Spring 2021

Based on Rocco Servedio's and Varun Kanade's notes

Lecturer: Siu On Chan

Notes 15: AdaBoost

AdaBoost (Adaptive Boosting)

Fix training samples $S = \{(x^1, c(x^1)), \dots, (x^m, c(x^m))\}$ (independent samples from $\mathrm{EX}(c,\mathcal{D})$)

Fix current distribution \mathcal{D}_t over S

Suppose current hypothesis h_t has error $\varepsilon \leqslant \frac{1}{2} - \gamma$ under \mathcal{D}_t

What should updated distribution \mathcal{D}_{t+1} be? Question:

 \mathcal{D}_{t+1} should force weak learner A to output hypothesis h_{t+1} to reveal information not available in h_t Key idea: Make old hypothesis h_t have error exactly 1/2 under \mathcal{D}_{t+1}

Since A outputs hypothesis with advantage $\gamma > 0$ under any distribution, including \mathcal{D}_{t+1} h_{h+1} is guaranteed to carry new information

Since h_t errs on ε prob. mass and is correct on $1 - \varepsilon$ prob. mass under \mathcal{D}_t

Multiply weight of every sample h_t errs by $\sqrt{\frac{1-\varepsilon}{\varepsilon}}/Z$

Multiply weight of every sample h_t is correct by $\sqrt{\frac{\varepsilon}{1-\varepsilon}}/Z$

 $Z = \text{normalization constant to keep total mass of new } \mathcal{D}_{t+1} \text{ at } 1$

Total mass that h_t errs on under $\mathcal{D}_{t+1} = \varepsilon \sqrt{\frac{1-\varepsilon}{\varepsilon}}/Z = \sqrt{\varepsilon(1-\varepsilon)}/Z$

Total mass that h_t is correct on under $\mathcal{D}_{t+1} = (1-\varepsilon)\sqrt{\frac{\varepsilon}{1-\varepsilon}}/Z = \sqrt{\varepsilon(1-\varepsilon)}/Z$ (same!)

Hence $\sqrt{\varepsilon(1-\varepsilon)}/Z = 1/2 \iff Z = 2\sqrt{\varepsilon(1-\varepsilon)}$

Multiplicative weight update algorithm, like Weighted Majority

Raise weight of samples x^i that current hypothesis errs on

Reduce weight of samples x^i that current hypothesis already good at

Weighted Majority	AdaBoost
<i>i</i> -th expert, $1 \leqslant i \leqslant m$	<i>i</i> -th sample, $1 \leqslant i \leqslant m$
t-th round	t-th run of weak PAC algorithm A
prediction of i -th expert in round t	$h_t(x^i)$
weight of i -th expert in round t	$\mathcal{D}_t(x^i)$

How to combine h_1, \ldots, h_R into final hypothesis h? Question:

(Weighted) majority vote!

To simplify calculations, suppose $h_t: X \to \{-1, +1\}$ (as opposed to $\{0,1\}$)

Also assume labels $y^i \in \{-1, +1\}$ (as opposed to $\{0, 1\}$)

Define sign: $\mathbb{R} \to \{-1,1\}$ as $\operatorname{sign}(z) = 1$ if $z \ge 0$ and $\operatorname{sign}(z) = -1$ if z < 0

Output hypothesis $h(x) \stackrel{\text{def}}{=} \text{sign} \left(\sum_{1 \leqslant t \leqslant R} \alpha_t h_t(x) \right)$ for some positive weights $\alpha_t > 0$ Let $f(x) = \sum_{1 \leqslant t \leqslant R} \alpha_t h_t(x)$ so that h(x) = sign(f(x))

$\operatorname{-AdaBoost}$

Draw independent training samples $S = \{(x^1, y^1), \dots, (x^m, y^m)\}$ from $\mathrm{EX}(c, \mathcal{D})$

Initially set $\mathcal{D}_1 = \text{uniform distribution over } S$

Repeat t = 1, ..., R times:

Run A on samples from $\mathrm{EX}(c,\mathcal{D}_t)$ to get hypothesis h_t

Compute $\varepsilon_t = \operatorname{err}_{\mathcal{D}_t}(h, c)$ (empirical error under \mathcal{D}_t)

Set $\alpha_t = \frac{1}{2} \ln \frac{1-\varepsilon_t}{\varepsilon_t}$ and $Z_t = 2\sqrt{\varepsilon_t(1-\varepsilon_t)}$ Update $\mathcal{D}_{t+1}(x^i) = \mathcal{D}_t(x^i) \cdot \exp(-\alpha_t h_t(x^i) y^i)/Z_t$

