CSCI4230 Computational Learning Theory Spring 2021
Lecturer: Siu On Chan Based on Rocco Servedio’s and Varun Kanade’s notes

Notes 14: Weak and strong learning

1. WEAK LEARNING

Recall PAC learning definition (henceforth strong PAC learning):
Algorithm A PAC learns C if
for any concept ¢ € C and any distribution D over X
for any confidence parameter § > 0 and any accuracy parameter € > 0
when A takes m samples from EX(c, D)
with prob. > 1 — §, A outputs hypothesis with error < ¢
A needs to work for arbitrarily small § > 0 and € > 0: stringent requirement!
What if A only is guaranteed to work for some 6 > 0 and ¢ > 07 (much weaker guarantee)
Turns out A can be boosted to a strong learning algorithm

2. BOOSTING CONFIDENCE

Suppose algorithm A, with probability > 2/3, outputs hypothesis with error < (for any € > 0)
A’s confidence § bounded away from 0
Can be converted to strong PAC algorithm (with arbitrarily small § and ¢):

Strong PAC algorithm B
Repeat t =1,..., R times:
Run A on independent samples, with accuracy being £/2, to get hypothesis h;
Draw m’ more samples S to evaluate hypothese hq,...,hg
Output the hypothesis with least empirical error on S

Rd:ef%ln%:O(ln%) so that

- 9\ 3/21n(2/9) 5
P [none of hi,...,hg has error < 5} < <1 — 3) < e n2/0) — 5
; def 1 1
m' = O (Eln 3) so that
Chernoff + Union Bound: with prob. > 1—46/2,
all bad hypotheses among h1, ..., hr have empirical error > %5; and
some §-accurate hypothesis among hy, ..., hg has empirical error < %5

Hence any hypothesis with least empirical error must have (true) error < ¢
Algorithm B succeeds with prob > 1—§
A uses m = poly (%) samples = B uses Rm +m’' = poly (%, In %) samples
A runs in T = poly (%) time == B runs in RT + m/ poly (%) = poly (%, In %) time
Summary: O (ln %) calls to 4; O (% In %) further samples to test the hypotheses

3. BOOSTING ACCURACY

Call algorithm A weak PAC learning algorithm with advantage ~ if

for any ¢ € C, for any distribution D, for any § > 0

with probability > 1 — §, output hypothesis A with errp(h,c) < % -
Getting advantage v = 0 (i.e. errp(h,c) = %) is trivial: just output uniformly random guess
Goal: Turn any weak PAC algorithm A with advantage v into strong PAC algorithm

with poly (%, %, %) overhead in #samples and running time

Will show efficient boosting algorithm B with following structure
1



2

~Boosting algorithm B

Draw independent training samples S = {(z!, c(z!)),..., (2™, c(2™))} from EX(c, D)
Initially set D; = uniform distribution over S
Repeat t =1,..., R times:
Run A on independent samples from EX(c, D) to get hypothesis h;
Adjust D; according to h; to get updated distribution Dyyq over S
Combine hypotheses hi,...,hg to get hypothesis h

Missing details:
What are DQ,Dg, L7
How to combine hq,...,hg into h?
Why errp(h,c) < e?

History: Theory influenced practical algorithms!
Kearns and Valiant (1989): introduced weak learning, showing weaking learning may still be hard
Freund and Schapire (1990): weak and strong learning are equivalent in distribution-free setting
Freund and Schapire (1995): AdaBoost, now part of many machine learning libraries



	1. Weak learning
	2. Boosting confidence
	3. Boosting accuracy

