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Notes 16: Neural networks
What is the VC dimension of a neural network?
Define neural network N as directed acyclic graph G with LTFs at internal nodes

x1 x2 x3 x4

xv1 xv2 xv3

xv4

G specifies the network architecture and is fixed
G has n input nodes 1, . . . , n and s internal nodes v1, . . . , vs

Input nodes (those without incoming edges) receive input signals x1, . . . , xn ∈ R
Node/neuron v is internal if it has at least one incoming edge

Internal neuron v computes a linear threshold function on its predecessor neurons
xv = 1

(∑
u ∈ Pred(v)wuv · xu ⩾ θv

)
where Pred(v) = {predecessors of v}

v is activated (i.e. xv = 1) if the weighted sum of incoming signals exceeds threshold θv
When G has a single output node (that has no outgoing edges)

the network N computes a function fN : Rn → {0, 1} (given wuv and θv)
If learning algorithm A searches for weights and thresholds to minimize training error

A’s hypothesis class is HN = {fN | wuv ∈ R, θv ∈ R}
VCDim(HN ) ⩽ ?

Will answer this question for a more general class of neural networks:
Redefine neural network N as directed acyclic graph G with concept classes at internal nodes

Cj over RPred(vj) is the concept class at internal node vj
Internal neuron vj computes xvj = 1

(
xPred(vj) ∈ cj

)
for some cj ∈ Cj

Original definition has Cj = {LTFs} for all vj ; New definition allows other activation functions
Hypothesis class HN = {fN | cj ∈ Cj} (now fN : Rn → {0, 1} implicitly depends on cj ’s)

Theorem 1. Growth function of HN is at most the product of growth functions of Cj over internal
nodes v1, . . . , vs of G,

ΠHN
(m) ⩽ ΠC1(m) · · ·ΠCs(m) for all m ∈ N

Proof. Order internal nodes v1, . . . , vs by the order they get evaluated (i.e. topological order)
e.g. in above diagram, v4 comes after v1, . . . , v3 because xv4 depends on xv1 , . . . , vv3

Fix m input samples S = {x1, . . . , xm} where every xi ∈ Rn

How many different labelings/dichotomies T ∈ ΠHN
(S) are induced as cj ∈ Cj vary?

Imagine choosing c1, . . . , cs sequentially and suppose c1, . . . , cj−1 have been fixed
For every u ∈ Pred(vj), the function fu : Rn → R of the subnetwork ending at u is fixed
Every sample xi yields a vector (fu(x

i))u∈Pred(vj) of evaluations of these functions
Call this vector fPred(vj)(x

i); It belongs to RPred(vj)

Collection of these vectors Sj =
{
fPred(vj)(x

i) | xi ∈ S
}

has size ⩽ m

Varying cj may induce different dichotomies Tj ∈ ΠCj (Sj) on Sj

Choosing all c1, . . . , cs yields a labeling T of S, together with a sequence (T1, . . . , Ts) as above
Distinct labelings T and T ′ must correspond to different sequences (T1, . . . , Ts) and (T ′

1, . . . , T
′
s)

Because a sequence (T1, . . . , Ts) contains enough information to recover T
via computing fvj (x

i) = 1
(
fPred(vj)(x

i) ∈ Tj

)
iteratively for j = 1, . . . , s

Every Tj is induced by cj ∈ Cj on Sj of size ⩽ m =⇒ At most ΠC1(m) · · ·ΠCs(m) sequences □

Corollary 2. If VCDim(Cj) ⩽ d for all 1 ⩽ j ⩽ s, then VCDim(HN ) ⩽ 2ds log(es) when s ⩾ 2
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Proof. By above Theorem and Sauer–Shelah lemma, when m ⩾ d,

ΠHN
(m) ⩽ ΠC1(m) · · ·ΠCs(m) ⩽

((em
d

)d )s

VCDim(HN ) < m ⇐⇒ ΠHN
(m) < 2m, so we want

(em
d

)ds
< 2m ⇐⇒ ds log

(em
d

)
< m

How to choose m?
Clearly m ⩾ ds is needed, but then log(em/d) ⩾ log(es), so m ⩾ ds log(es)
Turns out m = 2ds log(es) suffices when s ⩾ 2 (exercise) □

Back to original question, if G has fan-in r (i.e. every internal node takes signals from r other nodes)
VCDim({LTFs over Rr}) = r + 1 =⇒ VCDim(HN ) ⩽ 2(r + 1)s log(es)

Neural networks in practice typically have internal nodes with real-valued outputs, not just {0, 1}
Above Theorem does not apply to these networks

The end of Notes15 considers

HR =

sign

 ∑
1⩽t⩽R

αtht

∣∣∣∣∣∣ αt ∈ R, ht ∈ H for 1 ⩽ t ⩽ R


where H denotes the hypothesis class of weak learner A in AdaBoost
Proposition in Notes15 can be proved using above Theorem and calculations in above Corollary
Question: Which neural network corresponds to HR? What are the Cj ’s?


