CSCI4230 Computational Learning Theory Lecturer: Siu On Chan

## Notes 16: Neural networks

What is the VC dimension of a neural network? Define **neural network** N as directed acyclic graph G with LTFs at internal nodes



G specifies the network architecture and is fixed

G has n input nodes  $1, \ldots, n$  and s internal nodes  $v_1, \ldots, v_s$ 

Input nodes (those without incoming edges) receive input signals  $x_1, \ldots, x_n \in \mathbb{R}$ Node/neuron v is **internal** if it has at least one incoming edge

Node/ neuron v is internal in it has at least one incoming edge

Internal neuron v computes a linear threshold function on its predecessor neurons

 $x_v = \mathbb{1}\left(\sum_{u \in \operatorname{Pred}(v)} w_{uv} \cdot x_u \ge \theta_v\right) \qquad \text{where } \operatorname{Pred}(v) = \{\operatorname{predecessors of } v\}$ 

v is activated (i.e.  $x_v = 1$ ) if the weighted sum of incoming signals exceeds threshold  $\theta_v$ When G has a single output node (that has no outgoing edges)

the network N computes a function  $f_N : \mathbb{R}^n \to \{0, 1\}$  (given  $w_{uv}$  and  $\theta_v$ ) If learning algorithm A searches for weights and thresholds to minimize training error

A's hypothesis class is  $\mathcal{H}_N = \{f_N \mid w_{uv} \in \mathbb{R}, \theta_v \in \mathbb{R}\}$ VCDim $(\mathcal{H}_N) \leq ?$ 

Will answer this question for a more general class of neural networks:

Redefine neural network N as directed acyclic graph G with concept classes at internal nodes

 $\mathcal{C}_i$  over  $\mathbb{R}^{\operatorname{Pred}(v_j)}$  is the concept class at internal node  $v_j$ 

Internal neuron  $v_j$  computes  $x_{v_j} = \mathbb{1}(x_{\operatorname{Pred}(v_j)} \in c_j)$  for some  $c_j \in \mathcal{C}_j$ 

Original definition has  $C_j = \{LTFs\}$  for all  $v_j$ ; New definition allows other activation functions Hypothesis class  $\mathcal{H}_N = \{f_N \mid c_j \in C_j\}$  (now  $f_N : \mathbb{R}^n \to \{0, 1\}$  implicitly depends on  $c_j$ 's)

**Theorem 1.** Growth function of  $\mathcal{H}_N$  is at most the product of growth functions of  $\mathcal{C}_j$  over internal nodes  $v_1, \ldots, v_s$  of G,

$$\Pi_{\mathcal{H}_N}(m) \leqslant \Pi_{\mathcal{C}_1}(m) \cdots \Pi_{\mathcal{C}_s}(m) \qquad for \ all \ m \in \mathbb{N}$$

*Proof.* Order internal nodes  $v_1, \ldots, v_s$  by the order they get evaluated (i.e. topological order)

e.g. in above diagram,  $v_4$  comes after  $v_1, \ldots, v_3$  because  $x_{v_4}$  depends on  $x_{v_1}, \ldots, v_{v_3}$ Fix *m* input samples  $S = \{x^1, \ldots, x^m\}$  where every  $x^i \in \mathbb{R}^n$ 

How many different labelings/dichotomies  $T \in \Pi_{\mathcal{H}_N}(S)$  are induced as  $c_j \in \mathcal{C}_j$  vary?

Imagine choosing  $c_1, \ldots, c_s$  sequentially and suppose  $c_1, \ldots, c_{j-1}$  have been fixed For every  $u \in \operatorname{Pred}(v_j)$ , the function  $f_u : \mathbb{R}^n \to \mathbb{R}$  of the subnetwork ending at u is fixed Every sample  $x^i$  yields a vector  $(f_u(x^i))_{u \in \operatorname{Pred}(v_j)}$  of evaluations of these functions Call this vector  $f_{\operatorname{Pred}(v_j)}(x^i)$ ; It belongs to  $\mathbb{R}^{\operatorname{Pred}(v_j)}$ Collection of these vectors  $S_j = \{f_{\operatorname{Pred}(v_j)}(x^i) \mid x^i \in S\}$  has size  $\leqslant m$ Varying  $c_j$  may induce different dichotomies  $T_j \in \Pi_{\mathcal{C}_i}(S_j)$  on  $S_j$ 

Choosing all  $c_1, \ldots, c_s$  yields a labeling T of S, together with a sequence  $(T_1, \ldots, T_s)$  as above Distinct labelings T and T' must correspond to different sequences  $(T_1, \ldots, T_s)$  and  $(T'_1, \ldots, T'_s)$ 

Because a sequence  $(T_1, \ldots, T_s)$  contains enough information to recover T

via computing  $f_{v_j}(x^i) = \mathbb{1}(f_{\operatorname{Pred}(v_j)}(x^i) \in T_j)$  iteratively for  $j = 1, \ldots, s$ Every  $T_j$  is induced by  $c_j \in \mathcal{C}_j$  on  $S_j$  of size  $\leqslant m \implies$  At most  $\prod_{\mathcal{C}_1}(m) \cdots \prod_{\mathcal{C}_s}(m)$  sequences

Spring 2021

*Proof.* By above Theorem and Sauer–Shelah lemma, when  $m \ge d$ ,

$$\Pi_{\mathcal{H}_N}(m) \leqslant \Pi_{\mathcal{C}_1}(m) \cdots \Pi_{\mathcal{C}_s}(m) \leqslant \left(\left(\frac{em}{d}\right)^d\right)^s$$
VCDim $(\mathcal{H}_N) < m \iff \Pi_{\mathcal{H}_N}(m) < 2^m$ , so we want  $\left(\frac{em}{d}\right)^{ds} < 2^m \iff ds \log\left(\frac{em}{d}\right) < m$ 
How to choose  $m$ ?  
Clearly  $m \ge ds$  is needed, but then  $\log(em/d) \ge \log(es)$ , so  $m \ge ds \log(es)$   
Turns out  $m = 2ds \log(es)$  suffices when  $s \ge 2$  (exercise)

Back to original question, if G has fan-in r (i.e. every internal node takes signals from r other nodes)  $\operatorname{VCDim}({\operatorname{LTFs over} \mathbb{R}^r}) = r + 1 \implies \operatorname{VCDim}(\mathcal{H}_N) \leq 2(r+1)s\log(es)$ 

Neural networks in practice typically have internal nodes with real-valued outputs, not just  $\{0, 1\}$ Above Theorem does not apply to these networks

The end of Notes15 considers

$$\mathcal{H}_{R} = \left\{ \operatorname{sign} \left( \sum_{1 \leqslant t \leqslant R} \alpha_{t} h_{t} \middle| \alpha_{t} \in \mathbb{R}, h_{t} \in \mathcal{H} \text{ for } 1 \leqslant t \leqslant R \right) \right\}$$

where  $\mathcal{H}$  denotes the hypothesis class of weak learner A in AdaBoost Proposition in Notes15 can be proved using above Theorem and calculations in above Corollary Question: Which neural network corresponds to  $\mathcal{H}_R$ ? What are the  $\mathcal{C}_j$ 's?