Set $f(x) = \sum_{1 \le t \le R} \alpha_t h_t(x)$ and output hypothesis h(x) = sign(f(x))

If
$$h_t(x^i) = y^i$$
 (correct), then $h_t(x^i)y^i = 1$, $\exp(-\alpha_t h_t(x^i)y^i) = \exp(-\alpha) = \sqrt{\frac{\varepsilon_t}{1-\varepsilon_t}}$ (reduced)

If
$$h_t(x^i) \neq y^i$$
 (mistake), then $h_t(x^i)y^i = -1$, $\exp(-\alpha_t h_t(x^i)y^i) = \exp(\alpha) = \sqrt{\frac{1-\varepsilon_t}{\varepsilon_t}}$ (raised)

Claim: $\frac{1}{m}|\{1\leqslant i\leqslant m\mid h(x^i)\neq y^i\}|=\frac{1}{m}\sum_{1\leqslant i\leqslant m}\mathbb{1}(y^if(x^i)\leqslant 0)\leqslant \frac{1}{m}\sum_{1\leqslant i\leqslant m}\exp(-y^if(x^i))$ Reason: $\mathbb{1}(z\leqslant 0)\leqslant \exp(-z)$ for any $z\in\mathbb{R}$

Claim:
$$\frac{1}{m} \sum_{1 \leq i \leq m} \exp(-y^i f(x^i)) = Z_1 Z_2 \cdots Z_R$$
Reason:
$$\mathcal{D}_{R+1}(x^i) = \frac{\exp(-\alpha_R h_R(x^i) y^i)}{Z_R} \mathcal{D}_R(x^i) = \text{ (keep expanding } \mathcal{D}_R, \dots, \mathcal{D}_2)$$

$$= \frac{\exp(-\alpha_R h_R(x^i) y^i)}{Z_R} \cdots \frac{\exp(-\alpha_1 h_1(x^i) y^i)}{Z_1} \mathcal{D}_1(x^i)$$

Sum over all x^i , using $\mathcal{D}_1(x^i) = \frac{1}{m}$ and \mathcal{D}_{R+1} has total mass 1,

$$1 = \frac{1}{m} \sum_{1 \leqslant i \leqslant m} \frac{\exp(-\alpha_R h_R(x^i) y^i)}{Z_R} \cdots \frac{\exp(-\alpha_1 h_1(x^i) y^i)}{Z_1}$$

$$Z_1 \cdots Z_R = \frac{1}{m} \sum_{1 \leqslant i \leqslant m} \exp(-y^i \underbrace{(\alpha_1 h_1(x^i) + \cdots + \alpha_R h_R(x^i))}_{f(x^i)})$$

Claim:
$$Z_1 \cdots Z_R = \sqrt{1 - 4\gamma_1^2} \cdots \sqrt{1 - 4\gamma_R^2}$$
 where $\gamma_t \stackrel{\text{def}}{=} \frac{1}{2} - \varepsilon_t \geqslant \gamma$
Reason: $Z_t = 2\sqrt{\varepsilon_t(1 - \varepsilon_t)} = \sqrt{2\varepsilon_t 2(1 - \varepsilon_t)} = \sqrt{(1 - 2\gamma_t)(1 + 2\gamma_t)} = \sqrt{1 - 4\gamma_t^2}$

Previous three Claims imply that training error of h on S is

$$\frac{1}{m}|\{1\leqslant i\leqslant m\mid h(x^i)\neq y^i\}|\leqslant \left(\sqrt{1-4\gamma^2}\right)^R<(e^{-4\gamma^2})^{R/2}\leqslant \varepsilon \qquad \text{if } R\geqslant \frac{1}{2\gamma^2}\ln\frac{1}{\varepsilon}$$

e.g. If $\varepsilon = \frac{1}{m}$, then h is correct on all of S

But our goal is to get hypothesis with small (true) error, not training error!

By Theorem in Notes13, suffices to show the following hypothesis class \mathcal{H}_R has small VC dimension

$$\mathcal{H}_{R} = \left\{ \operatorname{sign} \left(\sum_{1 \leqslant t \leqslant R} \alpha_{t} h_{t} \middle| \alpha_{t} \in \mathbb{R}, h_{t} \in \mathcal{H} \text{ for } 1 \leqslant t \leqslant R \right) \right\}$$

Here \mathcal{H} denotes the hypothesis class of weak learner A

Functions in \mathcal{H}_R are (± 1 version of) centered linear threshold functions of at most R hypotheses of A

Proposition 1. If $VCDim(\mathcal{H}) \leq d$, then $VCDim(\mathcal{H}_R) \leq O(Rd \log R)$

This proposition can be proved by considering growth function (next lecture)