CSCI4230 Computational Learning Theory

Lecturer: Siu On Chan

Spring 2021

Based on Rocco Servedio's and Varun Kanade's notes

Notes 14: Weak and strong learning

1. Weak learning

Recall PAC learning definition (henceforth strong PAC learning): Algorithm A PAC learns C if for any concept $c \in C$ and any distribution \mathcal{D} over Xfor any confidence parameter $\delta > 0$ and any accuracy parameter $\varepsilon > 0$ when A takes m samples from $\text{EX}(c, \mathcal{D})$ with prob. $\ge 1 - \delta$, A outputs hypothesis with error $\leqslant \varepsilon$ A needs to work for arbitrarily small $\delta > 0$ and $\varepsilon > 0$: stringent requirement!

What if A only is guaranteed to work for some $\delta > 0$ and $\varepsilon > 0$? (much weaker guarantee)

Turns out A can be boosted to a strong learning algorithm

2. Boosting confidence

Suppose algorithm A, with probability $\geq 2/3$, outputs hypothesis with error $\leq \varepsilon$ (for any $\varepsilon > 0$) A's confidence δ bounded away from 0

Can be converted to strong PAC algorithm (with arbitrarily small δ and ε):

 $_$ Strong PAC algorithm B_{-}

Repeat $t = 1, \ldots, R$ times:

Run A on independent samples, with accuracy being $\varepsilon/2$, to get hypothesis h_t Draw m' more samples S to evaluate hypothese h_1, \ldots, h_R Output the hypothesis with least empirical error on S

 $R \stackrel{\text{def}}{=} \frac{3}{2} \ln \frac{2}{\delta} = O\left(\ln \frac{1}{\delta}\right)$ so that

$$\mathbb{P}\left[\text{none of } h_1, \dots, h_R \text{ has error} \leqslant \frac{\varepsilon}{2}\right] \leqslant \left(1 - \frac{2}{3}\right)^{3/2\ln(2/\delta)} \leqslant e^{-\ln(2/\delta)} = \frac{\delta}{2}$$

 $m' \stackrel{\text{def}}{=} O\left(\frac{1}{\varepsilon} \ln \frac{1}{\delta}\right)$ so that

Chernoff + Union Bound: with prob. $\geq 1 - \delta/2$,

all bad hypotheses among h_1, \ldots, h_R have empirical error $\geq \frac{5}{6}\varepsilon$; and

some $\frac{\varepsilon}{2}$ -accurate hypothesis among h_1, \ldots, h_R has empirical error $\leq \frac{4}{6}\varepsilon$

Hence any hypothesis with least empirical error must have (true) error $\leqslant \varepsilon$

Algorithm *B* succeeds with prob $\geq 1 - \delta$ *A* uses $m = \text{poly}\left(\frac{1}{\varepsilon}\right)$ samples \implies *B* uses $Rm + m' = \text{poly}\left(\frac{1}{\varepsilon}, \ln \frac{1}{\delta}\right)$ samples *A* runs in $T = \text{poly}\left(\frac{1}{\varepsilon}\right)$ time \implies *B* runs in $RT + m' \text{ poly}\left(\frac{1}{\varepsilon}\right) = \text{poly}\left(\frac{1}{\varepsilon}, \ln \frac{1}{\delta}\right)$ time **Summary**: $O\left(\ln \frac{1}{\delta}\right)$ calls to *A*; $O\left(\frac{1}{\varepsilon} \ln \frac{1}{\delta}\right)$ further samples to test the hypotheses

3. BOOSTING ACCURACY

Call algorithm A weak PAC learning algorithm with **advantage** γ if

for any $c \in C$, for any distribution \mathcal{D} , for any $\delta > 0$

with probability $\geq 1 - \delta$, output hypothesis h with $\operatorname{err}_{\mathcal{D}}(h, c) \leq \frac{1}{2} - \gamma$

Getting advantage $\gamma = 0$ (i.e. $\operatorname{err}_{\mathcal{D}}(h, c) = \frac{1}{2}$) is trivial: just output uniformly random guess Goal: Turn any weak PAC algorithm A with advantage γ into strong PAC algorithm

with poly $\left(\frac{1}{\gamma}, \frac{1}{\varepsilon}, \frac{1}{\delta}\right)$ overhead in #samples and running time

Will show efficient boosting algorithm B with following structure

1

 $\mathbf{2}$

Boosting algorithm B_{-}

Draw independent training samples $S = \{(x^1, c(x^1)), \dots, (x^m, c(x^m))\}$ from $\text{EX}(c, \mathcal{D})$ Initially set $\mathcal{D}_1 =$ uniform distribution over SRepeat $t = 1, \dots, R$ times: Run A on independent samples from $\text{EX}(c, \mathcal{D}_t)$ to get hypothesis h_t Adjust \mathcal{D}_t according to h_t to get updated distribution \mathcal{D}_{t+1} over SCombine hypotheses h_1, \dots, h_R to get hypothesis h

Missing details:

What are $\mathcal{D}_2, \mathcal{D}_3, \dots$? How to combine h_1, \dots, h_R into h? Why $\operatorname{err}_{\mathcal{D}}(h, c) \leq \varepsilon$?

History: Theory influenced practical algorithms!

Kearns and Valiant (1989): introduced weak learning, showing weaking learning may still be hard Freund and Schapire (1990): weak and strong learning are equivalent in distribution-free setting Freund and Schapire (1995): AdaBoost, now part of many machine learning libraries