
CSCI4230 Computational Learning Theory Spring 2021
Lecturer: Siu On Chan Based on Rocco Servedio’s and Varun Kanade’s notes

Notes 14: Weak and strong learning

1. Weak learning

Recall PAC learning definition (henceforth strong PAC learning):
Algorithm A PAC learns C if

for any concept c ∈ C and any distribution D over X
for any confidence parameter δ > 0 and any accuracy parameter ε > 0
when A takes m samples from EX(c,D)
with prob. ⩾ 1− δ, A outputs hypothesis with error ⩽ ε

A needs to work for arbitrarily small δ > 0 and ε > 0: stringent requirement!
What if A only is guaranteed to work for some δ > 0 and ε > 0? (much weaker guarantee)
Turns out A can be boosted to a strong learning algorithm

2. Boosting confidence

Suppose algorithm A, with probability ⩾ 2/3, outputs hypothesis with error ⩽ ε (for any ε > 0)
A’s confidence δ bounded away from 0

Can be converted to strong PAC algorithm (with arbitrarily small δ and ε):
Strong PAC algorithm B

Repeat t = 1, . . . , R times:
Run A on independent samples, with accuracy being ε/2, to get hypothesis ht

Draw m′ more samples S to evaluate hypothese h1, . . . , hR
Output the hypothesis with least empirical error on S

R
def
= 3

2 ln 2
δ = O

(
ln 1

δ

)
so that

P
[
none of h1, . . . , hR has error ⩽ ε

2

]
⩽

(
1− 2

3

)3/2 ln(2/δ)
⩽ e− ln(2/δ) =

δ

2

m′ def
= O

(
1
ε ln 1

δ

)
so that

Chernoff + Union Bound: with prob. ⩾ 1− δ/2,
all bad hypotheses among h1, . . . , hR have empirical error ⩾ 5

6ε; and
some ε

2 -accurate hypothesis among h1, . . . , hR has empirical error ⩽ 4
6ε

Hence any hypothesis with least empirical error must have (true) error ⩽ ε
Algorithm B succeeds with prob ⩾ 1− δ

A uses m = poly
(
1
ε

)
samples =⇒ B uses Rm+m′ = poly

(
1
ε , ln

1
δ

)
samples

A runs in T = poly
(
1
ε

)
time =⇒ B runs in RT +m′ poly

(
1
ε

)
= poly

(
1
ε , ln

1
δ

)
time

Summary: O
(
ln 1

δ

)
calls to A; O

(
1
ε ln 1

δ

)
further samples to test the hypotheses

3. Boosting accuracy

Call algorithm A weak PAC learning algorithm with advantage γ if
for any c ∈ C, for any distribution D, for any δ > 0
with probability ⩾ 1− δ, output hypothesis h with errD(h, c) ⩽ 1

2 − γ

Getting advantage γ = 0 (i.e. errD(h, c) = 1
2) is trivial: just output uniformly random guess

Goal: Turn any weak PAC algorithm A with advantage γ into strong PAC algorithm
with poly

(
1
γ ,

1
ε ,

1
δ

)
overhead in #samples and running time

Will show efficient boosting algorithm B with following structure
1



2

Boosting algorithm B

Draw independent training samples S = {(x1, c(x1)), . . . , (xm, c(xm))} from EX(c,D)
Initially set D1 = uniform distribution over S
Repeat t = 1, . . . , R times:

Run A on independent samples from EX(c,Dt) to get hypothesis ht
Adjust Dt according to ht to get updated distribution Dt+1 over S

Combine hypotheses h1, . . . , hR to get hypothesis h

Missing details:
What are D2,D3, . . . ?
How to combine h1, . . . , hR into h?
Why errD(h, c) ⩽ ε?

History: Theory influenced practical algorithms!
Kearns and Valiant (1989): introduced weak learning, showing weaking learning may still be hard
Freund and Schapire (1990): weak and strong learning are equivalent in distribution-free setting
Freund and Schapire (1995): AdaBoost, now part of many machine learning libraries


	1. Weak learning
	2. Boosting confidence
	3. Boosting accuracy

