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Notes 15: AdaBoost
AdaBoost (Adaptive Boosting)
Fix training samples S = {(x1, c(x1)), . . . , (xm, c(xm))} (independent samples from EX(c,D))
Fix current distribution Dt over S
Suppose current hypothesis ht has error ε ⩽ 1

2 − γ under Dt

Question: What should updated distribution Dt+1 be?
Dt+1 should force weak learner A to output hypothesis ht+1 to reveal information not available in ht
Key idea: Make old hypothesis ht have error exactly 1/2 under Dt+1

Since A outputs hypothesis with advantage γ > 0 under any distribution, including Dt+1

hh+1 is guaranteed to carry new information
Since ht errs on ε prob. mass and is correct on 1− ε prob. mass under Dt

Multiply weight of every sample ht errs by
√

1−ε
ε

/
Z (raised)

Multiply weight of every sample ht is correct by
√

ε
1−ε

/
Z (reduced)

Z = normalization constant to keep total mass of new Dt+1 at 1

Total mass that ht errs on under Dt+1 = ε
√

1−ε
ε

/
Z =

√
ε(1− ε)/Z

Total mass that ht is correct on under Dt+1 = (1− ε)
√

ε
1−ε

/
Z =

√
ε(1− ε)/Z (same!)

Hence
√

ε(1− ε)/Z = 1/2 ⇐⇒ Z = 2
√

ε(1− ε)

Multiplicative weight update algorithm, like Weighted Majority
Raise weight of samples xi that current hypothesis errs on
Reduce weight of samples xi that current hypothesis already good at

Weighted Majority AdaBoost
i-th expert, 1 ⩽ i ⩽ m i-th sample, 1 ⩽ i ⩽ m

t-th round t-th run of weak PAC algorithm A
prediction of i-th expert in round t ht(x

i)
weight of i-th expert in round t Dt(x

i)

Question: How to combine h1, . . . , hR into final hypothesis h?
(Weighted) majority vote!
To simplify calculations, suppose ht : X → {−1,+1} (as opposed to {0, 1})
Also assume labels yi ∈ {−1,+1} (as opposed to {0, 1})
Define sign : R → {−1, 1} as sign(z) = 1 if z ⩾ 0 and sign(z) = −1 if z < 0

Output hypothesis h(x)
def
= sign

(∑
1⩽t⩽R αtht(x)

)
for some positive weights αt > 0

Let f(x) =
∑

1⩽t⩽R αtht(x) so that h(x) = sign(f(x))

AdaBoost
Draw independent training samples S = {(x1, y1), . . . , (xm, ym)} from EX(c,D)
Initially set D1 = uniform distribution over S
Repeat t = 1, . . . , R times:

Run A on samples from EX(c,Dt) to get hypothesis ht
Compute εt = errDt(h, c) (empirical error under Dt)
Set αt =

1
2 ln 1−εt

εt
and Zt = 2

√
εt(1− εt)

Update Dt+1(x
i) = Dt(x

i) · exp(−αtht(x
i)yi)/Zt

Set f(x) =
∑

1⩽t⩽R αtht(x) and output hypothesis h(x) = sign(f(x))

If ht(xi) = yi (correct), then ht(x
i)yi = 1, exp(−αtht(x

i)yi) = exp(−α) =
√

εt
1−εt

(reduced)

If ht(xi) ̸= yi (mistake), then ht(x
i)yi = −1, exp(−αtht(x

i)yi) = exp(α) =
√

1−εt
εt

(raised)

Claim: 1
m |{1 ⩽ i ⩽ m | h(xi) ̸= yi}| = 1

m

∑
1⩽i⩽m 1(yif(xi) ⩽ 0) ⩽ 1

m

∑
1⩽i⩽m exp(−yif(xi))

Reason: 1(z ⩽ 0) ⩽ exp(−z) for any z ∈ R
1



2

Claim: 1
m

∑
1⩽i⩽m exp(−yif(xi)) = Z1Z2 · · ·ZR

Reason:
DR+1(x

i) =
exp(−αRhR(x

i)yi)

ZR
DR(x

i) = (keep expanding DR, . . . ,D2)

=
exp(−αRhR(x

i)yi)

ZR
· · · exp(−α1h1(x

i)yi)

Z1
D1(x

i)

Sum over all xi, using D1(x
i) = 1

m and DR+1 has total mass 1,

1 =
1

m

∑
1⩽i⩽m

exp(−αRhR(x
i)yi)

ZR
· · · exp(−α1h1(x

i)yi)

Z1

Z1 · · ·ZR =
1

m

∑
1⩽i⩽m

exp(−yi (α1h1(x
i) + · · ·+ αRhR(x

i))︸ ︷︷ ︸
f(xi)

)

Claim: Z1 · · ·ZR =
√

1− 4γ21 · · ·
√

1− 4γ2R where γt
def
= 1

2 − εt ⩾ γ

Reason: Zt = 2
√

εt(1− εt) =
√

2εt2(1− εt) =
√

(1− 2γt)(1 + 2γt) =
√

1− 4γ2t

Previous three Claims imply that training error of h on S is
1

m
|{1 ⩽ i ⩽ m | h(xi) ̸= yi}| ⩽

(√
1− 4γ2

)R
< (e−4γ2

)R/2 ⩽ ε if R ⩾ 1

2γ2
ln 1

ε

e.g. If ε = 1
m , then h is correct on all of S

But our goal is to get hypothesis with small (true) error, not training error!
By Theorem in Notes13, suffices to show the following hypothesis class HR has small VC dimension

HR =

sign

 ∑
1⩽t⩽R

αtht

∣∣∣∣∣∣ αt ∈ R, ht ∈ H for 1 ⩽ t ⩽ R


Here H denotes the hypothesis class of weak learner A
Functions in HR are (±1 version of) centered linear threshold functions of at most R hypotheses of A

Proposition 1. If VCDim(H) ⩽ d, then VCDim(HR) ⩽ O(Rd logR)

This proposition can be proved by considering growth function (next lecture)


