CSCI4230 Computational Learning Theory Spring 2021 *Lecturer: Siu On Chan*

Notes 16: Neural networks

What is the VC dimension of a neural network? Define **neural network** *N* as directed acyclic graph *G* with LTFs at internal nodes

G specifies the network architecture and is fixed

G has *n* input nodes $1, \ldots, n$ and *s* internal nodes v_1, \ldots, v_s

Input nodes (those without incoming edges) receive input signals $x_1, \ldots, x_n \in \mathbb{R}$

Node/neuron *v* is **internal** if it has at least one incoming edge

Internal neuron *v* computes a linear threshold function on its predecessor neurons

 $x_v = \mathbb{1} \left(\sum_u \in \text{Pred}(v) \, w_{uv} \cdot x_u \geqslant \theta_v \right)$ where $Pred(v) = \{predecessors of v\}$

v is activated (i.e. $x_v = 1$) if the weighted sum of incoming signals exceeds threshold θ_v When *G* has a single output node (that has no outgoing edges)

the network *N* computes a function $f_N : \mathbb{R}^n \to \{0,1\}$ $(g$ *iven* w_{uv} and θ_v If learning algorithm *A* searches for weights and thresholds to minimize training error

A's hypothesis class is $\mathcal{H}_N = \{f_N \mid w_{uv} \in \mathbb{R}, \theta_v \in \mathbb{R}\}\$ $VCDim(\mathcal{H}_N) \leqslant ?$

Will answer this question for a more general class of neural networks:

Redefine neural network *N* as directed acyclic graph *G* with concept classes at internal nodes

 \mathcal{C}_j over $\mathbb{R}^{\text{Pred}(v_j)}$ is the concept class at internal node v_j

Internal neuron v_j computes $x_{v_j} = \mathbb{1}(x_{\text{Pred}(v_j)} \in c_j)$ for some $c_j \in C_j$

Original definition has $C_j = \{\text{LTFs}\}\$ for all v_j ; New definition allows other activation functions Hypothesis class $\mathcal{H}_N = \{f_N \mid c_j \in \mathcal{C}_j\}$ $(\text{now } f_N : \mathbb{R}^n \to \{0,1\} \text{ implicitly depends on } c_j$'s)

Theorem 1. *Growth function of* \mathcal{H}_N *is at most the product of growth functions of* \mathcal{C}_j *over internal nodes* v_1, \ldots, v_s *of* G *,*

$$
\Pi_{\mathcal{H}_N}(m) \leq \Pi_{\mathcal{C}_1}(m) \cdots \Pi_{\mathcal{C}_s}(m) \qquad \text{for all } m \in \mathbb{N}
$$

Proof. Order internal nodes v_1, \ldots, v_s by the order they get evaluated (i.e. topological order)

e.g. in above diagram, v_4 comes after v_1, \ldots, v_3 because x_{v_4} depends on x_{v_1}, \ldots, v_{v_3} Fix *m* input samples $S = \{x^1, \ldots, x^m\}$ where every $x^i \in \mathbb{R}^n$

How many different labelings/dichotomies $T \in \Pi_{\mathcal{H}_N}(S)$ are induced as $c_j \in \mathcal{C}_j$ vary?

Imagine choosing c_1, \ldots, c_s sequentially and suppose c_1, \ldots, c_{j-1} have been fixed For every $u \in \text{Pred}(v_j)$, the function $f_u : \mathbb{R}^n \to \mathbb{R}$ of the subnetwork ending at *u* is fixed Every sample x^i yields a vector $(f_u(x^i))_{u \in \text{Pred}(v_j)}$ of evaluations of these functions Call this vector $f_{\text{Pred}(v_j)}(x^i)$); It belongs to $\mathbb{R}^{\text{Pred}(v_j)}$ Collection of these vectors $S_j = \{f_{\text{Pred}(v_j)}(x^i) \mid x^i \in S\}$ has size $\leqslant m$ Varying c_j may induce different dichotomies $T_j \in \Pi_{\mathcal{C}_j}(S_j)$ on S_j

Choosing all c_1, \ldots, c_s yields a labeling *T* of *S*, together with a sequence (T_1, \ldots, T_s) as above

Distinct labelings *T* and *T'* must correspond to different sequences (T_1, \ldots, T_s) and (T'_1, \ldots, T'_s) Because a sequence (T_1, \ldots, T_s) contains enough information to recover *T*

via computing $f_{v_j}(x^i) = \mathbb{1}(f_{\text{Pred}(v_j)}(x^i) \in T_j)$ iteratively for $j = 1, \ldots, s$ Every T_j is induced by $c_j \in C_j$ on S_j of size $\leqslant m \implies$ At most $\Pi_{C_1}(m) \cdots \Pi_{C_s}(m)$ sequences \Box

Corollary 2. If $VCDim(\mathcal{C}_j) \leq d$ *for all* $1 \leq j \leq s$ *, then* $VCDim(\mathcal{H}_N) \leq 2ds \log(es)$ *when* $s \geq 2$

1

Proof. By above Theorem and Sauer–Shelah lemma, when $m \geq d$,

$$
\Pi_{\mathcal{H}_N}(m) \leqslant \Pi_{\mathcal{C}_1}(m) \cdots \Pi_{\mathcal{C}_s}(m) \leqslant \left(\left(\frac{em}{d}\right)^d\right)^s
$$

\nVCDim $(\mathcal{H}_N) < m \iff \Pi_{\mathcal{H}_N}(m) < 2^m$, so we want $\left(\frac{em}{d}\right)^{ds} < 2^m \iff ds \log\left(\frac{em}{d}\right) < m$
\nHow to choose m ?
\nClearly $m \geqslant ds$ is needed, but then $\log(em/d) \geqslant \log(es)$, so $m \geqslant ds \log(es)$
\nTurns out $m = 2ds \log(es)$ suffices when $s \geqslant 2$ (exercise)

Back to original question, if *G* has fan-in *r* (i.e. every internal node takes signals from *r* other nodes)

 $VCDim(\{\text{LTFs over } \mathbb{R}^r\}) = r + 1 \implies VCDim(\mathcal{H}_N) \leq 2(r+1)s \log(es)$ Neural networks in practice typically have internal nodes with real-valued outputs, not just *{*0*,* 1*}*

Above Theorem does not apply to these networks

The end of Notes15 considers

$$
\mathcal{H}_R = \left\{ \text{sign}\left(\sum_{1 \leq t \leq R} \alpha_t h_t \middle| \alpha_t \in \mathbb{R}, h_t \in \mathcal{H} \text{ for } 1 \leq t \leq R \right) \right\}
$$

where *H* denotes the hypothesis class of weak learner *A* in AdaBoost Proposition in Notes15 can be proved using above Theorem and calculations in above Corollary Question: Which neural network corresponds to \mathcal{H}_R ? What are the \mathcal{C}_j 's?