time poly(n, size(c), 1/¢)
Each call to STAT (¢, D) takes 1 unit time

Algorithm to learn monotone conjunctions from SQ’s

Fori=1,....n

¢i =1(z; =0)1(y = 1) )

Query STAT (¢, D) with (p;,€/2n) and get P,
Output h(x) = conjunction of all z; such that P,, <&/2n

Above algorithm runs in time O(n)
Exercise: Show that above algorithm learns C = {monotone conjunctions} from SQ’s
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